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Abstract 

One of the main problems that our society must deal with in a near future is the 

progressive substitution of traditional fossil fuels by different energy sources, such as 

renewable energies. In this context, biogas will play a vital role in the future. 

Nowadays, one of the most important uses of biogas is the production of heat and 

electricity from its direct combustion in co-generation plants. An interesting alternative 

consists on its direct valorisation to produce a syn-gas that can be further processed to 

produce chemicals, liquid fuels, or hydrogen. Results showed in this work evidenced 

that catalytic decomposition of biogas (CH4/CO2 mixtures) can be carried out with a 

Ni/Al2O3 catalyst obtaining simultaneously a syn-gas with high H2 content together with 

carbonaceous nanostructured materials with high added value. The parametric study 

revealed that temperature, WHSV (Weight Hourly Space Velocity, defined here as the 

total flow rate at normal conditions per gram of catalyst initially loaded) and CH4:CO2

feed ratio influence directly in CH4 and CO2 conversion, H2:CO ratio and carbon 

generation (gC/gcat). It was also evidenced that carbon structure depends on 

temperature. At 600ºC, fishbone like nanofibers with no hollow core are obtained while 

at 700ºC a mixture of fishbone and ribbon like nanofibers with a clear hollow core are 

formed.
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1. Introduction 

One of the main problems that our society must deal with in a near future is the 

progressive substitution of traditional fossil fuels by different energy sources, such as 

renewable energies. The current energetic system based on fossil fuels could no longer 

be sustained as long as fossil fuels are a finite energetic resource [1]. In addition, the use 

of such fuels generates problems that are increasingly important. Among them, global 

warming caused by increasing emissions of greenhouse gases (GHG) into the 

atmosphere is one of the most important [2]. Unfortunately, the complete replacement 

of fossil fuels by other energy sources, as renewable, is currently unfeasible [3] and a 

gradual replacement that can last decades is expected to occur. 

In this context, biogas from wastes, residues, and energy crops will play a vital 

role in future [4]. Biogas is a versatile renewable energy source, composed mainly of 

CH4 and CO2 [5] although it contains also traces of other gases such as N2, H2, H2S, Ar, 

or CO [6]. In 2009, European primary energy production from biogas rose to 8.3 million 

tons of oil equivalents (Mtoe) with a yearly increase of more than 4.3% [7].  

Nowadays, one of the most important uses of biogas is the production of heat and 

electricity from its direct combustion in co-generation plants. An interesting alternative 

consists on its direct valorisation by means of reacting the main components of the 

biogas composition, i.e. CH4 and CO2 -the so-called dry reforming of methane- to 

produce a syn-gas that can be further processed to produce chemicals, liquid fuels, or 

hydrogen. In the latter case, due to the renewable character of biogas, the process can be 

classified as CO2 neutral hydrogen production. However, one of the most important 

challenges that practical implementation of dry reforming has to address is the 
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deactivation of the catalysts due to carbon formation  [8]. This issue is even of more 

significance for the case of biogas mixtures, since the higher CH4/CO2 ratio eventually 

provokes larger amount of carbon depositions that rapidly deactivate the catalysts. To 

avoid carbon formation, noble metals ( Pd, Rh, Ir, Pt or Ru) have been studied since the 

carbon formation is greatly inhibited [9]. However, their high cost make them 

unsuitable for large scale applications and therefore, researchers attention is mainly 

focused on catalyst based on transition metals such as Ni, Co and Fe [10-12]. In the case 

of nickel based catalysts, the minimization of carbon deposits is achieved either by 

using different supports such as Al2O3, CaO, La2O3 or SiO2 [13-15], or doping with 

other elements, such as Mn, K, Sn, Ca [13] or rare earth mixtures [16]. 

A different approach to overcome the deactivation problems that arose from the 

carbon formation in reforming of biogas-like mixtures can be carried out attending to 

the mechanism of the carbon formation itself. The formation of carbon over metal based 

catalysts in form of tubular nanostructures by the so-called catalytic decomposition of 

methane (CDM) has been widely studied [17, 18] and the mechanism by which methane 

is decomposed and carbon appear as long filament is well understood. The mechanism 

of filamentous carbon formation from methane decomposition over nickel based 

catalysts is composed of the following elementary steps [19]: (i) CH4 chemisorption on 

the leading face of a catalyst particle through progressive breaking of the four C–H 

bonds, (ii) aggregation of chemisorbed atomic hydrogen into molecules and further 

emission into gas phase, (iii) diffusion of atomic carbon through catalyst bulk from the 

leading face to the trailing face being the driving force the pronounced gradient of 

carbon concentration existing between these faces and finally, (iv) carbon nucleation in 

the catalyst trailing face to the formation of carbon nanofibers. Catalyst deactivation 

occurs depending on the relative rates of the different elemental step rates involved in 
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the process: thus, if methane decomposition rate and thereafter carbon formation rate, 

are higher than the rate of carbon diffusion through the nickel bulk, then carbon is 

accumulated onto the leading face of the nickel particle and it finally ends covered by 

graphitic layers which hinder the methane diffusion to the nickel active sites, leading to 

catalyst particle deactivation. On the contrary, if carbon formation rate is lower than the 

carbon diffusion rate, then carbon nanofibers may growth without catalyst deactivation. 

