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Abstract 

Macrophages play a relevant role in innate and adaptive immunity depending on the balance of the 

stimuli received. From an analytical and functional point of view, macrophage stimulation can be segregated 

into three main topics: innate, classic and alternative pathways. These differential activations result in the 

expression of specific sets of genes involved in the release of pro- or anti-inflammatory stimuli.  In previous 

works, it has been described an enhancement of metabolic pathways in the activation process and, in the 

present work, we have analyzed whether these metabolic pattern changes depend on the signaling pathway 

activated. A [1,2-13C2]-glucose tracer-based metabolomics approach has been used to characterize the 

metabolic flux distributions in peritoneal macrophages and in the RAW 264.7 cell line stimulated through 

the classic, innate and alternative pathways. Using this methodology combined with mass isotopomer 

distribution analysis (MIDA) of the new formed metabolites, the data show that activated macrophages are 

essentially glycolytic cells and a clear cut-off between the classic/innate activation and the alternative 

pathway exists. Interestingly, macrophage activation through LPS/IFN-γ, or TLR-2, -3, -4 and -9 results in 

similar flux distribution patterns regardless the pathway activated, despite the use of distinct signaling 

pathways. However, stimulation through the alternative pathway has minor metabolic effects. The molecular 

basis of the differences between these two types of behavior appear to involve a switch in the expression of 

6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase resulting in a more active enzyme and an increase in 

the levels of fructose-2,6-bisphosphate.  
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Introduction 
 
 
 The innate immune system acts as the first line of defense and functions by recognizing highly 

conserved sets of molecular patterns (PAMPs) through a limited set of germ line encoded receptors called 

pattern-recognition receptors (PRRs). Toll-like receptors (TLRs), a class of PRRs, have the ability to 

recognize pathogens or pathogen-derived products and initiate signaling events leading to activation of 

innate host defense (1, 2). Macrophages play an essential role in the immune response and normal tissue 

development by producing proinflammatory mediators and through clearance of pathogens and apoptotic 

cells by phagocytosis. Macrophages participate actively in the inflammatory response by releasing cytokines, 

chemokines and factors that recruit additional cells to sites of infection or tissue injury or alteration (3, 4). It 

has been described that macrophages could undergo different activation processes depending on the stimuli 

received (5, 6): The classic activation, that can be induced by in vitro culture of macrophages with IFN-γ and 

LPS (inducing TNF-α production), is associated with high microbicidal activity, pro-inflammatory cytokine 

and reactive oxygen species (ROS) production and cellular immunity; the innate activation, that is mediated 

in culture by ligation of receptors such as TLRs, most of which are expressed by cells of the monocyte–

macrophage lineage, and is associated with microbicidal activity and pro-inflammatory cytokine production; 

the alternative activation, that can be mimicked in vitro after culture with IL-4, IL-13, glucocorticoids, 

immune complexes or IL-10 and is associated with tissue repair, tumor progression and humoral immunity. 

Some authors also distinguish macrophage deactivation, which is induced by cytokines such as IL-10 or 

TGF-β, or by ligation of inhibitory receptors such as CD200 receptor or CD172a, and is related to anti-

inflammatory cytokine production and reduced MHC class II expression. 

 Under normal conditions, macrophages are recruited, invade and phagocyte at sites of infection. 

However, deregulated clearance of activated macrophages may lead to septic shock or chronic inflammatory 

diseases, including atherosclerosis and rheumatoid arthritis (4). Interestingly, in addition to playing a crucial 

role in immunity, some of the mammalian TLRs have been described to regulate bodily energy metabolism, 

mostly through acting on adipose tissue. This has recently opened new avenues of research on the role of 

TLRs in pathologies related to metabolism, such as obesity, insulin resistance, metabolic syndrome or 

atherosclerosis (7). The accumulation of fatty acids, above all cholesterol in LDL form, is the main reason 

why lipid metabolism has been studied in macrophages in the atherosclerosis framework. Recent works have 

built a fatty acid bridge between diet and immune system due to the induction of TLR expression by some 

fatty acids (8). However, few are know on central metabolism patterns in macrophages since the work of 

