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Abstract 

Mitochondrial diseases are a diverse family of genetic disorders caused by mutations affecting 

mitochondrial proteins encoded in either the nuclear or the mitochondrial genome. By impairing 

mitochondrial oxidative phosphorylation, they compromise cellular energy production and the downstream 

consequences in humans are a bewilderingly complex array of signs and symptoms that can affect any of 

the major organ systems in unpredictable combinations. This complexity and unpredictability has limited 

our understanding of the cytopathological consequences of mitochondrial dysfunction. By contrast, in 

Dictyostelium the mitochondrial disease phenotypes are consistent, measurable “readouts” of dysregulated 

intracellular signalling pathways. When the underlying genetic defects would produce coordinate, 

generalized deficiencies in multiple mitochondrial respiratory complexes, the disease phenotypes are 

mediated by chronic activation of an energy-sensing protein kinase, AMPK (AMP-activated protein kinase). 

This chronic AMPK hyperactivity maintains mitochondrial mass and cellular ATP concentrations at normal 

levels, but chronically impairs growth, cell cycle progression, multicellular development, photosensory and 

thermosensory signal transduction. It also causes the cells to support greater proliferation of the 

intracellular bacterial pathogen, Legionella pneumophila. Notably however, phagocytic and macropinocytic 

nutrient uptake are impervious both to AMPK signalling and to these types of mitochondrial dysfunction. 

Surprisingly, a Complex I-specific deficiency (midA knockout) not only causes the foregoing AMPK-mediated 

defects, but also produces a dramatic deficit in endocytic nutrient uptake accompanied by an additional 

secondary defect in growth. More restricted and specific phenotypic outcomes are produced by knocking 

out genes for nuclear-encoded mitochondrial proteins that are not required for respiration. The 

Dictyostelium model for mitochondrial disease has thus revealed consistent patterns of sublethal 

dysregulation of intracellular signalling pathways that are produced by different types of underlying 

mitochondrial dysfunction. 
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1. Introduction 

Mitochondrial diseases are complex degenerative disorders caused by mutations affecting nuclear genes 

for mitochondrial proteins or mitochondrial genes that encode subunits of the oxidative complexes or 

translational machinery [1]. In humans, the pathological outcomes include blindness, deafness, epilepsy, 

heart disease, stroke-like episodes, ataxia, muscle weakness, exercise intolerance, diabetes and kidney 

disease [2,3]. Mitochondrial dysfunction also plays pathological roles in neurological disorders such as 

Parkinson’s disease and Alzheimer’s disease [3-6]. 

Although much is known about the mtDNA mutations associated with human mitochondrial diseases, the 

relationship between genotype and phenotype is complicated and poorly understood. To gain further 

insight into this relationship, D. discoideum has been employed as a model organism to study mitochondrial 

biogenesis and disease [7-11]. The mitochondrial genome of Dictyostelium has been fully sequenced [12], 

while mitochondrial transcription and RNA processing in this organism have been thoroughly examined [13-

15]. Mitochondrial disease has been created in Dictyostelium by a variety of methods and the pathological 

consequences studied. Since Dictyostelium has motile unicellular and multicellular stages with multiple cell 

types, many phenotypes can be examined including phototaxis, thermotaxis, macropinocytosis, 

phagocytosis, cell cycle progression and growth, amoeboid motility and chemotaxis, morphogenesis and 

intracellular growth of pathogens such as Legionella pneumophila. These varied phenotypes represent 

measurable, reproducible “readouts” of the intracellular signaling pathways that regulate them. By assaying 

them in mitochondrially diseased Dictyostelium lines, we can gain a better understanding of genotype-

phenotype relationships in mitochondrial disease, without the overlaid complexities associated with 

mammalian systems. 

To understand the cytopathological pathways involved in mitochondrial diseases it is important to 

identify and study proteins that play roles in these pathways. One such protein is AMP-activated protein 

kinase (AMPK), a ubiquitous, highly conserved protein kinase that maintains cellular energy homeostasis in 

healthy and diseased cells [9,16]. Bokko et al. (2007) [9] and Francione et al. (2009) [11] have shown that 

signalling by this protein is responsible for diverse cytopathologies seen in Dictyostelium mitochondrial 

disease. However, Carilla-Latorre et al. (2010) [17] reported recently that, in Complex I-specific disease, 

additional aberrant signalling pathways become involved so that additional AMPK-independent phenotypes 

are also observed. This review will highlight the contributions made by the Dictyostelium model to our 

understanding of mitochondrial biology and disease.  The genetic manipulation strategies that have been 
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brought to bear and the associated phenotypes in D. discoideum are discussed, the role of AMPK is 

featured and our emerging understanding of Complex I-specific disease is described.  

2. Mitochondrial Biology 

Mitochondria are ubiquitous in eukaryotic cells where they are central to the maintenance of cell 

function and viability. These organelles, numbering from one to thousands depending on the cell type, are 

responsible for generating most of the cell’s ATP which constitutes the direct or indirect energy source for 

most cellular functions. ATP is generated by oxidative phosphorylation (OXPHOS) at the inner mitochondrial 

membrane. The proteins involved in OXPHOS are encoded by genes of both the mitochondrial and nuclear 

genomes (see Supplementary Table 1). Mutations in these or other genes that affect OXPHOS lead to an 

array of mitochondrial diseases [18].  

