
 1

Modelling and characterization of Chi phase grain boundary precipitation during 

aging of Fe-Cr-Ni-Mo stainless steel 

 

W. Xu1,*, D. San Martin2, P. E. J. Rivera Diaz del Castillo2 and S. van der Zwaag2 

 

1Netherlands Institute for Metals Research, Mekelweg 2, 2628 CD, Delft, The 

Netherlands 

2Fundamentals of Advanced Materials Group, Faculty of Aerospace Engineering, Delft 

University of Technology, Klyuverweg 1, 2629 HS, Delft, The Netherlands. 

 

(NOTE: Since 2008, David San Martín works in the National Centre for Metallurgical 

Research, CENIM-CSIC, Madrid, Spain, dsm@cenim.csic.es). 

 

*Corresponding author. Tel.: +0031 15 278 5218; Fax: +0031 15 278 4472.  E-mail 

address:  w.xu@nimr.nl. Postal address: 1.33NB, Kluyverweg 1, 2629 HS, Delft, the 

Netherlands. 

 

Abstract 

 

High molybdenum stainless steels may contain the Chi precipitate (, Fe36Cr12Mo10) 

which may lead to undesirable effects on strength, toughness and corrosion resistance. 

In the present work, specimens of a 12Cr-9Ni-4Mo wt% steel are heat treated at 

different temperatures and times, and the average particle size and particle size 

distribution of Chi precipitate are studied quantitatively. A computer model based on 
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the KWN framework has been developed to describe the evolution of Chi precipitation. 

The kinetic model takes the natural advantages of the KWN model to describe the 

precipitate particle size distribution, and is coupled with the thermodynamic software 

ThermoCalc® for calculating the instantaneous local thermodynamic equilibrium 

condition at the interface and the driving force for nucleation. A modified version of 

Zener’s theory accounting for capillarity effects at early growth stages is implemented 

in this model. The prediction of the model is compared to experimental results and both 

the average particle size and the particle size distribution are found to be in good 

agreement with experimental observations.    

 

Keywords: Chi precipitate, Precipitation kinetics, Particle size distribution, Modelling, 

Stainless steel 

 

Introduction 

 

Low-carbon high-alloy steels, commonly employed in aerospace and tooling 

applications, require a good compromise between high strength and fracture toughness. 

These grades are usually strengthened by intermetallic second-phase particles to achieve 

such compromise. The presence of Mo and Cr in the composition of these steels, can 

lead to the formation of Chi phase (, Fe36Cr12Mo12) after heat treatment, particularly on 

the grain boundaries, coherent and incoherent twin boundaries and on dislocations 

within the matrix [1]. The precipitation of this phase at grain boundaries depletes the 

local chromium content to an extent that can lead to intergranular corrosion. It has also 

a reverse effect on the toughness and creep ductility properties [2-4]. Moreover, recent 
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experimental studies show that in maraging steels, the depletion of solute in the matrix 

alters the stability of austenite, which affects its transformation to martensite [5]. 

 

Several investigations have reported Chi phase precipitation during isothermal heat 

treatment for a variety of steel grades. Most of these address the characterisation of Chi 

phase and its effects on the alloy mechanical and magnetic properties [2-4, 6-8]. As far 

as the authors are aware, a quantitative analysis of Chi precipitation kinetics is not 

available. This is of great importance as the presence, location, size and size distribution 

of the Chi particles will have a significant effect on the final steel properties. From a 

metallurgical standpoint, the aim of this investigation is to study the kinetics of Chi 

precipitation from austenite in an Fe-Cr-Ni-Mo alloy, and to establish a quantitative 

relationship with its heat treatment conditions. 

 

The study of Chi precipitation requires a suitable modelling framework for capturing 

the complexity of the quaternary system. It is common to deal with precipitation from a 

supersaturated solution as the sequence of nucleation, growth and coarsening processes 

which are modelled separately [9, 10]. Langer and Schwartz have embedded the three 

processes within a model referred to as MLS [11]. More recently, Kampmann and 

Wagner produced a numerical approach (KWN model) [12, 13] capable to describe the 

particle size distribution (PSD) in the time domain, while dealing with nucleation-

growth-coarsening phenomena within the same formulation. A few models based on 

this framework have been applied to a number of systems [14-17]. An important 

limitation in those approaches is that the overall kinetics is computed by imposing a 

