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Microstructure and mechanical properties of two high Al, low-Si TRIP steels with 

different Cr and Mo contents were studied using continuous galvanizing line (CGL) 

laboratory simulation. Combined use of specific etching methods, optical and electron 

microscopy observations and EBSD characterization led to verify the epitaxial growth of 

ferrite during cooling at a moderate rate from the intercritical annealing to the isothermal 

holding temperature. The amounts of “new” ferrite formed during cooling and retained 

austenite obtained after processing are much higher in the steel with lower content of 

hardenability-promoting elements. Measured tensile properties and mechanical behavior of 

the steel strongly depend on the amount of new ferrite and retained austenite. It is found that 

the formation of new epitaxial ferrite from intercritical austenite can effectively contribute to 

the chemical and particle size stabilization of untransformed austenite as well as to obtain the 

desired TRIP effect under processing conditions highly compatible with industrial practice, 

i.e. cooling rates near 15 ºC/s and isothermal holding times at 460 ºC shorter than 60 s.  

 

KEY WORDS: TRIP steel; aluminum; continuous galvanizing; new ferrite; retained 

austenite; mechanical properties. 
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1. Introduction 

 

Thanks to their excellent combination of large uniform elongation and high strength, 

low-carbon transformation-induced plasticity (TRIP) steels have been used in several 

applications in the automotive industry 1-3). Conventional cold rolled TRIP steels were firstly 

developed from CMnSi grades 4-6), but Si greatly impairs galvanizability so efforts have been 

made in the last years to partially replace Si by other elements that also facilitate the 

stabilization of retained austenite such as Al 7,8). It has been found that high Al–low Si TRIP 

steels can be successfully galvanized 8). The traditional concept of the heat treatment for TRIP 

steels manufacturing associates austenite stabilization (decrease in Ms temperature below 

room temperature) to the enhancement of carbon enrichment by means of carbide-free bainite 

formation during “isothermal bainitic holding” or austempering in the temperature regime 

350-490 ºC 2,9,10). Si reduces the kinetics of the bainitic transformation considerably 11) so long 

isothermal holding times (IHt) of 3-5 min are usually necessary to obtain the best tensile 

properties in Si-alloyed TRIP steels 5,7,12) and retained austenite (RA) volume fraction passes 

through a maximum for long times 13). This implies that Si TRIP steels can only be produced 

on a line with a long over-aging section, in which a long isothermal holding (IH) can be 

carried out to obtain enough RA for an adequate TRIP microstructure. However, most of the 

current continuous galvanizing lines (CGLs) for automotive sheet products do not have these 

sections 2,7,8,12,14). Si TRIP steels usually present their optimal balance of properties for 

isothermal holding temperature (IHT) near 400 ºC 5,7,14), but the presence of the Zn pot limits 

the temperatures that can be used during IH to values higher than the temperature of the 

molten Zn bath (460 ºC). The time spent on Zn bath temperature is around 15-30 s 7,15). It is 

known that long IH times or high temperatures increase the risk of decomposition of the 

retained austenite into ferrite and carbides 8,9,12,14,16,17). Unlike Si TRIP steels, several authors 
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have pointed that Al TRIP steels only need moderate holding times (less than 60 s) at 

temperatures closer to Zn bath temperature (450-475 ºC) to obtain substantial amounts of RA 

with a remarkable stability and optimal mechanical properties 9,12,13,15,16,18-21). This represents 

an important advantage, as efforts are being made to minimize or even to omit the isothermal 

bainite transformation step 22) in order to approach to industrial processing conditions of CGL. 

On this matter, some authors found that Al can accelerate the bainite formation 13,23,24). As a 

result, it has been suggested that TRIP steels with Al additions could be produced on a CGL 

without isothermal bainitic transformation section 8) or even through continuous cooling 25). 

It is generally accepted that the cooling rate from the intercritical annealing (IA) to IH 

has to be fast enough to avoid the formation of carbides (i.e. pearlite and upper bainite) 7,26). 

Furthermore, it is usually assumed that this cooling rate should also prevent the formation of 

ferrite. The formation of ferrite during a relatively slow cooling reduces the amount of 

austenite available for bainitic transformation during overaging, as has been confirmed by 

thermodynamical calculations 27) and by dilatometry experiments 28). Then, the so-called 

“new” ferrite has been usually considered as something “to be avoided” and therefore many 

authors have used in their studies very high cooling rates (>30ºC/s) or even quenching to salt 

baths that hinder austenite transformation during cooling 1,2,6,9-11,19,24,29,30). However, TRIP 

steels are usually coated and those cooling rates are much higher than the typical values close 

to 15 ºC/s found in industrial continuous galvanizing (CG) lines 7). 