2.1. The mitochondrial genome of humans and D. discoideum 

Each D. discoidem cell contains about 200 copies of the mitochondrial genome which, like that of 

humans, is a circular molecule. The mitochondrial genome of humans is 16,569 bp [19] whereas in D. 

discoideum it is larger at 55,564 bp [12]. The average coding capacity of the mitochondrial genome in 

eukaryotes is 40-50 genes. The mitochondrial gene products are mainly required for five processes: 

respiration and/or OXPHOS, translation and in some organisms also transcription, RNA maturation and 

protein import [1,20]. In mammals, the majority of protein subunits (> 80) of the respiratory chain are 

encoded in the nucleus whereas only 13 subunits are encoded in the mitochondrial genome [18,20]. 

Production of these mitochondrially-encoded proteins requires the import of a variety of nuclear encoded 

proteins such as the single subunit mitochondrial RNA polymerase, amino acyl tRNA synthetases and the 

mitochondrial transcription factor A. Molecules required for mitochondrial protein synthesis which are 

encoded by the human and D. discoideum mitochondrial genomes are shown in Supplementary Table 2. 

The mitochondrial genes and ORFs in Dictyostelium are all transcribed in the same orientation [12] 

(Figure 1). Some overlapping of genes is evident in the tightly packed genome, which also exhibits 

intergenic spacing from several nucleotides to greater than 2 kb. The genome also encodes several ORFs 

that do not exist in most other organisms and presumably do not play essential universal roles. 

All of the genes in the Dictyostelium mitochondrial genome are transcribed to one of eight large 

polycistronic mRNA transcripts which are further processed to form a variety of smaller monocistronic, 

dicistronic or tricistronic mature RNA molecules [14]. Recently these eight transcripts were shown to be 

derived from processing of a single primary RNA transcript [15,21]. The transcription initiation site in the 
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Dictyostelium mitochondrial genome is located in a noncoding region upstream of rnl which encodes the 

large ribosomal subunit RNA (Figure 1) [15]. 

2.2.The mitochondrial protein import machinery 

The majority of the ca. 1500 resident mitochondrial proteins are encoded by nuclear DNA, translated by 

cytoplasmic ribosomes and imported by the mitochondrial protein import machinery [20,22]. These include 

not only the other metabolic enzymes and “housekeeping” proteins, but also the remaining 70 subunits of 

the OXPHOS complexes (that assemble with those encoded by mtDNA) as well as factors required for 

expression and replication of the mitochondrial genome [23]. Defective protein import may lead to 

mitochondrial respiratory dysfunction, reduced ATP production and mitochondrial disease (eg. Human 

Deafness Dystonia Syndrome [24]). In turn impairment of respiration can inhibit mitochondrial protein 

import, since import is energized both directly by the mitochondrial membrane potential (∆ψm) and by ATP 

hydrolysis involving proteins such as the mitochondrial heat-shock protein (Hsp) 70 (mtHsp70) and 

mitochondrial import stimulation factor (MSF) [25,26]. The mitochondrial protein import machinery also 

assists in the correct sorting and translocation of proteins to the correct mitochondrial compartments - the 

matrix, the inner membrane, the intermembrane space and the outer membrane [22]. 

Although our knowledge of protein import into mitochondria is based mostly on research in S. cerevisiae 

and N. crassa, similar processes are likely to occur in other species. Tom40, Tom70 and Tom22 were found 

to be common elements of the mitochondrial protein machinery amongst eukaryotic genome sequences 

and orthologues are also encoded in the Dictyostelium genome [27]. 

Interestingly Ahmed et al. (2006) [28] reported that import of some mitochondrial proteins in 

Dictyostelium occurs cotranslationally in vivo. Cotranslational import of mitochondrial proteins has also 

been observed in yeast [29,30]. Current evidence suggest that it occurs as a result of transport and binding 

of the mRNA to the mitochondrial surface in a manner that depends on secondary stem-loop structures in 

the mRNA, often in untranslated regions of the transcript [29]. 

3. Human mitochondrial diseases 

Mutations in mitochondrial or nuclear genes that encode components of the translational machinery or 

the OXPHOS complexes have been associated with human mitochondrial diseases. Due to the presence of 

mitochondria in all cells of the human body, every tissue can be adversely affected by mutations in the 

mitochondrial genome. However, there is tissue-specific variation in the numbers of mitochondria, the 

proportion of mutant mitochondrial genomes, the energy demands of the cell, the isoforms of nuclear-

encoded mitochondrial proteins that are expressed and the extent of cellular and mitochondrial 

http://www.sciencedirect.com.ezproxy.lib.monash.edu.au/science?_ob=ArticleURL&_udi=B6W8G-4PF6B5F-1&_user=542840&_coverDate=12%2F31%2F2007&_alid=716274572&_rdoc=1&_fmt=full&_orig=search&_cdi=6654&_sort=d&_docanchor=&view=c&_ct=1&_acct=C000027659&_version=1&_urlVersion=0&_userid=542840&md5=2f4d755ebbdf91cf3c7ec4f23e4f5a51#bib3#bib3
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proliferation. Depending on which tissues are affected most in a given individual, this leads to a bewildering 

complexity in mitochondrial diseases which exhibit a very broad range of possible symptoms 

(Supplementary Tables 3 and 4). Individuals with the same mitochondrial disease mutation can exhibit huge 

variation in clinical symptoms while different mutations can result in similar clinical manifestations. Thus 

phenotypes associated with human mitochondrial diseases are unpredictable from specific genetic defects.  