Newsholme and collaborators in the 90’s (9-11). Here we will apply a system biology approach to shed some 

light in the crosstalk between signal transduction and central metabolism in macrophages. We studied 

whether the distinct stimulation pathways required different energy demands or have different metabolic 
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patterns. To achieve these goals, tracer-based metabolomics experiments have been used and combined with 

analysis of the expression of markers of activation. Following the normal activation process of the 

macrophages, cells were fed with [1,2-13C2]-glucose, a non radioactive isotope of glucose which behaves as 

the “non-label” glucose but will incorporate [13C] carbons to the metabolite end products (i.e. lactate, 

glutamate) and in the ribose of RNA. This tracer has been broadly used before (12). Our data show that 

activated macrophages are essentially glycolytic cells and a clear cut-off between the classic/innate 

activation and the alternative pathway exists. Interestingly, activation through TLR-2, -3, -4 and -9 results in 

similar patterns of metabolic activation, despite the use of at least in part distinct signaling pathways and 

expression of different sets of genes. 
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Materials and Methods 

Chemicals. Reagents were from Sigma (St Louis, MO), Roche (Basel, CH), Invitrogen (Carlsbad, CA), 

Invivogen (San Diego, CA), PeproTech (Rocky Hill, NJ) or Merck (Darmstadt, FRG). Commercial antibodies 

were from Santa Cruz Biotech (Santa Cruz, CA), Cell signaling (Danvers, MA), Abcam (Cambridge, UK), R&D 

Systems (Minneapolis, MN), Sigma or PeproTech. Serum and media were from BioWhittaker (Walkersville, 

MD).  [1,2-13C2]-glucose (> 99 % enriched) was purchased from Isotec (Miamisburg, OH). 

 

Treatment of animals and preparation of peritoneal macrophages. Animals were used aged 8 to 12-weeks as 

follows: Four days prior to the assay, mice were i.p. injected 2.5 ml of 3% (weight/vol) of thioglycollate broth 

(13). Elicited peritoneal macrophages were prepared from light-ether anesthetized mice (4-6 animals per 

condition), killed by cervical dislocation and injected i.p. 10 ml of sterile RPMI 1640 medium. The peritoneal 

fluid was carefully aspirated avoiding hemorrhage and kept at 4oC to prevent the adhesion of the macrophages to 

the plastic. An aliquot of the cell suspension was used to determine the cell density in the peritoneal fluid. The 

cells were centrifuged at 200g for 10 min at 4oC and the pellet was washed twice with 25 ml of ice-cold PBS. 

Cells were seeded at 1x106/cm2 in RPMI 1640 medium supplemented with 10% of heat inactivated FCS and 

antibiotics. After incubation for 3 h at 37oC in a 5% CO2 atmosphere, non-adherent cells were removed by 

extensive washing with PBS. Experiments were carried out in phenol-red free RPMI 1640 medium and 1% of 

heat inactivated FCS plus antibiotics (13). Prior to stimulation, the medium was aspirated and replaced by warm 

medium containing the indicated TLR ligand or cytokine. When the murine macrophage RAW 264.7 cells were 

used, they were processed as indicated for the peritoneal macrophages.  

 

Flow cytometry. Cells were harvested and washed in cold phosphate-buffered saline (PBS). After centrifugation 

at 4ºC for 5 min and 1000g, cells were resuspended in annexin V binding buffer (10 mM HEPES; pH 7.4, 140 

mM NaCl, 2.5 mM CaCl2). Cells were labeled with annexin V–FITC solution and/or propidium iodide (PI) (100 

μg/ml) for 15 min at RT in the dark. PI is impermeable to living and apoptotic cells but stains necrotic and 

apoptotic dying cells with impaired membrane integrity in contrast to annexin V, which stains early apoptotic 

cells. 

 

Assay of PFK-2 activity. Cultured macrophages (6 cm dishes) were homogenized in 1 ml of a medium 

containing 20 mM potassium phosphate (pH 7.4, 4oC), 1 mM DTT, 50 mM NaF, 0.5 phenylmethanesulphonyl 

fluoride, 10 μM leupeptin and 5 % poly(ethylene)glycol. After centrifugation in an Eppendorf centrifuge (15 

min), poly(ethylene)glycol was added to the supernatant up to 15 % (mass:vol) to fully precipitate the PFK-2. 