There is controversy in the literature about the nature and properties of new ferrite as 

well as its influence on the stabilization of austenite and final mechanical properties of 

multiphase steels. Yi et al. 31) concluded that “transformed” (new) ferrite forms by means of a 

nucleation and growth mechanism. However, most authors 27,28,32-38) affirm that ferrite formed 

from intercritically annealed austenite grows epitaxially on the “retained” or “old” ferrite 

during cooling at medium rates. Compared to full austenitization, the IA can accelerate the 
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formation of new ferrite due to the presence of pre-existing austenite/ferrite phase boundaries 

13,39-41). During cooling, these interfaces only need to advance into the austenite because the 

new (epitaxial) ferrite has the same crystallographic orientation as the untransformed one. 

Hence, the step of nucleation of ferrite is not required, as new grain boundaries are not 

formed, resulting in a faster reaction. As a result, even very high cooling rates cannot prevent 

the formation of considerable amounts of new ferrite (NF) for certain intercritically annealed 

dual phase (DP) and TRIP compositions 4,13,21,32,35,40). 

There is also a debate 31,42-44) about the mechanical properties of new “epitaxial” 

ferrite. Fonshtein et al. 45) concluded that NF has a positive effect on the ductility of DP 

ferritic-martensitic steels, but this is a reflection not so much of the intrinsic properties of this 

ferrite as it is of the phenomena that facilitate the increase in the volume of this structural 

phase, such as higher IAT and slower cooling rates. Austenite stability is favored by carbon 

enrichment (chemical stabilization) as well as austenite particle size refinement 10,42,46-49) and 

NF formation can contribute in both aspects 45). Several authors 14,21,27,29,34,38,41,42,47,50) have 

shown that formation of NF during cooling from IAT to IHT (generally considered as 

epitaxial growth under paraequilibrium conditions) enhances carbon enrichment and 

subsequent retention of austenite. On the other hand, the austenite particles decrease in size 

during cooling 31) and very stable small retained austenite can be isolated by the local growth 

of ferrite at the expense of austenite 45,49). 

Ferrite growth during cooling from IA to IH can represent the first step for the 

decrease in Ms temperature (austenite stabilization) that is subsequently culminated by bainite 

formation during the IH 29,46). Processing schedules have been presented where a slow cooling 

rate (fast enough to avoid pearlite formation) is applied at high temperatures (generally above 

Ar1) in order to promote additional carbon enrichment thanks to the new ferrite formation 
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2,4,11,13,37,38,51). Later, at IHT below the T0 temperature, the remaining austenite particles can 

decrease in size and become further enriched with C (~1.5 wt%) 2). 

The amount of ferrite formed during cooling depends on the alloy’s overall 

composition, the microstructure (grain size), the IA parameters and the cooling rate from the 

intercritical annealing temperature 21). The transformation behavior during cooling is different 

for Si-, and Al-alloyed TRIP steels and this difference has been related to their diverse 

influence on the amount and composition of austenite formed during the intercritical anneals 

21). For simple Al/Si additions, it has been found that Al-alloyed TRIP steels exhibit a higher 

intensity of ferrite formation 13,52). When CCT diagrams from a typical IAT corresponding to 

a 50%α/50%γ phase distribution are compared, it has been found that the ferrite “C” curve of 

1% Al steels appears at much shorter times than in 1% Si steels, and the opposite happens for 

the pearlite curve 53). Ferrite growth is enhanced for increasing Al levels 18), especially for the 

range (0.7-1.1% Al) where this occurs regardless of the applied cooling rate 40). Concerning 

combined additions of Al-Si, Pradhan et al. 12) described that increasing Si content in an Al-

TRIP steel raised the hardenability and decreased the magnitude of the ferrite transformation 

on cooling. As a result, the amount of austenite entering the isothermal holding increased and 

its carbon content decreased.  

It has been found that wide variations in the cooling rate do not greatly affect the 

mechanical properties of Al TRIP steels whereas the balance is significantly worsened for 

slowly cooled Si-TRIP steels 12,21,22). Besides, Al TRIP steels show very high austenite carbon 

content even in the beginning of IH 21). 