In mitochondrial diseases, pathogenic mutations in mitochondrial genes usually affect only a subset of 

the genomes (a state referred to as heteroplasmy) and the extent of the phenotypic outcomes is 

sometimes related to how large this subset is (the mutant load). This can contribute to a phenomenon 

whereby a particular pathological outcome is only observed when the mutant load exceeds a particular 

threshold. A good example of such a threshold is shown by NARP (Neuropathy, Ataxia and Retinitis 

Pigmentosa) and LS (Leigh Syndrome) which can result from the same mutation. NARP is caused by 70-90 % 

of mutated mtDNA whereas LS develops if the mutation load is above 90–95 % [31,32]. In some cases, 

mtDNA mutations must be above a particular threshold for significant ATP depletion and/or symptoms of 

the disease to occur [33]. Biochemical thresholds that influence the extent to which ATP levels are reduced 

as a consequence of gene mutations, have been described in detail by Rossignol et al. (2003) [34].  

4. D. discoideum as a model organism for mitochondrial disease 

The genetics, biochemistry and signal transduction processes of D. discoideum have been studied 

extensively and are well understood. With fully sequenced mitochondrial [12] and nuclear [35] genomes, 

the organism is one of a small number of nonmammalian model organisms recognized by the National 

Institute of Health (NIH) in the U.S.A. for their importance in biomedical research 

(http://www.nih.gov/science/models/). Many Dictyostelium genes are orthologues of disease-related 

genes [35] and this has facilitated the establishment of Dictyostelium models for investigating a variety of 

human diseases [10,39,40], including mitochondrial disease [21].  In those cases where the relevant 

experiments have been done, heterologous expression and study of Dictyostelium genes in other 

organisms, or vice versa, has confirmed directly that the functions of orthologous proteins have been 

conserved during evolution [10]. 

4.1. Life cycle and phenotypes 

What makes Dictyostelium so valuable a model organism is that it combines genetic, biochemical and cell 

biological tractability with a unique life cycle providing a great variety of readily assayed, reproducible 

disease phenotypes. The organism grows as isolated amoeboid cells that divide mitotically and obtain 

nutrients either by phagocytic consumption of bacteria or by macropinocytosis of liquid medium. 

Starvation induces a developmental programme in which the amoebae differentiate and consequently 



7 

become responsive to an attractant, cAMP, which they now synthesize and secrete. The resulting 

aggregation process leads to formation of a motile, multicellular organism (the “slug”) containing multiple 

cell types organized in a well-defined spatial pattern. The migratory slug exhibits highly sensitive 

phototactic and thermotactic responses under control of its specialized anterior cells.  After a variable 

period of migration it forms a fruiting body by a combination of morphogenetic movements and further cell 

differentiation. This life cycle, with its motile unicellular and multicellular stages, offers diverse phenotypic 

“readouts” of the signaling pathways that regulate them. These include cell growth and division [38]; 

amoeboid motility and chemotaxis [39]; phagocytosis and macropinocytosis [40]; phototaxis and 

thermotaxis [41,42]; cell and tissue differentiation and pattern formation [43]; autophagic cell death [44]; 

multicellular tissue movement and morphogenesis [45,46]. Dictyostelium has also been used to study the 

interactions between microbial  pathogens, such as Legionella pneumophila, and their hosts [47]. The 

molecular mechanisms of Legionella pathogenesis in D. discoideum are similar to those in human cells 

[48,49]. Despite this phenotypic richness, many of the complexities associated with mammalian systems 

are eliminated in the Dictyostelium model, since all stages of the life cycle can be readily studied in clonally 

derived, genetically identical cell lines. The study of mitochondrially diseased Dictyostelium strains has 

accordingly revealed consistent, reproducible outcomes that contrast with the unpredictability of 

mitochondrial disease in humans. 

As mentioned previously human mitochondrial diseases are characterized by pathological or biochemical 

thresholds. Mitochondrial disease in Dictyostelium has exhibited similar thresholds in that some 

phenotypes appear more sensitive to mitochondrial dysfunction than others [7,8,50].  Although genetic 

manipulations that would impair respiration resulted in similar phenotypic outcomes, the severity of the 

phenotypes varied amongst the mitochondrially diseased strains so that particular defects such as slow 

growth were not observed in every strain [7-9,50]. Much of this variation in the severity of the phenotypic 

aberrations in mitochondrially diseased Dictyostelium was shown to be caused by differences in the 

severity of the underlying  genetic defect. As described in the next section, such differences are readily 

created and quantitatively measured in Dictyostelium. 

4.2. Genetic manipulation to produce mitochondrial disease in Dictyostelium 

In order to study mitochondrial disease in Dictyostelium various methods have been employed to create 

sublethal mitochondrial dysfunction. These include RNAi (interfering RNA) [51] or antisense inhibition of 

expression of specific mitochondrial proteins [8,9], heteroplasmic disruption of mitochondrial genes 

[7,11,52] and knockout of nuclear genes encoding nonessential mitochondrial proteins [53-56]. 