After resuspension of the pellet in the extraction medium, PFK-2 activity was assayed at pH 8.5 with 5 mM 
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MgATP and 5 mM Fru-6-phosphate, 15 mM Glc-6-phosphate. One unit of PFK-2 activity is the amount of 

enzyme that catalyzes the formation of one pmol of Fru-2,6-P2 per min (14). 

 

Metabolite assays. Fru-2,6-P2  was  extracted  from cells (24-well plates) after homogenization in 100 μl of 

50 mM NaOH followed by heating at 80oC for 10 min. The metabolite was measured by the activation of the 

PPi-dependent phosphofructo-1-kinase (14). Lactate and glucose were measured enzymically in the culture 

medium. NO release was determined spectrophotometrically by the accumulation of nitrite and nitrate in the 

medium (phenol red-free). Nitrate was reduced to nitrite, and this was determined with Griess reagent (13) by 

adding 1 mM sulfanilic acid and 100 mM HCl (final concentration). After a first reading of the absorbance at 

548 nm, naphthylenediamine (1 mM in the assay) was added and the absorbance was compared with a standard 

of NaNO2. Results were expressed as the amount of nitrite and nitrate released per mg of cell protein.  

 

Cytokine assay. The accumulation of TNF-α and IL-6 was measured per triplicate using commercial kits 

(Biotrak, GE Healthcare), following the indications of the supplier.  

 

Preparation of cell extracts. The macrophage cultures (6-well dishes) were washed twice with ice-cold PBS and 

the cells were homogenized in 0.2 ml of buffer containing 10 mM Tris-HCl, pH 7.5, 1 mM MgCl2, 1 mM 

EGTA, 10% glycerol, 0.5% CHAPS, 1 mM β-mercaptoethanol and 0.1 mM PMSF and a protease inhibitor 

cocktail (Sigma). The extracts were vortexed for 30 min at 4ºC and centrifuged for 20 min at 13000g. The 

supernatants were stored at -20ºC. Proteins levels were determined using the Bio-Rad detergent-compatible 

protein reagent (Richmond, CA). All steps were carried out at 4ºC.  

 

Western blot analysis. Samples of cell extracts containing equal amounts of protein (30 μg per lane) were boiled 

in 250 mM Tris-HCl, pH 6.8, 2% SDS, 10% glycerol, 2% β-mercaptoethanol and size-separated in 10% SDS-

PAGE. The gels were blotted onto a PVDF membrane (GE Healthcare, UK) and processed as recommended by 

the supplier of the antibodies against the murine antigens: NOS-2 (sc-7271), COX-2 (sc-1999), MHC-II (sc-

59322), HO-1 (AB-1284), Arg-1 (sc-20150), SOCS3 (2923s), KC/CXCL1 (AF-453-NA), IP-10/CXCL10 (500-

p129), L-PFK-2 (sc-10096) and actin (A-5441). For uPFK-2, specific peptides of the isoenzyme were used to 

generate polyclonal antibodies by immunization of rabbits (New Zealand White) with multiple intradermal 

injections with 300 µg of antigen in 1 ml of complete Freund's adjuvant, followed by boosters with 100 μg of 

antigen in incomplete Freund's adjuvant. The blots were developed by ECL protocol (Amersham) and different 

exposition times were performed for each blot with a charged coupling device camera in a luminescent image 

analyzer (Molecular Imager, BioRad) to ensure the linearity of the band intensities. 
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Microarray analysis. Normalized expression data were obtained from NCBI GEO dataset GDS2429 (15) 

using GEOquery package from Bioconductor (16). Differential expression for the following comparisons 

was tested using limma Bioconductor package (17): a) naïve mature macrophage vs. classic activated 

macrophage and, b) alternatively activated macrophage. Two gene lists were generated after each 

comparison and they were ranked according to the test statistic for subsequent Gene Set Enrichment 

Analysis (GSEA). Enrichment of gene sets of interest in each list was accomplished using the GSEA method 

as described by Mootha et al. (18). We used “Which genes?” (http://www.whichgenes.org/) to retrieve the 

REACTOME (19) pathways as gene sets. The genes from the two lists were also mapped into canonical 

pathways using Ingenuity Pathway Analysis software (Ingenuity Systems, see Supplementary material).  