Aforementioned results lead to the question whether enhanced ferrite growth during 

cooling at intermediate cooling rates can be an effective contributor to chemical as well as 

particle size stabilization of austenite, especially in Al steels processed under conditions of 

moderate cooling rate and short IHt at 460 ºC. This paper presents the study of austenite 
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decomposition during cooling from IA to IH of two high Al, low-Si TRIP steels with very 

different Cr and Mo contents that caused different hardenabilities of intercritical austenite. 

The formation of NF during cooling at 15 ºC/s is correlated to the stabilization of RA at the 

end of processing. A study of final mechanical properties was also carried out and the results 

will be presented and discussed. 

 

2. Experimental procedure 

 

The chemical compositions of the steels used in this study are shown in Table 1. Two 

C-Mn-0.1%Si high Al steels were vacuum-melted and rolled using a computer controlled 

laboratory hot rolling mill. As can be seen, steel 10C has a slightly higher Al content than 

steel 12B, but the latter presents higher Cr and Mo contents that bring about higher austenite 

hardenability 51). The laboratory heats were hot rolled using standard procedures and coiled at 

550 ºC. After hot rolling, the steels were cold rolled 60%. The degree of deformation of all 

steels was carefully controlled to obtain the same amount of cold rolling deformation, as 

different initial structures result in different reaction kinetics and microstructure evolution 

during subsequent thermal processing 13). 

JMatProTM software 54) was used to predict the A1 and A3 phase transformation 

temperatures, as well as the desired IAT to produce a 50% ferrite - 50% austenite phase 

balance for the steels studied. Continuous cooling transformation (CCT) diagrams obtained 

from IAT were also simulated using JMatProTM. The calculated temperatures are shown in 

Table 1. Samples approximately 25 mm × 10 mm in size were cut from the cold rolled 

material. These specimens were used in CGL thermal simulation treatments, which were 

carried out in a MTS-458TM unit with a mounted radiation furnace. During these experiments, 

samples were heated at a constant rate of 3 °C/s to IAT, held for 60 s and cooled at 15°C/s to 



9 
 

the IHT of 460 °C, at which the galvanizing of the steel sheet takes place. The variation of the 

holding time at 460 °C (IHt) was investigated by using two different times of 30 and 60 s for 

both steels. To extend the study, steel 10C was also tested using IHt of 15 s and 450 s. The 

values of IAT, cooling rate, IHT and IHt are very close to the typical values found in a CG 

line 7). A scheme of the thermal treatments is shown in Figure 1. 

In order to evaluate the austenite decomposition during cooling from IAT to IHT and 

during IH at 460 ºC, the described thermal treatments were interrupted at different stages by 

quenching the sample into ice water. These stages corresponded to the end of IA, the end of 

cooling from IAT to 460 ºC and the end of IH. Samples air cooled after IH at 460 ºC were 

also studied. To carry out the microstructural studies, optical microscopy was extensively 

used. The samples for microstructural observation were prepared by conventional 

metallographic techniques. Nital and Lepera etchants were used to distinguish the phases 

present in the samples. Formation of “new ferrite” (NF) during cooling from IA to IH was 

examined pre-etching with 2% nital and using a specific tint-etchant of boiling sodium 

alkaline chromate 55,56) with which old ferrite appears grey or dark and new ferrite remains 

uncolored. 

Measurements of volume fractions of microconstituents were carried out by point 

counting according to ASTM E-562 standard and also by using Bioquant Nova PrimeTM 

software attached to an Olympus® optical microscope. Selected samples were examined with 

the help of a Philips XL30TM field emission gun scanning electron microscope. Electron Back 

Scattering Diffraction (EBSD) analysis was used to determine the crystallographic texture and 

grain boundary misorientation between the different phases. In order to make quantitative 

determination of the volume fraction of retained austenite present in several samples, 

magnetometry tests were carried out in a vibrating specimen magnetometer (VSM). This 

technique provides very good accuracy, as it measures large volumes and thereby overcomes 
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the difficulties of texture effects and local deviations from the averaged quantity of RA 57). 

2.5x2.5 mm specimens were cut from the samples using a low speed saw. Reference samples 

were prepared by annealing at 600°C for twelve hours under inert atmosphere followed by 

slow cooling. X-ray diffraction helped to verify the presence of RA in the heat treated 

samples as well as the absence of austenite in reference samples for magnetometry. 