constant concentration at the precipitate/matrix interface, and by employing a driving 
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force obtained from binary dilute solution approximation. Because of the decrease of 

solute supersaturation in the matrix during precipitation, the local equilibrium 

concentration at the precipitate/matrix interface may change significantly. Moreover, 

the chemical free energy change during nucleation based on the dilute solution 

approximation in high-alloy systems is also not precise, especially for ternary or higher 

order systems. The model presented here intends to overcome this problem via 

computing thermodynamic equilibrium in the time domain to obtain the instantaneous 

local equilibrium condition at the matrix/precipitate interface during precipitation. The 

instantaneous driving force for nucleation is calculated from ThermoCalc®
  [18]. A 

master-slave computation of KWN kinetics combined with ThermoCalc thermodynamic 

computation is therefore performed at every time step. A further improvement in the 

present computation is the incorporation of capillarity effects at early growth stages via 

employing a modified version of Zener’s theory of precipitate growth [19, 20]. The 

result of this model shows good agreement with the experimental observations. 

 

Experimental procedures 

 

Alloy composition 

 

The composition of the steel studied in this work is shown in Table 1. The as-received 

material was delivered as strips of 31x0.5 mm in thickness. The initial microstructure 

consists of austenite and Chi phase [21]. 
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Heat treatment  

 

The heat treatments were performed using an Adamel Lhomargy DT1000 high-

resolution dilatometer [22]. Specimens were heated to 1100 ºC for 300 and 1800 s in 

order to dissolve all precipitates, then cooled down at 50 ºC/s to 900 ºC and held for 

different times (120, 300, 900, 1800 and 3600 s) to study the precipitation kinetics, and 

were then cooled down to room temperature at 50 ºC/s. Samples of 5 mm in width and 

12 mm in length were used. To study the late stage of coarsening, a section of the 

sample treated for 1800 s at 1100 oC, aged at 900 ºC for 3600 s  and cooled down to 

room temperature, was reheated to 900 ºC for another 13 hours and subsequently water 

quenched.  

 

Microstructure examination 

 

For the metallographic characterization, the specimens were mounted in bakelite, 

ground and polished in different lap clothes (finishing with 1 µm diamond paste). A 

variation of Villela’s mixed-acid etch [23, 24]  (3 parts HCl, 2 parts HNO3 and 1 part 

H2O) was used to disclose the Chi phase by optical microscopy. The SEM analysis was 

carried on JEOL JSM-840A microscope with the same etching solution. The two-

dimensional quantitative measurement of the radius of the Chi phase was performed 

using an image analyzer.  An estimation of the three-dimensional radius of the Chi 

phase was done following the method of Hull and Houk [25]. 
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Experimental Results 

 

Figure 1 (a) and (b) show representative optical micrographs of the specimen 

homogenised at 1100 oC for 300 and 1800 s, respectively. After homogenisation, 

samples were aged to induce enough precipitation at grain boundaries so as to be 

revealed by chemical etching using Villela’s mixed acid. It should be mentioned that 

austenite grain growth at 900 oC for periods up to 3600 s is almost negligible. Thus the 

grain size can be considered to be constant during aging. From these micrographs it is 

clear that the average size of the grain after 1800 s homogenisation treatment is bigger 

than the sample subjected to 300 seconds treatment: 107 and 43 m, respectively.  

 

Figure 2 a)-c) show the microstructure of the specimen aged at 900 oC for 300, 1800 

and 3600 s after homogenisation. They show that Chi precipitates are mostly present at 

the austenite grain boundaries. The growth rate is appreciated from comparing these 

figures. Figure 2d) is an SEM image of the specimen after 14 hours aging. It shows that 

the coarsened Chi precipitate appears both at the grain boundaries and within the grains. 

The precipitates located at the grain boundaries are much bigger than those inside the 

grains. Next to the grain boundaries, precipitate free zones are appreciated. Within the 

grain, the small precipitate particles appear to be homogeneously distributed. The 

average size of the grain boundary particles for different aging times was estimated 

using an image analyzer (Table 2). 

 

The microstructures of the specimens homogenised for 300 s at 1100 oC and further 

aged for different times are shown in Figure 3. As the average grain size is small, more 
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grain boundaries stimulate precipitate nucleation, leading to a higher number density of 

particles. Moreover, the average precipitate size is smaller as compared to the 1800 s 

homogenisation treatment shown in Table 2. 