 

GCMS sample preparation and procedure. The macrophages cultures (10 cm dishes) were washed twice with 

ice-cold PBS and culture media was replaced by 50% enriched [1,2-13C2]-glucose containing the indicated TLR 

ligand or cytokine. At the end of the incubations, cells were centrifuged (200g for 5 min) and incubation medium 

and cell pellets were obtained and store at -80ºC until processing. Glucose, lactate, glutamine and glutamate 

incubation medium concentrations were determined as previously described (20, 21) using a Cobas Mira Plus 

chemistry analyzer (HORIBA ABX, Montpelier, France). Lactate from the cell culture media was extracted by 

ethyl acetate after acidification with HCl. Lactate was derivatized to its propylamide-heptafluorobutyric form 

and the m/z 328 (carbons 1-3 of lactate, chemical ionization) was monitored for the detection of m1 (lactate with 

a [13C] in one position) and m2 (double-labeled lactate) for the estimation of pentose cycle activity versus 

anaerobic glycolysis (22). RNA ribose was isolated by acid hydrolysis of cellular RNA after Trizol-purification 

of cell extracts. Ribose isolated from RNA was derivatized to its aldonitrile acetate form using hydroxylamine in 

pyridine and acetic anhydride. We monitored the ion cluster around the m/z 256 (carbons 1-5 of ribose, chemical 

ionization), in order to find the molar enrichment of [13C] labels in ribose (22). Glutamate was separated from the 

medium using ion-exchange chromatography (23). Glutamate was converted to its n-trifluoroacetyl-n-butyl 

derivative and the ion clusters m/z 198 (carbons 2-5 of glutamate, electron impact ionization) and m/z 152 

(carbons 2-4 of glutamate, electron impact ionization) were monitored. Isotopomeric analysis of C2-C5 and C2-

C4 fragments of medium glutamate was done in order to estimate the relative contributions of pyruvate 

carboxylase and pyruvate dehydrogenase to the Krebs cycle (24, 25). Mass spectral data were obtained on the 

QP2010 Shimadzu mass selective detector connected to a GC-2010 gas chromatograph. The settings were as 

follows: GC inlet for glucose and ribose 250ºC and 200ºC for lactate and glutamate, transfer line 250ºC, MS 

source 200ºC. A Varian VF-5 capillary column (30-m length, 250-mm diameter, 0.25-mm film thickness) was 

used to analysis of all compounds studied. 

 

 

http://www.whichgenes.org/
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Statistical analysis. The data shown are the means + SD of three or four experiments. Statistical significance was 

estimated with Student's t test for unpaired observations. A P value of less than 0.05 was considered significant. 
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Results 

Distribution of substrate fluxes in activated macrophages. Elicited peritoneal macrophages were isolated and 

maintained in culture for the indicated periods of time. After overnight seeding, cells were activated through 

TLRs involved in innate immunity (TLR4: LPS; TLR2: LTA; TLR3: polyI·C and TLR9: CpG), classic 

activation (LPS/IFN-γ) and alternative pathway (IL-4/IL-13; IL10) (5, 6). Fig. 1A shows the expression of a 

panel of representative markers of macrophage activation. NOS-2 and COX-2 were expressed similarly in 

cells activated through the innate and classic response, except through CpG stimulation. MHC-II up-

regulation was very sensitive to LPS signaling and to the classic activation pathway and arginase-1 was 

notably up-regulated in response to IL-4/IL-13. Hemeoxygenase-1 was moderately induced by innate and 

alternative pathways of activation. SOCS3 was up-regulated in response to LPS or LPS/IFN-γ The 

chemokine CXCL1/KC was expressed in cells activated through classic signaling pathway and innate 

immunity mediated by TLR2 and TLR4 and CXCL10/IP-10 was up-regulated through the classic and the 

innate response. In addition to these parameters characteristic of macrophage activation, cell viability was 

determined: apoptosis was evaluated by annexin V exposure of the cells and by positivity for PI labeling, the 

later characteristic of dying cells. As Fig. 1B shows, an increase of annexin V was observed in cells treated 

with LPS/IFN-γ, and to a lesser extent with LPS; however, the percentage of PI positive cells at this time 

(12h) was modest suggesting that the integrity of the plasma membrane remained preserved. These data were 

reminiscent of the expression of NOS-2 indicating that NO plays an important role in the induction of 

apoptosis in these cells (not shown, (26)). Staurosporine was used as a reference for apoptosis induction in 

macrophages. Moreover, the accumulation in the culture medium of IL-6, TNF-α and nitrites/nitrates 

indicated the activation by ligands, such as CpG that fails to promote NOS-2 expression but increased IL-6 

and TNF-α synthesis (Fig. 1C).  