The achievement of this equilibrium between the different reaction rates involved in the 

mechanism pathway in which carbon deposition occurs as nanofiber without catalyst 

deactivation has been proved experimentally using Co-based catalysts in the methane 

decomposition reaction [20]. Accordingly, in a previous work we showed that co-

feeding CO2 inhibited significantly nickel particle encapsulation when compared to 

methane decomposition reaction. This phenomenon was attributed to the changes in the 

relative rates of the aforementioned processes, by reducing the carbon formation rate 

because of the event of the Boudouard reaction, therefore reducing the amount of 

carbon accumulated around the nickel particles [21]. 

Taking this fact into account, we proposed the catalytic decomposition of 

CH4:CO2 mixtures similar to those found in the biogas composition –from now on 

called Catalytic Decomposition of Biogas (CDB) [21]- for the production of a syn-gas 

and a solid carbon product in form of high valuable carbon nanostructures avoiding 

catalyst deactivation. It is interesting noting that these carbonaceous structures have 

been shown to posses multiple applications such as graphite precursors to be used as 

anodes in ion lithium batteries [22], catalyst supports [23] or polymer additives [24], 

among many others. 
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In an effort to expand our previous work on the CDB, we present a parametric 

study carried out in a fixed bed reactor using a Ni/Al2O3 based catalyst to determine the 

influence of some operating conditions (temperature, space velocity and CH4:CO2

ratios) on the biogas conversion and catalyst deactivation. Finally, the characteristics of 

the nanostructured carbonaceous material produced, as a function of the operating 

conditions, are determined from a variety of analysis techniques. 
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2. Experimental 

2.1. Catalysts preparation  

A Ni based catalyst using Al2O3 as support with a Ni:Al molar ratio of 2:1 

previously tested in CDM [25] [26] and CDB [21] - denoted as Ni/Al2O3- was prepared 

by fusion method previously described in [27]: briefly, nitric salt of nickel and 

aluminium were fused, followed by the decomposition of the mixtures at 350ºC for 1h 

and calcination at 450ºC for 8h. The powder samples were ground and sieved to obtain 

a particle size fraction between 100 and 200 µm. The nickel domain size of the calcined 

fresh catalyst was 19 nm while after the reduction pre-treatment under a H2 flow was 31 

nm [26].  

2.2. Experimental procedure 

Catalytic experiments were carried out in a fixed-bed quartz reactor, 15 mm i.d, 

750 mm height, heated by an electric furnace. Before each activity test, the catalyst was 

reduced with an H2 flow at 550ºC for 1h. Three parameters were considered along the 

study of the CDB: temperature, WHSV (Weight Hourly Space Velocity, defined here as 

the total flow rate at normal conditions per gram of catalyst initially loaded) and 

CH4:CO2 ratio. To determine the effect of the temperature, three different conditions 

were studied, namely 600, 650 and 700ºC. For all cases, a flow rate of 100 mLN·min-1

was used and the mass of catalyst loaded in the reactor was modified accordingly (0.2, 

0.1 and 0.05 grams, respectively) to obtain a specific WHSV (30, 60 and 120 LN·gcat
-1·h-

1). CDB experiments were carried out with a gas mixture of CH4 and CO2 with different 

CH4:CO2 ratio (1:1, 1.5:1 and 2.33:1). Outlet gas samples were analysed by means of 
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gas chromatography in a HP 5890 series II equipped with two packed columns 

(Molecular Sieve and Porapack) and a TCD detector. 

2.3. Characterization methods 

The textural properties of the samples after reaction were measured by N2

adsorption at 77 K in a Micromeritics ASAP2020 apparatus. The specific surface areas 

and pore volumes were calculated by applying the BET method to the respective N2

adsorption isotherms. X-Ray Diffraction (XRD) patterns were acquired in a Brucker 

AXS D8 Advance Series 2 diffractometer using a Bragg-Brentano �–� configuration, 

Ni-filtered Cu K� radiation and a secondary graphite monochromator. The angle range 

scanned was 3–80º using a counting step of 0.05º and a counting time per step of 3s. 