Diffraction experiments were performed using a PhilipsTM X-ray diffractometer using Ni 

monochromated Cu-Kα radiation. 

In order to evaluate the mechanical properties, 250 mm x 50 mm specimens were 

annealed in a Gleeble 3500TM unit using the CGL thermal cycles shown in Figure 1. This 

large size allows two ASTM sub-size tensile samples of 25.4 mm nominal gauge length and 

6.4 mm nominal width to be taken from each annealed sheet specimen, as well as samples for 

metallography. Mechanical testing was performed on a MTS 880TM unit using a strain rate of 

2 mm/min. 

 

3. Results 

 

First of all, samples quenched from the end of IA and etched with nital were studied 

with the optical microscope. The measured volume fraction of martensite (primitive austenite) 

at this point was close to 61% in both steels. The difference with the predicted 50% can be 

due to small temperature measurement errors together with a slight overestimation in 

JMatProTM calculations of the effect of Al in increasing transformation temperatures. These 

samples were also etched with sodium alkaline chromate (S.A.C.) to confirm the absence of 

NF areas, as white regions were not found (Figs. 2a and 2c). Some isolated submicron-sized 

RA particles were distinguished in SEM (Figs. 2b and 2d). These particles probably come 

from primitive isolated cementite/carbide particles finely dispersed in the ferrite grains and 



11 
 

have a high stability (low Ms temperature) due to their small size and high solute content in 

the original austenite 29,42,46,48). 

Figure 3 shows the microstructure of steel 10C at the end of cooling from IAT, i.e. in 

the beginning of IH at 460 ºC. Fig. 3a shows that considerable amounts of new ferrite 

(revealed by the white regions in the S.A.C.-etched microstructure) have formed during 

cooling. Interfaces inside the ferrite grains separating new and old ferrite areas cannot be 

distinguished either here or in SEM (Figs. 3b and 3c). This is also confirmed by the EBSD 

map of Fig. 3d that shows that orientation is kept constant throughout ferrite grains. Likewise, 

neither high nor low-angle grain boundaries are detected between “new” and “old” ferrite 

areas in Fig. 3e. On the other hand, SEM images illustrate how NF areas (arrows in Fig. 3a) 

usually surround high carbon M/A particles (revealed by the brightest white tones in SEM). 

This is confirmed in EBSD phase-map of Fig. 3f, where RA is detected in zones adjacent to 

NF. In fact, NF areas always appear in contact with M/A particles, i.e. isolated white regions 

inside brown-dark “old ferrite” areas were not observed under the optical microscope (Fig. 

3a). All these observations, together with the absence of white zones in Figs. 2a and 2c 

suggest that areas that remain uncolored after S.A.C etching represent an austenite 

decomposition product which is very likely NF formed by extensive epitaxial growth during 

cooling at 15 ºC/s from IAT to IHT. 

The microstructure of steel 12B after quenching under similar conditions to steel 10C 

is shown in Figure 4. It can be seen that NF is hardly detected in this case (Fig. 4a). 

Martensite presents a marked substructure in SEM (Fig. 4b), typical of low carbon contents 

40), and retained austenite or M/A particles are scarce. As in the case of steel 10C, orientation 

changes or low angle grain boundaries inside ferrite grains were not detected (Fig. 4c). 

The fraction of NF was measured by quantitative metallography in samples 

corresponding to different steps of CG line. As can be expected, the fraction of NF grows 
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during cooling and does not vary during IH at 460 ºC. Figure 5 shows the different evolution 

in both steels: about 27% of NF is formed during cooling of steel 10C, while steel 12B 

presents less than 4% of NF (i.e. about 6% of intercritical austenite transformed to epitaxial 

ferrite), as a result of its much higher content in hardenability-promoting elements such as Cr 

and Mo. Results for 10C represent about 42% of original intercritical austenite. This value is 

slightly lower than results found by other authors in analogous Al-steels processed under 

comparable conditions 40,52) but it is higher than the results found for 1.5% Si-alloyed steels 

27,52). 