Mitochondrial defects in Dictyostelium have also been generated pharmacologically through the use of 

ethidium bromide to deplete the cells of mitochondrial DNA [57]. 
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4.2.1. Heteroplasmic targeted disruption 

The first Dictyostelium mitochondrial gene targeted for heteroplasmic disruption was rnl, the 

mitochondrial large ribosomal subunit RNA gene [7]. The original disruption of this gene was a result of a 

nontargeted insertion into a gene important for phototaxis. Subsequent targeted disruptions confirmed the 

effect on phototaxis and initiated the study of mitochondrial disease in Dictyostelium [7].  Another 

Dictyostelium mitochondrial gene rps4, encoding a ribosomal protein, was targeted for heteroplasmic 

disruption by Inazu et al (1999) [52]. Apart from rnl and rps4, 8 other mitochondrial genes have been 

disrupted and regardless of which gene was targeted, the expression of the entire mitochondrial genome 

was reduced [50]. The strength of signals in Southern blots of the mitochondrial DNA indicates that only a 

subset of the mitochondrial genomes is affected in these strains i.e. the disruptions are heteroplasmic 

[7,50] allowing Dictyostelium to be used as a model for human heteroplasmic mitochondrial disease. 

4.2.2. Antisense and RNAi inhibition of nuclear genes encoding essential mitochondrial 

proteins 

Mitochondrial disease can also be caused by mutations affecting nuclear genes that encode 

mitochondrial proteins. An example is hspA, which encodes chaperonin 60 (Cpn60), a protein located in the 

mitochondrial matrix. Cpn60 is required for correctly folding proteins newly imported into the 

mitochondrial matrix. A deficiency of Cpn60 is linked to a mitochondrial disease in humans, the symptoms 

of which include severe neurological and developmental defects and depletion of many respiratory 

enzymes [58-60]. In D. discoideum a Cpn60 insufficiency was created by antisense inhibition of expression 

of the protein [8,9]. Transformation of Dictyostelium with an antisense-inhibition construct produces 

transformants in each of which a different number of copies of the plasmid are integrated into the nuclear 

genome. The copy number is stable, easily determined using several techniques [61,62] and correlates with 

the reduction of expression of the target gene and the phenotypic outcomes [8,9]. RNAi constructs have 

been used similarly to reduce the expression of  the catalytic subunit of mitochondrial succinate 

dehydrogenase (respiratory Complex II) (Lay & Fisher, unpublished results) and  Dd-TRAP1 (D. discoideum 

Tumor necrosis factor receptor-associated protein), a Hsp90 homologue which translocates to the 

mitochondria in early differentiation [51]. By analogy with Hsp90 in other organisms, it may play a role in 

chaperoning some proteins en route to the mitochondria. 

4.2.3. Targeted disruption of nuclear genes encoding nonessential mitochondrial proteins 

While the heteroplasmic disruption of essential mitochondrial genes is possible, it is lethal to disrupt a 

nuclear gene in Dictyostelium’s haploid genome if it encodes an essential mitochondrial protein. Such a 

gene must supply its encoded protein to every mitochondrion in the cell. However some mitochondrial 

proteins are not essential for viability. Genes encoding these proteins can be disrupted through 
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homologous recombination and the associated phenotypes examined. Such genes include cluA [54], torA 

(Tortoise) [53], fszA and fszB [55], midA [17,63] and aoxA [64]. 

4.3. Dictyostelium mitochondrial disease pathology 

Several broad categories of mitochondrial dysfunction have been studied in the Dictyostelium model 

(Table 1). The first is generalized oxidative phosphorylation (OXPHOS) defects that are expected to impair 

multiple respiratory complex deficiencies. Such defects have been studied by sublethal genetic or 

pharmacological manipulations that reduce but do not eliminate the oxidative phosphorylation (OXPHOS) 

capacity of the mitochondria. The second category of mitochondrial defects studied in Dictyostelium are 

those that affect mitochondrial functions other than OXPHOS. Finally, in very recent work, a class of mutant 

has been found that produces a specific reduction in the activity of only one of the respiratory complexes 

(Complex I). Each of these categories of mitochondrial dysfunction has contributed to our growing 

understanding of the cytopathological pathways underlying mitochondrial disease. 

4.3.1. Generalised OXPHOS defects 

The most obvious biochemical consequence of a generalized deficiency in oxidative phosphorylation is a 

reduced capacity to synthesize ATP.  In humans the phenotypic outcomes of mitochondrial disease were 

thought accordingly to result from a depletion of ATP and the different energy requirements of cellular 

functions. However, in Dictyostelium it has been shown that mitochondrial disease phenotypes arising from 

generalized OXPHOS defects (Table 1) do not result simply from a depletion of ATP but from disturbances in 

intracellular signalling networks. In mitochondrial disease the energy generating capacity of the 

mitochondria is compromised which results in activation of intracellular energy stress signals. These signals 

are relayed into various signalling pathways to produce phenotypic affects, some of which are more 

sensitive to mitochondrial dysfunction than others.  