The powder XRD patterns were further processed using the accompanying 

DIFRACplus EVA v8.0 software. Raman spectra of the carbonaceous materials were 

obtained with a Horiba Jobin Yvon HR800 UV microspectrometer using the green line 

of an argon laser (�=532 nm) as an excitation source. Extended scans from 1200 to 1800 

cm−1 were performed to obtain the first-order Raman spectra of the materials. Samples 

obtained after CDB experiments were characterized by Transmission Electron 

Microscopy (TEM) in a JEOL 2010.

3. Results 

3.1. Parametric study 

3.1.1 Influence of the reaction temperature 

In a previous work [21], a thermodynamic study was carried out with a gas 

mixture mimicking the biogas concentration. This study allowed us to identify the 

temperature window in which carbon formation is favoured together with high methane 
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and CO2 conversions [21]. Accordingly, in this study the effect of the temperature is 

studied in the range between 600 and 700ºC.  

The effect of the temperature on the CH4 and CO2 conversions at different WHSV 

and a CH4:CO2 ratio of 1:1 is shown in Table 1. Conversions at equilibrium have been 

included in brackets to facilitate the discussion. The H2 concentration on the gas stream 

leaving the reactor, the H2:CO ratio, the methane decomposition rate (expressed as 

milimol of methane reacted per gram of catalyst initially loaded and minute) and the 

amount of carbon deposited after three hours time on stream are also included in Table 

1.  

The effect of the temperature on CH4 and CO2 conversions is clear. As the 

temperature is increased, both CH4 and CO2 conversions increased. Furthermore, when 

temperature is increased, both CH4 and CO2 conversions are closer to equilibrium and 

in the case of the CO2, equilibrium conversions are achieved at 650 and 700ºC (at 30 

and 60 LN·gcat
-1·h-1). Many reactions are involved in the CDB, but the most important 

(reaction 1, 2 and 3) are endothermic and so the process is favoured at higher 

temperatures.  

- Dry reforming: CH4 + CO2 � 2 CO + 2 H2;   (∆Hº=247 kJ·mol-1) (1)

- Methane decomposition: CH4 � C + 2 H2;   (∆Hº= 75 kJ·mol-1) (2)

- Reverse Boudouard reaction: C + CO2 � 2 CO;   (∆Hº= 171 kJ·mol-1) (3) 

- Steam reforming: CH4 + H2O � 3 H2 + CO;   (∆Hº= 206 kJ·mol-1) (4)

- Reverse Water Gas Shift: CO2 + H2 � CO + H2O;  (∆Hº= 42 kJ·mol-1) (5)

- Carbon gasification: H2O + C � CO + H2;   (∆Hº=131 kJ·mol-1 (6)

- Methanation reaction: CO2 + 4 H2 � CH4 + 2 H2O;  (∆Hº= -165 kJ·mol-1) (7)

H2 and CO concentration are related with CH4 and CO2 conversions. H2 formation 

depends strongly on methane decomposition reaction (reaction 2). As the temperature is 
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increased, CH4 decomposition reaction is favoured and consequently, the H2 generation. 

CO formation presents the same behaviour as H2, but in CO case the reaction involved 

is the reverse Boudouard reaction (reaction 3). As the temperature is increased (650 and 

700ºC), an increment in the CH4 and CO2 conversions is observed and therefore, the H2

and CO concentrations are higher than at 600ºC. It is noted, that for the temperature 

range studied the CO concentration is higher than the H2 concentration, and as a result 

the H2:CO ratio is lower than one, excepting at 600ºC and 30 LN·gcat
-1·h-1. This results 

agree with a study carry out by Bradford and Vannice [28], which revealed that the 

apparent activation energy barrier for H2 formation is higher than CO one. It can also be 

observed in Table 1, that H2:CO ratio values are closer to the unity. This ratio permits to 

employ the syn-gas produced in the Fischer-Tropsch process. Usually, a H2:CO ratio of 

two is necessary for this application and when ratios below this value are used a water 

gas shift unit is required. However, when Fe catalysts are used, the enhancement of the 

H2:CO ratio could take place in the Fischer-Tropsch reactor due to its high activity in 

the WGS reaction and so an extra unit can be avoided [29]. 

According to kinetics, an increase of the reaction rate coefficient is expected when 

temperature is increased. Thus the higher the temperature is, the higher the CH4

decomposition rate becomes as it is observed in Table 1 for the range of temperature 

studied.  