Samples quenched from temperatures corresponding to the end of IA and the 

beginning of IH were etched with Lepera reagent. The amount of ferrite (that appears brown 

in this etching) was quantified and the total amount of ferrite formed during IA-IH cooling 

was measured. It resulted that a total of 31% of ferrite is formed during cooling in steel 10C, 

whereas 18% of NF is found in steel 12B. Taking into account the results of S.A.C. etching, 

this means that the amounts of nucleated new ferrite in steel 10C and 12B would be 

respectively equal to 4% (31% - 27%) and 14% (18% - 4%). These values respectively 

correspond to about 7% and 23% of the intercritical austenite. The CCT diagrams simulated 

with JMatProTM (Figure 6) help to explain the different values of epitaxial growth, nucleated 

ferrite and total amount of NF found in both steels. It can be seen that using a cooling rate of 

15 ºC/s new ferrite would start to form in steel 10C immediately after intercritical reheating 

and from temperatures near 860 ºC. However, NF would form in steel 12B more than one 

order of magnitude later and from lower temperatures, i.e. about 725 ºC, near the Ar1 

temperature. It can be expected that ferrite growth is more enhanced in the case of steel 10C 

compared to the case of steel 12B. In steel 12B, the lower transformation temperature (more 

pronounced undercooling) would cause a higher rate of nucleation of new grains. 
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Figure 7 shows the RA content measured by magnetometry. As Figure 2b showed, 

RA can be found in samples of steel 10C quenched after IA, and almost 2% of RA is obtained 

by water-quenching the sample from 860 ºC. This means that part of the austenite is already 

significantly rich in carbon and/or has very fine size at these high temperatures. Most of the 

austenite is retained during cooling at 15 ºC/s from IA to IH (more than 3%) and during the 

first 15-30 s of IH (another 2.5%). RA content detected in steel 10C for IHt = 0 s (about 5%) 

practically coincides with the value shown in Fig. 3f and measured with EBSD. The value of 

RA% in steel 10C remains practically constant and higher than 7% between 15 s and 450 s. 

Despite the relatively high IHT used (460 ºC), this result indicates that decomposition of 

austenite into carbides at long IH times is hindered in this high Al-TRIP steel. This was 

confirmed by SEM observations on sample tested with IHt = 450 s where carbides are not 

found. Other authors found similar amounts of RA at short times in a 1%Al-0.5%Si TRIP 

steel 20). However, they found that RA fraction increased with time and carbides formed after 

120 s at 465 ºC. The higher Si content in this steel could have increased the risk of carbide 

formation at long IHt and high IHT 12). Additionally it can be seen that the values of RA% 

measured in steel 10C after quenching are slightly lower than the values found in the air-

cooled samples. Only a small portion of the austenite (less than 1%) transforms to martensite 

during rapid quenching, which denotes a significant stability of austenite at the end of IH. It 

can be expected that in air cooled condition, this small fraction of austenite would transform 

to martensite in the early stages of straining so its contribution to elongation would be minor. 

Therefore, the fully processed steel 10C would contain austenite particles that have been 

stabilized at different stages of the CGL route (IA, cooling and IH). It is likely that these 

particles will present heterogeneous chemistry (C and Mn contents), shape and size 

distribution and will have different stabilities. This is known to be beneficial for steel 
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ductility, as austenite will undergo the martensitic transformation and will provide plasticity 

over a range of initial strains rather than at one time 42). 

On the other hand, as happened with NF%, the evolution of RA% during CG 

processing of steel 12B is different to that of steel 10C. The amount of RA at the end of IA is 

lower than 1% and it does not increase during cooling to IH. Final microstructure is similar to 

a DP steel, as a very low amount of RA is obtained even after an IH of 60 s at 460 ºC. An 

earlier report described that the observed second phase in steel 12B after IH is mostly 

martensite 58). Comparison of Figures 5 and 7 leads to the assumption that a certain 

correlation exists between NF formation during cooling and austenite stabilization, i.e. the 

enhanced NF formation during cooling of steel 10C (Al steel with lower Cr and Mo content) 

can be an effective contributor to the carbon enrichment and stabilization of austenite in the 

fully processed material with short IHt. Figure 8 shows another microstructural study of a 

sample of steel 10C by optical and scanning electron microscopy. Unlike Figs. 3b and 3c, the 

slight over-etching with S.A.C. has permitted the identification to be made in the SEM of the 

zones inside the ferrite grains that appear white or stained (bluish) in optical microscope, i.e. 

it is possible now to differentiate “old” and “new” ferrite areas without an interface between 

them. Arrows indicate particles of high-carbon martensite without visible substructure or 

probably RA in contact with NF areas. Carbon redistribution from NF growth to austenite has 

likely originated isolated as well as grain boundary M/A particles. Carbon rich M/A rims 

attached to NF can also be detected along grain boundaries or around martensite particles. 