 Previous data suggested the relevance of carbohydrate metabolism in the commitment for activation of 

macrophages (27-30). In this regard, we investigated the glucose consumption and fate in macrophages 

activated through the innate, classic and alternative pathways. As Fig. 2 shows, two clear profiles were 

observed in terms of glucose consumption and lactate release: TLR activation promoted an enhancement in 

the glycolytic flux to lactate that has temporally dependent profiles, but can be grouped into two categories: 

one from 0 to 4h and a second flux rate between 4 and 12h. Indeed, when the same experiment was 

performed with [1,2-13C2]-glucose, the distribution of [13C]-glucose metabolites, according to the scheme 

depicted in Fig. 3, allowed the measurement of the precise contribution of these time-dependent fluxes in 

activated macrophages. From 0 to 4h the glycolytic activity was much lower than from 4 to 12h (Fig. 4A). 

Interestingly, stimulation through the alternative pathway, despite to influence the expression of a specific 

set of genes (vide infra), exhibited a metabolic profile that essentially matched that of control cells. Also, and 

in agreement with previous work, macrophages displayed a metabolic flux that involved the conversion of 



 

 10

glucose into lactate by more than 95%, regardless the activation pathway considered (Fig. 4B). The 

metabolic features revealed by glucose consumption and lactate release are followed by a basal consumption 

of glutamine and glutamate production (Fig. 2). Besides, low enrichment in glutamate and RNA (Fig. 4B and 

5B) evidenced the high glycolytic pattern in peritoneal macrophages. Peritoneal macrophages are quiescent 

cells; however, when the macrophage cell line RAW 264.7 cells was used and kept overnight with 1% FCS, 

stimulation after 12h under these conditions revealed that the basal proliferation rate of these cells did not 

influence the metabolic profile associated to the macrophage activation process. As Fig. 5A shows, RAW 

264.7 cells follow a similar mass isotope distribution in lactate than peritoneal macrophages under basal 

conditions. However, proliferation induces higher metabolic fluxes and [13C] enrichment in ribose and 

glutamate (Fig. 5B).  

 

Gene profiling in stimulated macrophages. The previous experiments showed that carbohydrate metabolism 

in macrophages is fundamentally glycolytic and that the rate of glucose consumption is lower in alternatively 

activated macrophages than in classic activation. We hypothesized that the expression levels of genes 

involved in energetic pathways may differ between the two types of macrophage activation. To test this 

hypothesis we compared the functional enrichment (in up or down-regulated genes) of the following 

REACTOME (19) pathways: “Glycolysis”, “Pyruvate metabolism and TCA cycle” and “Electron Transport 

Chain”. Glycolysis was enriched in up-regulated genes of classic activation (False Discovery Rate, FDR, 

0.32; Fig. 6A). There was a similar enrichment trend of glycolysis in alternative activation but it was not 

significant (FDR 0.547, Fig. 6A and Supp.1). Moreover, pyruvate metabolism and TCA cycle pathways were 

most clearly enriched in up-regulated genes during alternative activation (FDR 0.097) whereas the opposite 

trend was observed for the classic macrophage activation although statistically not significant (FDR 0.455) 

(Fig. 6A and Supp. 2). Noteworthy, the most significant enrichment (FDR 0.000) was found in genes down-

regulated during classic activation, an effect not observed for the alternative activation (Fig. 6A and Supp.3). 

These data suggest that classic activation has a stronger effect on the gene expression of genes related with 

the energetic metabolism, favoring the up-regulation of genes from the glycolytic pathway and repression of 

genes encoding for proteins that participate in the oxidative phosphorylation. 