 

 

Model 

 

Based on the classical nucleation theory and a modified version of Zener’s theory of 

precipitate growth, a KWN-based numerical framework was developed. The kinetic 

computations were coupled to ThermoCalc® software [18] employing the TCFE3 [26] 

thermodynamic database and the MOB2 [27] mobility database. The time evolution of 

the Chi precipitate particles was computed in discreet time steps. The particle size 

distribution is divided into a series of discrete size classes, each represented by a control 

volume. In every time step, the following computations are performed: 1) An 

instantaneous value of the matrix supersaturation is obtained from ThermoCalc 

following a phase equilibrium computation; 2) nucleation is modelled by determining 

the number of new nuclei appearing in the class and characterized by a critical radius r* 

and composition cthe number of particles is then updated; 3) the growth rate of the 

existing particles within the spatial boundary of the control volume is obtained 

accounting for capillarity effects; 4) the transport of particles between every control 

volume is calculated via a discretisation of the continuity equation for the particle 

number, updating the volume fraction of the Chi precipitates; 5) mass balance is 

imposed assuming the matrix composition to be homogenous. Each of these 

computations is outlined next. 
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Phase equilibrium (1) 

 

Thermodynamic computations are performed to obtain the instantaneous local 

equilibrium composition of the precipitate/matrix interface using ThermoCalc with the 

TCFE3 database. This produces the solute concentration in the matrix (γ) in equilibrium 

with the precipitate Chi (χ), cγχ, and the solute concentration of χ precipitates in 

equilibrium with the matrix (γ), cχγ. In addition, the chemical potentials of all the 

components are obtained and employed to determine the chemical driving force for the 

nucleation of the precipitates. The diffusivity pre-exponential factor D0 and the 

activation energy Q for diffusion are obtained from the mobility database MOB2. 

 

Nucleation (2) 

 

The steady state nucleation rate is obtained from [28],  

 * *
1

0 exp
G QdN kT

I N
dt h kT

  
  
  

       (1) 

where N0 is the initial density of nucleation sites, Q* is the activation energy for the 

transfer of atoms across the interface (taken to be equal to the activation energy for 

Molybdenum diffusion, Q), k is the Boltzmann constant, h is the Planck’s constant, G* 

is the free energy required to overcome the barrier for nucleation and λ1 is a scaling 

factor used for compensating the overestimated value for G* [29-31]. The activation 

energy G* for a spherical nucleus is given by 

3
*

2
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where   is the precipitate/matrix interfacial energy per unit area and ΔGV is the 

chemical free energy change per unit volume.  

 

By denoting k
  as the k component chemical potential of pure metastable austenite, k  

as the equilibrium chemical potential of the k component in Chi and kC   as the 

equilibrium composition of the Chi precipitate, the molar driving force for nucleation, 

ΔGm, can be obtained from the dot product, 

( )m k k k k k k kG C C C                     (3) 

VG  is thus approximated by dividing mG  by the precipitate molar volume. 

 

The critical radius of the nucleus accounting for capillarity effects is obtained from [20] 

2
c

c

c c



 



          (4) 

where  is the capillarity constant given by the regular solution approximation, 

1
( )( )

v c

kT c c

 

 

 
 


         (5) 

where  is the interfacial energy per unit area and v is the volume per atom in the Chi 

precipitate phase. 

 

Particle growth rate (3) 

 

The modelling of precipitate growth with local equilibrium at the interface is based on 

the theory for spherical precipitates by Zener [32], and later extended by Rivera and 
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Bhadeshia [19, 20] to approximately account for capillarity effects. The development of 

the radius of the spherical precipitate is assumed to follow the parabolic equation 

1/ 2( )Dt             (6) 

where α is a dimensionless growth parameter and D is the diffusion coefficient of 

Molybdenum. 