According to Jeong et al. 49), very stable small RA can be isolated by the local growth of 

ferrite at the expense of austenite. Similarly, Yi et al 31) affirm that austenite particles decrease 

in size during cooling, so some isolated RA particles can be the remainders of the shrinking 

sandwiched austenite particles aligned between the “new” and the “old“ ferrite. Hence, 

isolated RA particles like those shown in Fig. 2b and Fig. 8 would have different origins. In 
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S.A.C.-etched samples, the latter will appear in optical microscope associated with white NF 

zones, whereas the former would be isolated within tinted old ferrite areas. 

An interesting conclusion about the effect of Al can be extracted from these results. It 

has been previously pointed out that Si decreases martensite start (Ms) temperature but Al 

increases it 17,19), i.e. Al destabilizes the austenite and can move the start temperature and the 

Ms–Mf range partly above room temperature 2). This can be true for full austenitization, but it 

is seen that after IA and a moderate cooling rate, the enhanced ferrite growth of Al-TRIP 

steels 13,18,40,53) can originate the carbon enrichment and particle size refinement of the 

remaining austenite so the Ms temperature is lowered 13,40). For example, Ms values as low as 

80 ºC can be obtained in Al and Al-Nb TRIP steels after an IA without IH in the bainitic 

range 41). 

Tensile tests were carried out on fully processed samples of both steels tested with 

several IHt at 460 ºC. The curves shown in Figure 9 correspond to the processing conditions 

leading to the best balance of mechanical properties in both cases. Steel 10C displays TRIP 

behavior with remarkable elongation and good strength, while steel 12B presents a DP-like 

curve with continuous yielding, high UTS but lower elongation. It should be mentioned that a 

satisfactory balance of properties (UTS = 770 MPa, uniform elongation: 21%, total 

elongation: 27%) was obtained in steel 10C for an IHt as short as 15 s, i.e. highly compatible 

with the industrial CGL route. The tensile properties are comparable to the values found by 

other authors in similar Al TRIP steels processed with faster cooling rates to avoid NF and/or 

considerably longer IHt to maximize bainite fraction 9,13,19,30). When properties of steel 10C 

are compared to Si steels processed with similar cooling rate and short IHt, Si steels usually 

present higher strengths as a result of stronger solid solution strengthening effect of Si 9,12,59), 

but final balance of properties can be similar as elongation is often poorer 21). Besides, high Si 

contents would cause the aforementioned galvanizing problems. The results for steel 12B 
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with IHt = 60 s (UTS = 1042 MPa, U.E.: 10%, T.E.: 13%) are very similar to previous 

observations on high Cr and Cr-Ni steels 60,61). Ehrhardt et al. 51) also found that a DP-1000 

behavior can be achieved in high Mo steels when short holding times in the bainitic region 

typical for horizontal CG lines are used. Finally, Fig. 10 shows again the remarkable 

difference between both steels, now in terms of strain-hardening behavior. Coefficient n of 

steel 12B sharply decreases with increasing strain, whereas n-value in steel 10C is much more 

stable. As a result, a larger uniform elongation is obtained in steel 10C. 

According to the references and to the results of the present study, it can be deduced 

that Al TRIP steels could present the practical advantage of a higher compatibility with 

industrial CG processing than Si steels. The enhanced epitaxial growth of NF during IA-IH 

cooling of Al steels causes particle size stabilization and helps to increase the carbon content 

of the untransformed austenite in the early stages of austempering. Based on these 

observations the optimal IHt to get sufficient carbon-rich RA for TRIP effect could be 

shortened to times closer to CGL practice. In addition, the risk of carbide formation is 

restrained in Al TRIP steels. Furthermore, the chance of pearlite or carbide formation at 

relatively slow cooling rates is also lower in Al steels so cooling rates near 15 ºC/s and IHT 

about 460 ºC could be more easily applied. This would apply to compositions such as steel 

10C. However, steel 12B (with much higher hardenability caused by higher Cr and Mo levels) 

has low amount of RA and it is similar to a DP steel. In this case, the restricted NF formation 

leads to a poorly stabilized austenite that transforms to a large extent to martensite during 

final cooling after IH. Similar results and conclusion have been presented by other authors 62). 