 

PFK-2/FBPase-2 isoenzyme changes in activated macrophages. The aforementioned differences in 

transcription of the glycolysis gene-set between classic and alternative activation of macrophages allowed us 

hypothesize that PFK-2, one of the key enzymes of the pathway, could be regulated at the protein and/or 

enzymatic level. Accordingly, the expression of the isoforms of PFK-2 and the levels of Fru-2,6-P2 were 

determined under these conditions as an indication of the capacity of these cells to metabolize glucose (14, 

31). As Fig. 6B shows, resting macrophages expressed the L-type isoenzyme of PFK-2, but not the uPFK-2 
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isoenzyme, resulting in low steady state levels of Fru-2,6-P2. However, as result of the activation through the 

classic and innate pathway, but not the alternative pathway, a robust expression of the uPFK-2 isoenzyme 

occurred, concomitant with an up to 9-fold rise in the PFK-2 activity and 5-fold increase in the levels of Fru-

2,6-P2. Interestingly, the levels of expression of uPFK2, and more importantly, the enzyme activity and 

intracellular concentration of Fru-2,6-P2 exhibited parallel profiles for each activation condition. Moreover, 

neither IL-4, IL-10 nor IL-13 were able to change the expression pattern of PFK-2 nor to increase Fru-2,6-P2 

levels. To evaluate the capacity of these IL to influence the response to LPS co-stimulation studies were 

done. As Fig. 6C shows, when combined IL-10 and IL-4 with LPS, the intracellular levels of Fru-2,6-P2 were 

only minimally influenced with respect to the LPS condition and an important expression of uPFK-2 

occurred, despite to maintain a certain level of L-PFK-2 expression.  
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Discussion 

 Previous work established that peritoneal macrophages are essentially glycolytic cells (10, 11, 28, 29, 

32, 33). Compared with other cell types macrophages use mainly anaerobic glycolysis in the metabolization 

of glucose, and the measured flux in isolated cells is ca. 10% of the actual capacity through 6-phosphofructo-

1-kinase, one of the enzymes that controls the glycolytic pathway (29). In addition to this, glutamine is 

converted into glutamate and aspartate and less than 10% is being oxidized, at the time that fatty acids 

appear to be the main substrates for oxidative metabolism (28). In the present work, it has been assessed the 

metabolic profiles associated to stimulation of macrophages through three well-defined activation-pathways, 

using a metabolomic approach. The data obtained show that regardless the stimulation pathway involved, 

macrophages remain glycolytic cells and accelerate notably the conversion of glucose into lactate when 

challenged through the classic/innate activation pathways; however, the activation through the alternative 

pathway exerted minimal effects on the basal consumption of glucose. One of the relevant regulators of 

glucose metabolism is the rise in the levels of Fru-2,6-P2 that in turn activates the flux through 6-

phosphofructo-1-kinase (30, 34, 35). Fru-2,6-P2 is synthesized/degraded by PFK-2/FBPase-2 activities. Four 

genes encode the PFK-2 in higher mammals. The L-type is encoded by the PFKB1 gene and is mainly 

expressed in liver and a splicing variant is expressed in muscle. This enzyme has a balanced 

kinase/bisphosphatase ratio and unless the bisphosphatase activity is inhibited, it maintains low levels of Fru-

2,6-P2 through a futile cycle of synthesis and degradation of the metabolite (34, 35). The uPFK-2 encoded by 

the PFKB3 gene has a higher kinase activity (ca. 10:1 kinase:bisphosphatase), is induced by hypoxia and can 

be regulated by phosphorylation, playing a role in the high glycolytic rate of various cell types, such as 

cancer cells (30, 36-38). A relevant finding of this work is the observation that concomitant to the 

classic/innate activation there is a switch in the expression of the PFK-2/FBPase-2 from the L-type to the 

uPFK-2 isoenzyme. Interestingly, this form exhibits a higher capacity to accumulate Fru-2,6-P2 in 

macrophages, due to its lower bisphosphatase activity compared with the L-type, which results in an 

enhancement in the levels of Fru-2,6-P2 at the time that there is an increase in the enzymatic activity 

determined in vitro and in the glycolytic flux. Moreover, it is remarkable the substitutions between the two 

isoenzymes and, in fact, the protein levels of L-PFK-2 almost disappear and are substituted by the uPFK-2 in 