The first mitochondrial disease phenotype to be discovered in Dictyostelium was impaired phototaxis and 

thermotaxis in the multicellular slug stage of the life cycle [7]. Dictyostelium slugs display extremely 

sensitive, accurate orientation towards light and in temperature gradients [47,48]. Phototaxis and 

thermotaxis pathways converge early so that almost all of the proteins involved are required for both 

processes. The photo/thermosensory transduction pathways in Dictyostelium are not completely 

understood, but many participating molecules have been identified which could be downstream targets of 

energy stress signalling. These include heterotrimeric G proteins [47,48]; the second messengers cAMP, 

cGMP, IP3 and Ca2+ [47,48]; signalling proteins such as RasD [65], GefE and GefL [66]; protein kinases such 

as PKB and ErkB [67]; and cytoskeletal proteins such as GRP125 [68], villidin [69], CAP [70], filamin [71] and 

FIP [72]. A number of the proteins involved form a photosensory signalling complex that is assembled on 
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the scaffolding protein filamin [67,73]. The phototaxis and thermotaxis signalling pathways were impaired 

by mitochondrial disease in all cases tested, regardless of how the mitochondrial dysfunction was caused. 

Thus heteroplasmic disruption of any of 10 different mitochondrial genes and down regulation of 

chaperonin 60 all resulted in phototaxis and thermotaxis defects [7,8,11,50,52]. Likewise phototaxis was 

impaired by depletion of mitochondrial DNA using ethidium bromide treatment [57]. 

The second phenotype to be affected by mitochondrial disease is growth. Dictyostelium cells can grow 

either on bacterial lawns (obtaining nutrients by phagocytosis) or axenically in liquid medium (obtaining 

nutrients by macropinocytosis). Mitochondrially diseased Dictyostelium cells showed impaired growth in 

liquid and on bacterial lawns [7-9]. However these growth defects were not a result of altered phagocytosis 

or macropinocytosis [9], nor did the cells show alterations to their size, implying a coordinate inhibition of 

both cell growth and cell cycle progression (Ahmed and Fisher, unpublished data).  

The proteins controlling the cell cycle that could be dysregulated in mitochondrial disease include seven 

cyclins, six cyclin-dependent kinases identified in Dictyostelium and homologues of inhibitors of cell cycle 

progression such as the retinoblastoma protein Rb, a homologue of which is encoded by rblA [35]. The 

major signalling pathway controlling cell growth in metazoans involves the protein kinase TOR in a 

multiprotein complex called TORC1. Inhibition of this pathway involves activation of TSC2 which in turn 

inactivates Rheb and thereby inactivates TOR [38,74]. These proteins are conserved in Dictyostelium [35] 

but their functional roles in signalling pathways involved in growth control or mitochondrial disease have 

not been determined. In mammals AMPK inhibits TORC1 directly through the RapTOR subunit [75] and 

indirectly by activating TSC2 [74]. Because  mitochondrial dysfunction compromises ATP generation, AMPK 

should be chronically activated in mitochondrially diseased cells. This indeed appears to be the case for 

mitochondrially diseased Dictyostelium cells [9] as well as Parkinson’s [76], Alzheimer’s [77] and 

Huntington’s [78] disease neurons. As described in greater detail in later sections, chronic AMPK signalling 

was found to be responsible for the slow growth of mitochondrially diseased Dictyostelium cells [9].  

The third phenotype which is consistently affected by mitochondrial dysfunction is the differentiation of 

cells into stalk and spore cells, with mitochondrially diseased cells showing an increased number of cells 

directed into the stalk differentiation pathway and mislocalisation of these cells in the multicellular slug. At 

culmination this results in fruiting bodies with thick short stalks. This effect was seen in mitochondrially 

diseased cells created either by genetic manipulation [8,9] or by treatment with ethidium bromide [57]. In 

addition, almost all cells were directed into the stalk differentiation pathway by inhibitors of cyanide-

resistant respiration that also impaired the mitochondrial membrane potential, loss of which is known to 

stimulate autophagy [79]. Stalk cell differentiation in Dictyostelium involves a programmed cell death 

accompanied by the accumulation of autophagic vacuoles. Mitochondrial dysfunction in Dictyostelium thus 
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appears to direct cells into an autophagic cell death pathway that may be analogous to the autophagic cell 

death implicated in neurodegeneration in humans [44].   

The last phenotype to be associated with mitochondrial disease in Dictyostelium is altered transition 

from growth to development and subsequent chemotactic aggregation. Inazu et al (1999) [52] showed that 

knock down of the mitochondrial rps4 gene resulted in greatly impaired cell aggregation and significantly 

lower levels of car1, an early developmental gene. Depletion of mitochondrial DNA by ethidium bromide 

treatment impaired aggregation significantly and reduced the expression of early developmental genes 

including carA [57]. Aggregation was also impaired in chaperonin 60 or succinate dehydrogenase antisense-

inhibited cells resulting in fewer, smaller aggregates [8,9,Lay & Fisher, unpublished]. 

4.3.2. Defects not known to affect OXPHOS  

Mutations affecting the mitochondria have been created which do not damage the energy generating 

capability of the mitochondria (Table 1). One example is knockout of the mitochondrial fission proteins FszA 

and FszB [55], whose closest homologues are FtsZ proteins that mediate binary fission in the α-

proteobacteria, the presumed ancestors of mitochondria. In some eukaryotic lineages such as fungi, 

animals and plants, no mitochondrial FtsZ proteins have been identified and mitochondrial division is 

primarily undertaken by FIS1 and DNM1L (dynamin-like protein also known as DRP1) [80]. Mitochondrial 

fission in Dictyostelium involves both dynamin-like proteins [81] and FtsZ proteins [55], indicating that the 

latter were retained in the amoebozoan lineage but discarded in some others. Disruption of FszA or FszB 

impaired mitochondrial division, producing more elongated mitochondria, while disruption of FszB but not 

FszA also caused growth defects [55]. However, none of the other characteristic mitochondrial disease 

phenotypes described in the preceding section were observed.  