Steel 12B would probably need a different cooling route or a longer IHt to get sufficient 

bainite formation and a higher fraction of stable RA for TRIP effect. Then, it seems that the 

enhancement or restriction of NF formation might be used as a controlling factor for final 

microstructure (amount of retained austenite) and mechanical properties of multiphase steels. 
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Several factors that are known to affect intercritical austenite dispersion or NF formation 

kinetics might be modified: IA conditions, content of hardenability-promoting or new ferrite-

enhancing elements 52,62), Nb microalloying that helps to refine austenite and can promote NF 

41,63), value of the cooling rate to get optimal microstructure and properties 5,14), application of 

complex cooling paths with variable cooling rates 4,51) or even application of intercritical 

deformation 35,43,44,64). 

 

4. Summary and conclusions 

 

Microstructure and mechanical properties of two high Al, low-Si TRIP steels with 

different Cr and Mo contents were studied during CGL laboratory simulation. Combined use 

of specific etching methods, optical and electron microscopy and EBSD characterization led 

to verify the epitaxial growth of “new” ferrite during cooling at 15 ºC/s from the intercritical 

annealing to the isothermal holding temperature (460 ºC). The following conclusions were 

obtained: 

• In the steel with lower hardenability (10C), about 42% of intercritical austenite 

transforms to epitaxial ferrite (new ferrite growth) during cooling to IHT. Only 6% of 

austenite transforms to epitaxial ferrite in the steel with higher Cr and Mo contents 

(12B). In contrast, the nucleation of new grains of ferrite is favored in steel 12B. 

• Samples of steel 10C quenched at the beginning of IH show numerous M/A particles 

adjacent to epitaxial ferrite areas. Steel 12B presents a microstructure with high 

amount of low carbon martensite. 

• The volume fraction of retained austenite measured by magnetometry in steel 10C 

increases from 2% to more than 5% during cooling from IA to IH and it grows an 

additional 2.5% during the first 15-30 s of IH. RA% remains practically constant and 
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higher than 7% between 15 s and 450 s, indicating low tendency to decomposition of 

austenite into carbides at long IH times. On the other hand, RA content measured in 

steel 12B at successive stages of CGL stays below 2%. 

• Tensile properties and mechanical behavior of processed samples strongly depend on 

the amount of new ferrite and retained austenite. For the highest Cr and Mo content, 

the behavior is similar to a DP steel with UTS higher than 1000 MPa and decreasing 

n-coefficient, whereas steel 10C shows much higher elongation at the expense of some 

strength decrease as a result of its larger amount of retained austenite. 

• According to the results of this study, new epitaxial ferrite formed during cooling of 

the intercritical austenite can effectively contribute to the chemical and particle size 

stabilization of untransformed austenite. More importantly, this can help to obtain the 

TRIP effect under processing conditions highly compatible with industrial practice, 

i.e. intermediate cooling rates near 15 ºC/s and isothermal holding times at 460 ºC 

shorter than 60 s. 
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Fig. 1. Thermal schedule of the tests of continuous galvanizing simulation. 

 

Fig. 2. Microstructure at the end of intercritical annealing (IAt = 60 s). a) Steel 10C, IAT 

= 860 ºC, etching: sodium alkaline chromate (S.A.C.); b) SEM image of detail 

area marked in a); c) Steel 12B, IAT = 830 ºC, S.A.C.; d) SEM image of steel 

12B. 

 

Fig. 3. Microstructure of steel 10C, cooled at 15 ºC/s from 860 ºC to 460 ºC and 

immediately quenched (IHt = 0 s). a) Microstructure taken in optical Microscope, 

S.A.C. etching. Arrows indicate new ferrite areas (white) surrounding M-A 

particles; b) SEM image of a); c) Detail marked in a) and b); d) e) f) Maps from 

EBSD analysis: d) Inverse Pole Figure; d) Grain boundaries; e) Phases. 

 

Fig. 4. Microstructure of steel 12B, cooled at 15 ºC/s from 830 ºC to 460 ºC and 

immediately quenched (IHt = 0 s). a) Microstructure taken in Optical Microscope, 

S.A.C. etching; b) SEM image of detail marked in a); c) EBSD map showing 

grain boundaries. 

 

Fig. 5. Determination of the volume fraction of new ferrite formed during cooling from 

IA to IH and during IH at 460 ºC. 

 

Fig. 6. Continuous cooling transformation (CCT) diagrams. a) Steel 10C; b) Steel 12B. 