 

At a radius r, which origin is located at the centre of the particle, the concentration field 

can be described as  

1/ 2

2
{ , } [( ) ] { }/ { }

( )

c r
c t r c c c

Dt


   




          (7) 

Where c is the average solute concentration in the matrix and  

2 1/ 21
{ } exp erfc

4 2 2

   


        
  

       (8) 

 

The rate at which solute is incorporated into the growing precipitate must be equal to 

that arriving by diffusion to the interface, therefore 

2
[ ( )] r

c c
v c c D

r


 

 

 
  


       (9) 

the expression for the particle growth rate v can be obtained from 

2 / 4

2 (2 )
{ , }

(2 )[ 2 erfc( / 2 )]r Dt

D Dt c cr c r
v r t

t r c c r c r Dt re r Dt

 

  




   
  
     

  (10) 

 

The diffusion coefficient D is calculated from 0 2exp( / )D D Q RT  , where D0 and Q 

are obtained from the ThermoCalc mobility database MOB2. Due to the fact that 

precipitation occurs at the grain boundaries, the growth is not controlled only by bulk 
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diffusion. The parameter λ2 (0.6<λ2<1) reflects the contribution of the faster grain 

boundary diffusivity on the growth kinetics of the Chi precipitates. A value of 2=0.4-

0.8 is commonly taken for grain boundary diffusion [33-35]. 

 

Transport of particles (4) 

 

Analogous to the diffusion problem, the growth or dissolution of particles that occur 

during a time increment Δt can be regarded as a flux of matter in or out of the control 

volume. The mass balance hence gives 

i i iN N v
S

t r

 
  

 
         (11) 

where Ni is the number density of particles of the ith  particle size group, vi is the particle 

growth rate within i and S is the nucleation rate. 

The volume fraction of Chi phase can now be calculated as  

34

3i i
i

f N r            (12) 

Where ri  is the radius of the particles in the ith group. 

 

Mass balance (5) 

 

The mean solute concentration in the matrix is updated from 

3
0

0

4
( )

3pC C C C r dr 


            (13) 

where   is the size distribution function. 
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Input values 

 

The model is applied to simulate the Chi precipitate evolution in a multicomponent 

alloy system which composition is simplified to 12Cr-9Ni-4Mo wt.%  with Fe to 

balance. The initial equilibrium interface condition at 900 oC is obtained from 

ThermoCalc and shown in Table 3. Being that the diffusivities of Cr, Mo and Ni in 

austenite are approximately equal, and that Mo possesses the biggest compositional 

gradient at the interface, this element is chosen as rate controlling for Chi growth rate 

(equation (10)).  The Chi precipitate particles are considered to be distributed in the 

range of 2 nm to 2 μm, and this range is discretized to 500 size groups. Equation (11) is 

discretized with a forward Euler scheme for time and first order upwind schemes in 

space. Therefore, the time step for the nth calculation is chosen from the stabilization 

condition, 

max ( , )
n

CFL n

CFL x
t t

v x t


            (14) 

where CFL number is chosen as 0.9 and x  denotes the mesh width, given by 

/ (2000 2) / 500 3.996x l N     nm. The parameter ‘max v(x,tn)’ is the maximum 

value for all the growth rates in different control volumes at a time tn. In order to 

prevent excessively large time steps, if 1t   as provided by equation (14), a value of 

1t   was taken. For the sake of reducing computation time, the ThermoCalc 

equilibrium calculations are performed for every time in the first 1000 steps and then 

every 100 steps; but if nt >0.01 s, they are performed every step. 
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The interfacial energy of precipitates in steel is usually within the range of 0.1-0.5 J/m2, 

but no value for the Chi phase was found in the literature. The interfacial energy is 

assumed to be 0.1 J/m2 in this calculation. The factor is taken as 0.0015 [30, 31].  

Given that the Chi precipitates are mostly found at the grain boundaries, the initial 

density of nucleation sites should reflect the overall grain boundary surface per unit 

volume and hence the grain size. The obtained average grain sizes after 1800 and 300 s 

homogenisation treatment were 107 m and 43 m (hereafter referred as Case A and B, 

respectively), and the chosen initial density of nucleation sites is 0.4*1018 and 1018 /m3 

respectively (inversely proportional to the average grain size). The factor  is chosen 

the value of 0.75 and employed for both cases. N0 and �� are parameters fitting the 

experimental measurements. 