FszB was found localised to submitochondrial bodies of unknown function [55] which are also enriched in 

another mitochondrial protein TorA (tortoise) [53]. TorA null amoebae move slowly and fail to suppress 

inappropriate lateral pseudopod formation during chemotaxis, defects which may explain why they grow 

slowly on bacterial lawns. The specificity of the motility and chemotaxis defects suggests that TorA null cells 

still produce wild type levels of ATP [53]. There is no human homologue for TorA and it is unknown whether 

TorA mutant cells display any of the phenotypes typically associated with mitochondrial respiratory 

dysfunction in Dictyostelium. 

A nuclear gene required for normal subcellular localization of mitochondria is cluA. First discovered and 

functionally characterized in Dictyostelium, cluA has homologues in all eukaryotes whose genomes have 

been sequenced. CluA null mutants exhibit pronounced perinuclear clustering of the mitochondria in 

mutant cells [54]. CluA is also involved in cytokinesis since mutant cells were multinucleate and slightly 
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impaired in growth [54]. The involvement in cytokinesis is likely to be an indirect result of the contractile 

ring being physically occluded by large aggregates of mitochondria that block completion of cleavage [82].  

Another mitochondrial protein that has been studied genetically is TRAP1, a homologue of mammalian 

TRAP1 (Tumour Necrosis Factor Receptor-Associated Protein 1). TRAP1 belongs to the Hsp90 molecular 

chaperone family and localises to the mitochondria as well as to extramitochondrial sites such as the 

nucleus, secretory granules and cell membranes [83-85]. The protein is localised to the cell cortex of cells 

growing at low cell densities and translocates to the mitochondria as the cell density of growing cells 

increases [56]. RNAi inhibition of TRAP1 expression resulted in slow vegetative growth and delayed 

aggregation, while overexpression resulted in premature aggregation.  

The alternative oxidase encoded by aoxA in Dictyostelium is a mitochondrial protein with homologues in 

animals, plants, fungi and bacteria [86]. It can accept electrons from ubiquinone in place of Complex III and 

pass them directly to molecular oxygen, thus providing an alternative pathway for electron flow in which 

protons are pumped across the mitochondrial inner membrane only at Complex I. This process of cyanide-

resistant respiration appears to serve primarily as an electron sink that prevents leakage of electrons in 

single electron transfers to oxygen that would form superoxide anions and thence other reactive oxygen 

species (ROS). Kimura et al. (2010) [64] knocked out aoxA in Dictyostelium and found no obvious 

phenotypic changes in growth or development under normal conditions. However development in the 

mutant was completely blocked by millimolar concentrations of KCN that merely delayed development in 

the wild type. 

4.3.3. The role of AMPK 

It was first proposed by Wilzcynska et al. (1997) [7] that a cytopathological effect of mitochondrial 

disease is impairment of signal transduction pathways with some pathways being more sensitive than 

others. Recently a molecular link between mitochondrial disease and cellular signalling was identified in 

Dictyostelium in the form of AMP-activated protein kinase (AMPK) [9]. AMPK is an essential sensor and 

homeostatic regulator of cellular energy status [87]. The serine/threonine protein kinase is a heterotrimer 

composed of a catalytic α subunit, a regulatory γ subunit and a β subunit which acts as a scaffold for the 

other subunits. In mammalian cells there are three genes encoding isoforms of the γ subunit and two for 

each of the α and β subunits, whereas in Dictyostelium only one of each subunit is encoded in the genome.  

Activation of AMPK occurs when AMP binds to the two Bateman domains on the γ subunit relieving its 

inhibition of the catalytic α subunit. The α subunit is now able to be phosphorylated at a threonine residue 

by an upstream kinase and is also resistant to dephosphorylation by phosphatases. Because of competition 

between AMP and ATP for binding to the Bateman domains, AMPK activation is very sensitively regulated 
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by AMP/ATP ratios with high ATP levels producing the inactive heterotrimer. Several upstream AMPK 

kinases have been identified to date - LKB1 [88,89], CaMKKα and  [90,91] and TAK1 [92]. Of these, LKB1 is 

reported to be the major activator [89]. 

Once activated, AMPK homeostatically rectifies low cellular energy levels by activating pathways that 

produce  ATP while inhibiting others that consume it. These effects are exerted by inhibiting key enzymes in 

biosynthetic pathways (eg. acyl CoA carboxylase in fatty acid synthesis and 3-hydroxy-3-methylglutaryl-CoA 

reductase in cholesterol biosynthesis), activating protein translocation (eg. the GLUT4 glucose transporter 

to the plasma membrane, increasing glucose uptake) [93], and altering gene expression (eg. repression of 

glucose responsive genes and protein synthesis [94,95], induction of mitochondrial biogenesis [96,97]). 

These actions enable AMPK to regulate the AMP/ATP ratio and maintain healthy energy levels within the 

cell. 