 

Fig. 7. Determination of the volume fraction of retained austenite formed during cooling 

from IA to IH and during IH at 460 ºC. 
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Fig. 8. Microstructure of steel 10C after 60 s at 460 s. S.A.C. etching. Etching time was 

longer than that used in Figs. 2-4. Arrows indicate new ferrite areas adjacent to 

retained austenite or high carbon martensite. 

 

Fig. 9. Stress-strain curves with the best balance of tensile properties. IHT = 460 ºC; 

Steel 10C: IHt = 15 s, Steel 12B: IHt = 60 s. 

 

Fig. 10. Strain-hardening coefficient (n) as a function of true strain. IHT = 460 ºC; Steel 

10C: IHt = 15 s, Steel 12B: IHt = 60 s. 
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Table 1. Chemical composition of the steels studied (wt%). Calculated transformation 

temperatures and Intercritical Annealing Temperature (IAT) used in the tests (ºC). 

 

Steel C Mn Si Cr Mo Ti Al Nb 

A3 

(ºC) 

A1 

(ºC) 

T 50α-50γ 

(ºC) 

IAT  

(ºC) 

10C 0.146 1.485 0.107 0.025 0.162 0.027 1.202 0.029 1029 700 859 860 

12B 0.157 1.600 0.100 0.530 0.486 0.021 1.056 0.031 971 703 829 830 
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Fig. 1. Thermal schedule of the tests of continuous galvanizing simulation. 
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Fig. 2. Microstructure at the end of intercritical annealing (IAt = 60 s). a) Steel 10C, IAT 

= 860 ºC, etching: sodium alkaline chromate (S.A.C.); b) SEM image of detail 

area marked in a); c) Steel 12B, IAT = 830 ºC, S.A.C.; d) SEM image of steel 

12B. 
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Fig. 3. Microstructure of steel 10C, cooled at 15 ºC/s from 860 ºC to 460 ºC and 

immediately quenched (IHt = 0 s). a) Microstructure taken in optical Microscope, 

S.A.C. etching. Arrows indicate new ferrite areas (white) surrounding M-A 

particles; b) SEM image of a); c) Detail marked in a) and b); d) e) f) Maps from 

EBSD analysis: d) Inverse Pole Figure; d) Grain boundaries; e) Phases. 
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Fig. 4. Microstructure of steel 12B, cooled at 15 ºC/s from 830 ºC to 460 ºC and 

immediately quenched (IHt = 0 s). a) Microstructure taken in Optical Microscope, 

S.A.C. etching; b) SEM image of detail marked in a); c) EBSD map showing 

grain boundaries. 
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Fig. 5. Determination of the volume fraction of new ferrite formed during cooling from 

IA to IH and during IH at 460 ºC. 

 



36 
 

 

0.1 1 10 100 1000 10000 100000
200

400

600

800

1000

15 ºC/s

Ms = 359 ºC
10 ºC/s 1 ºC/s 0.1 ºC/s100 ºC/s

Bainite

Pearlite

Ferrite

Steel 10C
Austenitization at 860 ºC (50% α, 50% γ)
Grain Size: 9 ASTM

Te
m

pe
ra

tu
re

, º
C

time, s  

a) 

 

0.1 1 10 100 1000 10000 100000
200

400

600

800

1000

15 ºC/s

Ms = 322 ºC
10 ºC/s 1 ºC/s 0.1 ºC/s100 ºC/s

Bainite

Pearlite

Ferrite

Steel 12B
Austenitization at 830 ºC (50% α, 50% γ)
Grain Size: 9 ASTM

Te
m

pe
ra

tu
re

, º
C

time, s  

b) 

 

Fig. 6. Continuous cooling transformation (CCT) diagrams. a) Steel 10C; b) Steel 12B. 
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Fig. 7. Determination of the volume fraction of retained austenite formed during cooling 

from IA to IH and during IH at 460 ºC. 
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Fig. 8. Microstructure of steel 10C after 60 s at 460 s. S.A.C. etching. Etching time was 

longer than that used in Figs. 2-4. Arrows indicate new ferrite areas adjacent to 

retained austenite or high carbon martensite. 
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Fig. 9. Stress-strain curves with the best balance of tensile properties. IHT = 460 ºC; 

Steel 10C: IHt = 15 s, Steel 12B: IHt = 60 s. 
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Fig. 10. Strain-hardening coefficient (n) as a function of true strain. IHT = 460 ºC; Steel 

10C: IHt = 15 s, Steel 12B: IHt = 60 s. 