the course of TLR-2, -3, -4 or -9 activation, despite the use of non-redundant signaling pathways; i.e. MyD88 

dependent and independent pathways. This switch between PFK-2 isoenzymes is absent in macrophages 

activated through the alternative pathway and studies on the molecular basis of this transcriptional control 

are in progress. Regarding the mass isotopomer distribution in both resting and activated macrophages, the 

distribution of the label is essentially identical confirming the minor impact of cell activation among 

switching between glucose fueling pathways. Although the three activation pathways studied involve 
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changes in the expression of a large number of genes, the present work shows that only classic and innate 

activation through TLRs results in an enhanced expression of PKFB3 corresponding to a higher activation of 

PFK-2 activity and glycolytic flux. These results correlate with model flux predictions in LPS stimulated 

RAW 264.7 cells [Rodriguez-Prados et al, unpublished]. This model could estimate the central metabolism 

flux distribution from [13C] labeling data and metabolites consumption and production rates.  

 This metabolic effect upon macrophage challenge is observed both in proliferating (the RAW 264.7 

cells) and non-proliferating cells (elicited peritoneal macrophages). However, our results highlight that 

proliferation has a higher effect on metabolism than the one induced by the activation process. Therefore, 

metabolic changes strictly associated to macrophage activation correspond to results observed in peritoneal 

macrophages experiments. Metabolic differences induced by proliferation are shown in Fig. 5B. RAW 264.7 

have higher metabolic fluxes than peritoneal macrophages. Besides, as expected, [13C] enrichment in ribose 

and glutamate are higher in RAW 264.7 to cover the demand in metabolites to form new cells. Moreover, the 

higher flux through pentose phosphate pathway (PPP) to synthesize nucleotides results in a higher label in 

m1 lactate due to the recycling through the non-oxidative branch of PPP (Figs. 4B and 5A). Finally, the 

lower glycolytic flux in RAW 264.7 indicates that proliferation promotes the recruitment of other carbon 

source like glutamine in an anaplerotic flux, corroborating the role of glutamine metabolism in macrophage 

activation already described (9).  

 In conclusion the data show that the stimulation of macrophages through the classic, innate and 

alternative pathways exhibits, as expected, a distinctly expression of activation markers due to different 

signaling events involved in each pathway. However, the innate pathway activation shows a higher 

glycolytic rate due to a switch in the expression of PFK-2 isoenzymes that appears to be a common event 

after LPS/IFNγ or TLR-2, -3, -4 -9 stimualtion. Despite the differences in glucose consumption and lactate 

release, label distribution analysis shows that there is a common metabolic pattern followed regardless the 

activation pathway. 
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PVDF, Polyvinylidene Fluoride; ROS, Reactive Oxygen Species; SDS-PAGE, Sodium Dodecyl Sulphate 

Polyacrylamide gel electophoresis; SOCS3, Suppressor Of Cytokine Signaling-3; TLRs, Toll-Like Receptors; 

TGF-β, Transforming Growth Factor-β ; TNF-α, tumor Necrosis Factor-α. 
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Legends to Figures. 
 
Fig. 1. Characterization of macrophages stimulated through the classic, innate and alternative pathways. 
Peritoneal macrophages were maintained in culture and stimulated with the indicated stimuli: LPS/IFN-γ 
(250 ng/ml and 20 ng/ml, respectively); LPS (100 ng/ml); IL-13, IL-4, IL-10 (20 ng/ml each); LTA (5 
µg/ml); polyI·C (25 µg/ml); CpG (3 µg/ml); staurosporine (100 ng/ml). The levels of the indicated proteins 
were determined by Western blot (panel A). The extent of apoptosis/necrosis was determined by the staining 
with annexin V/propidium iodide, respectively (panel B). The release of IL-6, TNF-α, and nitrite/nitrate to 
the culture medium was determined as described in the methods section (C). Results show the mean + SD of 
five experiments. *P<0.01 vs. the vehicle condition. 
 
Fig. 2. Metabolic fluxes in macrophages stimulated though the classic, innate and alternative pathways. 
The time course of glucose and glutamine consumption and lactate and glutamate release were determined 
enzymically by sampling the culture medium at periods of 2 h. Results show the mean of five experiments.  
 