 

Results and discussionF 

 

Figure 4 shows the particle size evolution of Chi precipitate during aging at 900 oC for 

up to 7200 seconds. The empty squares and circles show the calculated progress of 

average particle radius. The dashed curves show the critical radius of the new nuclei 

formed in each time step, as obtained from equation (4); this also defines the critical 

size separating particles under growth or dissolution Figure 4 shows that at the early 

aging stage, the critical particle size increases very slowly because the volume fraction 

of the Chi precipitate is small and the matrix supersaturation is high enough to have 

insignificant effects on the nuclei size. Meanwhile, for the existing particles, the 

solution supersaturation and limited amount of the particles also lead to the ‘free’ 

growth of the particles in the absence of soft-impingement effects. Therefore, the 
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average radius of Chi particles has a fast increase at this stage. The predicted evolution 

of particle number density as a function of time is plotted in Figure 5. It shows that the 

number density of particles increases rapidly from the beginning because of the high 

nucleation rate, the very slow dissolution kinetics and the accumulation of the particles. 

Because of both the fast increase of the particle size and the high number density of 

particles, the volume fraction increases abruptly in this stage, as shown in Figure 6.  

 

As result of the fast solute depletion, after about 20 seconds, the solid solution 

concentration in the matrix decreases significantly and therefore the critical radius of 

new nuclei starts to increase faster; the nucleation rate decreases to a very low value; 

and the total number of particles remains at a certain level (Figure 4 and Figure 5). As 

the volume fraction gets close to the equilibrium condition at this stage, the limited solid 

solution supersaturation suppresses the growth and consequently the growth rate of 

average particle radius decreases.  

 

In the next stage, the coarsening mechanism starts to dominate the process in terms of 

big precipitates growing at the expense of smaller ones.  The critical radius for 

nucleation approaches the mean particle radius, and they increase together with time 

(Figure 4). The total number of particles decreases while the volume fraction keeps 

close to the equilibrium level (Figure 5 and Figure 6). The computations show that the 

overall precipitation kinetics switches smoothly from the nucleation-growth dominated 

regime to growth-coarsening dominated regime without artificial separation of these 

three processes, this is a feature of the KWN model. 

 



 15

The model is applied to two initial austenite grain sizes (A and B) by means of 

assuming a different initial density of nucleation sites N0. Figure 4 shows that there is 

not much difference in the average and critical particle size between the two cases at the 

beginning of the precipitation process, while meantime, the number density of the 

particles is much higher in case B because of the higher nucleation rate, as shown in 

Figure 5. Consequently, the volume fraction of Chi phase also increases faster in case B 

(Figure 6) and the volume fraction of Chi phase also gets close to equilibrium fraction at 

an earlier time, but with smaller average particle size. This is also the reason why the 

critical radius starts to increase also at an earlier time in case B. Eventually, at later 

stages (>2000s), and due to the faster coarsening process in case B, the number density 

of particles and the average size of particles reach a similar value in both cases (A and 

B), as indicated in Figure 4 and Figure 5. 

 

The model allows tracing the particle size distribution throughout the whole evolution 

process. The predicted particle size distributions of both cases A and B are plotted in 

Figure 7 (a) and (b), after 300, 1800 and 3600 seconds aging corresponding, 

respectively, to the points marked 1-3 and character  in mean particle radius 

curve in Figure 4. The statistical results of the experimental observation are also plotted 

in Figure 7 as histogram for comparison with the simulation. At 120 s, the particle size 

distribution is characterized by a sharp peak around the average particle radius. For 

longer aging times, the position of this peak switches to right reflecting the increase in 

the mean particle size. The width of the peak increases and its height decreases due to 

both the lower values in total particle number and the growth/dissolution kinetics. It is 
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worth noting that the distribution is the natural output of the KWN model and is not the 

result of an assumption.  

 

The experimental results of the average particle radius shown in Table 2 are plotted as 

solid squares and circles with error bars in Figure 4, showing that the simulation results 

are in good agreement with the experimental observations. It should be noticed that only 

the precipitates at grain boundaries have been taken into account in estimating the 

experimental average particle size. This is because, although the intragranular 

precipitate may be formed at the very beginning of ageing, the growth of intragranular 

precipitate is very slow compared to intergranular ones due to slow bulk diffusivities. 