Because of its exquisite sensitivity to AMP/ATP ratios, AMPK exerts its effects prior to a serious depletion 

in energy. Bokko et al. (2007) [9] provided molecular genetic evidence that AMPK is chronically activated in 

mitochondrial disease. Mitochondrial disease was created in Dictyostelium by antisense inhibition of 

chaperonin 60 to produce the defective phenotypes discussed earlier, including defective 

photo/thermotaxis, growth and morphogenesis. These defective phenotypes were phenocopied by 

overexpressing a constitutively activated form of AMPK (AMPKαT). Conversely, when AMPKα expression 

was knocked down in mitochondrially diseased cells (chaperonin 60 antisense inhibition), the defective 

phenotypes were suppressed. AMPKαT-expressing strains also exhibited increased mitochondrial mass and 

higher ATP levels, as expected since AMPK stimulates biogenesis and ATP production in mammalian cells. 

Mitochondrially diseased cells did not show changes in mitochondrial mass or steady state ATP levels 

presumably due to a balance between reduced biogenesis and ATP production caused by antisense 

inhibition of chaperonin 60 and increases due to chronic activation of AMPK. However this chronic AMPK 

hyperactivity in mitochondrially diseased cells leads to permanent dysregulation of the downstream 

energy-consuming pathways under AMPK’s control (Figure 2). 

4.3.4. Dictyostelium and Complex I dysfunction 

NADH:ubiquinone oxidoreductase or Complex I (CI) is the first and the largest complex of the respiratory 

chain and couples the oxidation of NADH to reduction of ubiquinone and the  transport of protons. It is 

formed by 45 protein subunits in mammalian cells that assemble together into a structure of approximately 

1 Mda [98]. CI has important implications in human pathology due to its role in the generation of reactive 

oxygen species and the increasing number of diseases whose cause is directly or indirectly associated with 

CI function. About 40% of inherited disorders of the OXPHOS system involve isolated or combined 
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deficiencies in CI. As described previously these deficiencies present diverse combinations of clinical 

manifestations, including fatal childhood disorders such as Leigh syndrome. Complex I dysfunction has also 

been linked to neurodegenerative disorders such as Parkinson’s and Alzheimer’s diseases [99-101]. Despite 

its importance in human pathology many aspects of CI function, including its regulation, assembly and 

structure are poorly understood. 

CI is present in prokaryotes in its minimal version formed by the so-called core subunits. This bacterial 

complex is able to perform the essential redox reactions required for its function. However eukaryotic CI 

contains additional subunits (known as accessory subunits) that might have been acquired during evolution 

to enrich CI with new functions and regulatory properties. Interestingly CI has been lost in certain 

eukaryote lineages such as the one leading to the yeast S. cerevisiae. However, other fungi such as Yarrowia  

lipolytica and Neurospora crassa do contain CI and have been used as simple models for its study [102,103].  

Like Yarrowia and Neurospora, Dictyostelium possesses CI and homologous genes encoding Complex I 

subunits can be recognized in the mitochondrial and nuclear genomes. Also like them, Dictyostelium has 

proteins similar to all core subunits and a subset of accessory proteins (Supplementary Table 5). 

Interestingly the Dictyostelium mitochondrial genome codes for three CI subunits that are nuclear encoded 

in other organisms [104]. This is consistent with divergence of major eukaryotic lineages before the process 

of transferring mitochondrial genes to the nuclear genome had been completed. 

Despite its complexity only few assembly factors have been described to be required for the correct 

assembly and stability of this huge multiprotein complex. Six have been described to be involved in human 

CI deficiency: NDUFAF1, NDUFAF2, NDUFAF3 and NDUFAF4 [105-108], C8orf38 [109] and C20orf7 

[110,111]. Others are required for CI assembly but have not yet been implicated in human disease such as 

Ecsit  [112], AIF [113], IndI [114,115] and MidA/C2orf56 [17]. Interestingly, two (C20orf7 and MidA) are 

putative methyltransferases suggesting that methylation might play a relevant role in CI function.  

MidA is a conserved protein that was described for the first time in Dictyostelium as a mitochondrial 

protein required for cellular bioenergetics since null mutants have reduced ATP levels and are 

compromised in growth and development [63]. Bioinformatics modeling and site directed mutagenesis 

suggested that MidA contains a methyltransferase domain required for its function. The protein´s ability to 

complement the mutant phenotype is abolished by mutations in a critical glycine in the catalytic core that is 

predicted to interact with the methyl donor S-adenosyl methionine (SAM) [17]. Dictyostelium cells lacking 

MidA show a specific defect in Complex I activity and this role has also been confirmed in mammalian cells 

since the knock-down of human MidA in HEK293T cells results in an isolated defect in the activity and 

assembly of Complex I. Both Dictyostelium and human MidA interact with the CI core subunit NDUFS2, but 

the consequences of this interaction and whether or not MidA is involved in Ndufs2 methylation remain 
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open questions [17]. Only two protein methylation modifications have been detected in Complex I 

subunits. One of them is in the bovine NDUFB3 (B12) subunit that is methylated at conserved His residues 

but has no homologue in Dictyostelium. Interestingly, the other one is the human NDUFS2 subunit that 

harbors a methylated arginine, R323 [116]. 

MidA knockout in Dictyostelium causes a complex phenotype that shows similarities but also differences 

with that of other mitochondrially diseased strains (Table 1 and Figure 2). Defects in phototaxis and 

thermotaxis, a hallmark of Dictyostelium mitochondrial defects, are present in the MidA mutant and can be 

rescued by AMPK antisense inhibition, similarly to the other described mitochondrial mutants [9,17]. 