Fig. 3. Schematic representation of tracer-based determination of metabolic fluxes. Macrophages were 
loaded with [1,2-13C2]-glucose and the [13C] trace was followed by GCMS to establish unambiguously the fate 
of glucose in cells stimulated through the classic, innate and alternative pathways. [1,2-13C2]-glucose could 
follow the oxidative branch of pentose phosphate pathway to provide [1-13C1]-ribose (== line) or the upper part 
of glycolysis driving to the [1,2-13C2]-g3p formation (    line). Recycling through the non-oxidative branch of 
pentose phosphate pathway allows the formation of [1-13C1]-g3p and [1,2-13C2]-ribose, respectively. Label 
pattern does not change in the lower part of glycolysis and the lactate formed could drive into the four depicted 
isotopomers of glutamate depending on whether pyruvate dehydrogenase or pyruvate carboxykinase is used to 
enter in the Krebs cycle.  
 
Fig. 4. Metabolic fluxes using tracer-based distribution of [13C] in stimulated macrophages. Peritoneal 
macrophages were maintained in culture and stimulated for 12h in the presence of [1,2-13C2]-glucose as 
indicated in Fig. 1. Samples of culture medium were collected at 4h and 12h and the distribution of the [13C] 
label was determined by GCMS to establish the metabolic fluxes (panel A). The distribution of the label for m0, 
m1 and m2 lactate at 12h is shown (panel B). Results show the mean + SD of four experiments. *P<0.01 vs. 
the vehicle condition. 
 
Fig. 5. Metabolic fluxes using tracer-based distribution of [13C] in stimulated RAW264.7 cells. The 
macrophage cell line was maintained overnight with 1% FCS and stimulated for 12h in the presence of [1,2-
13C2]-glucose as indicated in Fig. 1 for peritoneal macrophages. Samples of culture medium were collected at 
6h and 12h and the distribution of the [13C] label in lactate was determined by GCMS to establish the metabolic 
fluxes (panel A). The comparison between peritoneal macrophages and the RAW 264.7 cell line of the main 
metabolic fluxes and [13C] enrichment in ribose and glutamate is shown in panel B. Results show the mean + 
SD of four experiments. *P<0.0051 vs. peritoneal macrophages. 
 
Fig. 6. Gene Set Enrichment Analysis (GSEA) of energy metabolism pathways and PFK-2/FBPase-2 
isoenzyme switch in activated macrophages. The Normalized Enriched Score (NES) calculated by GSEA is 
shown in the bars, and numbers indicate the False Discovery Rate (FDR) for the enrichment. Positive NES 
indicates enrichment in up-regulated genes while negative NES correspond to enrichment in down-regulated 
genes. See Supplementary material for more details (panel A). Peritoneal macrophages were maintained in 
culture and stimulated for 12h as indicated in Fig. 1. The levels of the L-PFK-2 and uPFK-2 isoenzymes 
were determined by Western blot using specific antibodies. Cell extracts were prepared and the activity of 
PFK-2 was determined in vitro. The levels of Fru-2,6-P2 were determined in cell extracts after collection of 
the cell pellets in 50 mM NaOH at 80ºC (panel B). Co-treatment of cells with LPS and IL-10 or IL-4 results 
in a decrease in Fru-2,6-P2 content (panel C). Results show the mean + SD of five experiments. *P<0.01 vs. 
the vehicle condition; #P<0.05 vs. the LPS condition (panel C). 
 
Supplementary material 
The gene lists (1) classic activation and (2) alternative activation of macrophage were generated and 
analyzed as described in the Methods section of the manuscript. Here we show the enrichment plots from 
Gene Set Enrichment Analysis (GSEA) for the three REACTOME pathways analyzed, together with the 
genes mapped into canonical pathways generated by Ingenuity Pathway Analysis software (Ingenuity 
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Systems). GSEA enrichment plots show up-regulated genes in red and down-regulated genes in blue. In 
contrast, down-regulated genes in Ingenuity pathways are in green. There are three supplementary figures: 
Supp. 1. Glycolysis.  
Supp. 2. Pyruvate metabolism and TCA cycle. 
Supp. 3. Electron Transport Chain. 
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