Therefore, the intragranular precipitates are too small to be distinguished by SEM at the 

aging time we investigated. However, the existence of the precipitation within the 

matrix can be proven by Figure 2d) in which Chi precipitate has reached a significant 

size due to long time aging. The region with the larger Chi precipitates, which includes 

both grain boundaries and precipitate free zones next to them, as shown in Figure 2d), 

can be treated as an independent system. In this area, the diffusivity is much faster than 

the bulk diffusion and intergranular precipitates consume most of the solute in solid 

solutions in the matrix. For the short aging times at which the model is applied, the slow 

bulk diffusion has not significantly affected the fast grain boundary precipitation 

kinetics. But for very long time aging or precipitate evolution in the service period, the 

model should be modified to consider the cross effects of the intergranular and 

intragranular precipitates to obtain the overall precipitation kinetics. 
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Conclusion 

 

The kinetics of Chi precipitate aging at 900 oC has been experimentally investigated. 

For the specimens aged up to 1 hour, the Chi precipitate is mostly found at the grain 

boundaries under SEM observation, while after 14 hours aging, there are both big, 

discontinuous precipitates at the grain boundaries and small homogenously distributed 

precipitates inside the grains. Next to the grain boundaries, there are precipitate free 

zones.   

 

A model describing the precipitation kinetics is developed. The model is based on a 

KWN framework with a growth rate computation incorporating capillarity effects; the 

model is coupled with ThermoCalc thermodynamic databases for obtaining the 

instantaneous equilibrium condition at interface, the driving force for nucleation and the 

solution diffusions. The model is able to predict the overlapped nucleation-growth-

coarsening kinetics in a natural way and trace the particle size distribution throughout 

the process. 

 

The model is applied to describe the Chi precipitation kinetics at the grain boundary 

depletion zones. The grain boundary zones can be treated as an independent system. 

The predicted evolution of Chi precipitate for different heat treatments is in good 

agreement with the experimental observations.  
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Table 1 Chemical composition of the studied steel [wt. %] 

Cr Ni Mo Cu Ti Al Si C, N 

12.0 9.0 4.0 2.0 0.9 0.3 0.3 < 0.01 
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Table 2 Chi average particle size for different aging times. A and B refer to the 

specimen homogenised at 1100 oC for 1800 and 300 s, respectively 

Time (s) 120 300 900 1800 3600 

A (m) 0.198±0.0493 0.211±0.0436 0.237±0.0210 0.264±0.0211 0.310±0.0214

B (m) 0.144±0.0300 0.164±0.0295 0.207±0.0423 0.216±0.0270 0.271±0.0364

 



 23

Table 3 The initial interface equlibrium compostion at 900 oC 

Weight fraction Cr Mo Ni Fe 

Alloy 0.1200 0.0400 0.0900 Balance 

Austenite 0.1185 0.0356 0.0915 Balance 

Chi phase 0.1800 0.2114 0.0294 Balance 
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Figure 1 Optical micrographs of specimen after homogenisation treatment at 1100 oC 

for a) 300 s and b) 1800 s 

(a) (b)
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Figure 2 Scanning electron micrographs of specimens homogenised at 1100 oC for 1800 

s and aged at 900 oC for (a) 300 s, (b) 1800 s, (c) 3600 s and (d) 50400 s. 

(a) (b)

(c) (d)
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Figure 3 Scanning electron micrographs of specimens homogenised at 1100 oC for 300 s 

and aged at 900 oC for (a) 300 s, (b) 1800 s and (c) 3600 s. 

(a) (b)

(c) 
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Figure 4 Predicted and experimental evolution of Chi precipitate average and critical 

radius as a function of time at 900 oC for the average austenite grain size 107 m 

(square) and 43 m (circle), homogenisation pre-heat treated at 1100 oC for 1800 s and 

300 s, respectively. 
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Figure 5 Predicted evolution of density of Chi precipitate particles as a function of time 

at 900 oC, for two average austenite grain size 107 m and 43 m. 

 

 



 29

 

1 10 100 1000 10000

0.0

0.5

1.0

1.5

2.0

2.5
Equilibrium fraction predicted by ThermoCalc

 Grain size =107 m
 Grain size =  43 mV

ol
um

e 
fr

ac
tio

n 
of

 C
hi

 (
%

)

Time (s)
 

Figure 6 Predicted evolution of volume fraction of Chi precipitate as a function of time 

at 900 oC, for two average austenite grain size 107 m and 43 m. 
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Figure 7 Predicted and experimental results of particle size distribution of Chi 

precipitate for 300 s, 1800 s and 3600 s ageing at 900 oC, for two average austenite 

grain size (a) 107 m and (b) 43 m, homogenisation pre-heat treated at 1100 oC for 

1800 s and 300 s, respectively. 

 

 