However, midA- cells are also defective in phagocytosis and macropinocytosis, a phenotype that is not 

rescued by AMPK antisense inhibition and is not even present in the other described mitochondrial 

mutants. These results suggest that isolated defects in CI might cause abnormal phagocytosis and 

pinocytosis. Alternatively, MidA might have additional functions beyond CI that could affect these cellular 

activities. The study of other CI-specific mutants in Dictyostelium is necessary to distinguish between these 

possibilities and to clarify the complex cytopathology associated with CI disease.  

5. Conclusion 

The Dictyostelium model for mitochondrial disease is proving to be a rich field for investigation. It is 

simple and tractable enough to yield consistent, reproducible phenotypes in clonally derived mutants, yet 

has a sufficiently complex life cycle with unicellular and multicellular motile forms to provide a rich lode of 

phenotypic readouts of varied intracellular signalling pathways. It has taught us that sublethal 

mitochondrial dysfunction at the cellular level produces phenotypic outcomes from disturbed intracellular 

signalling networks not merely ATP depletion, cumulative oxidative damage and cell death. The implication 

is that whole organism pathology may arise earlier and be more nuanced than is often supposed - an 

outcome of sublethal cellular dysfunction not simply the result of cell death. It is to be hoped that with this 

insight and greater understanding of the nature of the cellular disturbances produced by mitochondrial 

disease, new treatment strategies will present themselves for these currently untreatable disorders. 
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Tables.  

Table 1. Phenotypes associated with mitochondrial dysfunction in Dictyostelium. 

Method of 

generating 

mitochondrial 

dysfunction 

Phenotype 

Growth on 

bacteria 

Growth in 

broth 

Phagocytosis Pinocytosis Phototaxis Thermotaxis Morphogenesis Aggregation Chemotaxis Legionella 

susceptibility 

Reference 

Pharmacological, expected to affect respiration 

Ethidium bromide 

inhibition of mtDNA 

replication 

 -   -  - (Stalky) -   

 

57 

Genetic, expected to affect respiration 

Heteroplasmic 

mitochondrial gene 

disruption (rnl, nad5, 

cob, nad2, atp6, atp1, 

cox3, ORF1740, 

ORF796) 

- - + + - - - (Stalky) -  - 

 

7,11,50 

Heteroplasmic rps4 

disruption 

 +/-   -   -   

 

52, Fisher 

(unpublished) 

Chaperonin 60 

antisense inhibition 
- - + + - - - (Stalky) -  - 

 

8,9,11 

Genetic, respiratory complex-specific defect in respiration 

MidA knockout 

producing specific 

Complex I deficiency 

- - - - - - +/- (Stalky) +   

 

63,17 
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Genetic, not known to affect respiration 

Nuclear fszA, fszB 

disruption 
+ (fszA

-
); 

- (fszB
-
) 

+ (fszA
-
); 

- (fszB
-
) 

  +  + +   55, Fisher 

(unpublished) 

Nuclear cluA 

disruption 

- (Defective 

cytokinesis) 

- (Defective 

cytokinesis) 

    + +   54 

Nuclear torA 

disruption 
-  +     - -   53 

Nuclear Dd-TRAP1 

RNAi inhibition 

 -      -   56 

Nuclear aoxA 

disruption 

 +     + +   64 

+, Wild type phenotype.       -, Aberrant phenotype.       +/-, Mildly aberrant phenotype.       Shaded cells, Phenotype not reported 
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Figure legends. 

Figure 1. Organisation, transcription and transcript processing of the Dictyostelium 

mitochondrial genome.  

The Dictyostelium mitochondrial genes as well as introns and noncoding regions are shown. The 

genome is transcribed from a single start site as indicated by “Transcription start” *15+. The primary 

transcript may be rapidly and cotranscriptionally processed into smaller mature transcripts. Only the 

secondary transcripts A (3.1 kb), B (4.6 kb), C (5.6 kb), D (9.5 kb), E (6.0 kb), F (6.5 kb), G (3.7 kb), H 

(8.7 kb) and their smaller derivatives (tertiary transcripts) have been detected in northern 

hybridisation studies (Barth et al., 2001). From Fig. 1 of Barth et al. (2007) [21]. 

Figure 2. Cytopathological pathways in Dictyostelium mitochondrial disease. 

Two pathways are shown. 1. Generalized mitochondrial respiratory dysfunction affecting multiple 

oxidative phosphorylation complexes compromises mitochondrial ATP generation, leading to chronic 

AMPK activation. The resulting dysregulation of intracellular signalling produces multiple 

cytopathological outcomes. Not shown is the homeostatic feedback by which AMPK stimulates 

mitochondrial biogenesis and ATP production. In mitochondrially diseased cells chronic AMPK 

activation can thereby maintain ATP at normal levels while at the same time causing chronic 

downstream cytopathologies. 2. In addition to AMPK-dependent pathways, a MidA-dependent 

dysfunction (possibly through Complex I-specific deficiency indicated by the question mark) impairs 

endocytic pathways (phagocytosis and macropinocytosis) in an AMPK-independent manner. 

Different, more limited cytopathologies may be caused by mutations that affect other aspects of 

mitochondrial biology without impairing ATP production. 
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