Carbon generation depends strongly on temperature. On the one hand and 

according to thermodynamics, the amount of carbon deposited decreases when 

temperature is increased in the range between 600 and 700ºC for a CH4:CO2 ratio of 1:1 

[30, 31]. Reactions 2, 3 and 6 are all of them favoured at higher temperatures. In the 

reaction 2, carbon is a product, while in reaction 3 and 6, it acts as a reactant. Therefore, 

carbon behaviour with temperature is not obvious. Haghighi et al. [32] presented the 
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standard Gibbs free energy changes of reactions involved in dry reforming of CH4 as a 

function of temperature. At 600ºC and according to Gibbs free energy values, the three 

reactions (reaction 2, 3 and 6) are favoured in order to produce carbon. At 700ºC the 

trend is reversed and only reaction 2 is favoured in order to produce carbon while 

reaction 3 and 6 are favoured in the sense of consuming carbon, thus explaining that 

carbon formation is thermodynamically favoured at lower temperatures. 

On the other hand and attending to kinetics, carbon generation is favoured at 

higher temperatures due to the enhancement of the CH4 decomposition reaction. In 

Table 1, experimental values of the carbon deposited per gram of catalyst loaded 

(gC/gcat) are shown. It is observed that at 700ºC the amount of carbon deposited is lower 

than at 600ºC for all the space velocities studied. However, at 650ºC, the amount of 

carbon obtained is higher than at 600ºC. At this point and since carbon deposition 

values are compared after three hours time on stream, a third aspect, namely 

deactivation phenomenon, has to be taken into account. At 600ºC, carbon formation is 

more favoured thermodynamically that at 650ºC, but kinetically, carbon generation is 

favoured at higher temperatures. At 700ºC, deactivation phenomenon start to be 

significant, as reflected by the double asterisk located above the values and after a 

certain time on stream, CH4 conversion decreases and therefore carbon formation is 

slightly lower. 

As mentioned previously, carbon formation encapsulates catalyst particles causing 

deactivation. However, depending on the operating conditions it is possible to maintain 

catalyst stability as it is shown in Figure 1. CH4 and CO2 conversions are represented as 

a function of the temperature and the time on stream for a CH4:CO2 ratio of 1:1 and 60 

LN·gcat
-1·h-1. It is observed that CH4 and CO2 conversions remain constant after 180 

minutes and at 700ºC, both CH4 and CO2 conversions exceeding 70%. 
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3.1.2 Influence of space velocity 

As occurred with the temperature in the previous section, the effect of the WHSV 

on the CH4 and CO2 conversions, the H2 concentration on the gas stream leaving the 

reactor, the H2:CO ratio, the methane decomposition rate and the amount of carbon 

deposited after three hours time on stream is shown in Table 1.  

As expected, the lower the WHSV, the higher the conversions achieved. When a 

high WHSV is selected, the contact time between reactant gases and the catalyst is 

reduced and therefore CH4 and CO2 conversions diminish. This behaviour is also 

observed in Figure 2, where the evolution of the CH4 and CO2 conversions with time is 

shown for tests carried out at 650ºC with a molar ratio CH4:CO2 equal to 1:1. 

Significant differences are observed when space velocity is reduced from 120 to 60 

LN·gcat
-1·h-1. This differences are smaller when space velocity is reduced from 60 to 30 

LN·gcat
-1·h-1 and in some cases, for example at 650 and 700ºC, inexistent. 

The effect of the WHSV on the ratio H2:CO could be found in Table 1. It is 

observed that an increase in the WHSV provokes a decrease on the H2:CO ratio, except 

for the tests performed at 600�C in which this trend was not observed . It is reported 

[33] [34], that high WHSV favoured the reverse water gas shift reaction (CO2 + H2 �

CO + H2O) and thus diminishes the H2:CO ratio. Increasing WHSV provokes a 

decrease on the CH4 and CO2 conversions as explained before. As a result, more CO2 is 

available to react with H2 in the reverse water gas shift reaction, diminishing the H2

concentration and increasing the presence of CO. 

Another aspect related with WHSV is the deactivation of the catalyst. No 

deactivation is observed at 30 or 60 LN·gcat
-1·h-1, whereas at 120 LN·gcat

-1·h-1, a decrease 

in CH4 conversion after 1 hour time on stream (Figure 2) reveals that the catalyst is 
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being deactivated progressively. The same behaviour is observed for CO2 conversion. 

As mentioned in the Introduction section, deactivation phenomenon depends on the 

relative rates of the different elemental step rates involved in the process. For a given 

temperature, carbon diffusion rate through the nickel bulk is constant and it does not 

depend on the WHSV. However, as the WHSV is increased, CH4 decomposition rate 

(mmol·gcat
-1·h-1) and thereafter carbon formation rate are increased. At 30 or 60 LN·gcat

-

1·h-1 no catalyst deactivation is observed (Figure 2) and therefore CH4 decomposition 

rates are lower than carbon diffusion rates. But at 120 LN·gcat
-1·h-1, a slight deactivation 

is observed (Figure 2) and thus CH4 decomposition rate is expected to be higher than 

carbon diffusion rate. 

3.1.3 Influence of the composition 

Since this study is aimed at the hydrogen production from biogas, and since CH4

and CO2 fractions in biogas are variables, it is necessary to determine the influence of 

the composition of biogas in the most important parameters. Table 2 shows the effect of 

the composition on CH4 and CO2 conversions, H2 concentration, H2:CO ratio, CH4

decomposition rate and the amount of carbon deposited after three hours time on stream. 

The effect of the composition is studied in a range representative of biogas. CH4:CO2

ratios equal to 1:1, 1.5:1 and 2.33:1 are chosen to carry out this study. Figure 3 shows 

the CH4 conversion as a function of the composition and the time on stream for two 

different temperatures (600 and 700ºC) and fixing the WHSV (60 LN·gcat
-1·h-1). At 

700ºC, it is observed that the higher the value of CH4:CO2 ratio is, the lower the CH4

conversion becomes. The higher the CH4:CO2 ratio is, the higher the CH4 concentration 

in the feed is. Consequently, the quantity of CH4 that does not react is greater. The same 

behaviour is observed at 600ºC. 
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Another variable which is influence by the feed composition is the H2

concentration on the gas stream leaving the reactor. In Table 2 it is observed that the H2

concentration increases with the CH4:CO2 ratio even if the CH4 conversion decreases. 

Moreover, CH4:CO2 ratio influence on the catalyst deactivation rate. At 700ºC, 

CH4 conversion for a CH4:CO2 ratio of 1:1 remains constant at 73% after three hours on 

stream (Figure 3). As CH4:CO2 ratio is increased (CH4:CO2 equal to 1.5:1 and 2.33:1), 

more quantity of CH4 is available to react and as a result, carbon formation due to 

methane decomposition reaction is favoured, causing an encapsulation of the metallic 

particles and a progressive deactivation of the catalyst. The greater the amount of CH4 is 

fed, the more unstable behaviour of the catalyst results and the faster the CH4

conversion decreases. As it is shown in Table 2, when a CH4:CO2 ratio of 1:1 is fed into 

the reactor at 60 LN·gcat
-1·h-1, no clear deactivation is observed in the range of 

temperature studied. However, when a ratio of 1.5:1 is selected, deactivation 

phenomenon is clearly observed at 700ºC. Finally, if the ratio is increased until 2.33:1, 

deactivation is also observed at 650ºC. 

It is known that high CH4:CO2 ratios (1.5:1 and 2.33:1) favour carbon formation 

and thus the deactivation of the catalyst is dramatically promoted. However, it is 

possible to obtain constant CH4 and CO2 conversions by varying WHSV and/or 

temperature. Diminishing temperature 100ºC (from 700 to 600ºC), a stable catalytic 

behaviour is achieved for mixtures with a CH4:CO2 ratio of 1.5:1 and 2.33:1 and at 60 

LN·gcat
-1·h-1. After three hours on stream, CH4 conversion at 600ºC for a CH4:CO2 ratio 

of 2.33:1 remains constant over time and in addition, is higher than at 700ºC (35% and 

25% respectively) as it is seen in Figure 3. Again, this behaviour is related with CH4

decomposition rate. When deactivation is observed, CH4 decomposition rate is higher 
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than carbon diffusion ones. To reverse this behaviour, temperature could be reduced 

50ºC for CH4:CO2 ratio of 1.5:1 and 100ºC for a ratio of 2.33:1.  

As shown throughout this section, CDB can be carried out avoiding catalyst 

deactivation by modifying the operation conditions as a function of the feed 

composition. Since biogas composition cannot be changed without performing a 

separation step, temperature and WHSV are the most important operation conditions 

that can be adjust to prevent catalyst deactivation. In Table 3, the most important 

parameters of the CDB (CH4 conversion, %H2, H2:CO ratio and gC/gcat) are shown at 

the optimum operation conditions. The criteria selected to determine the optimum 

operation conditions for the different CH4:CO2 ratio studied were: no catalyst 

deactivation should be observed and the higher CH4 decomposition rate should be 

reached. It is observed that CH4 conversion decreases when the CH4:CO2 ratio is 

increased, and for ratios of 1.5:1 and 2.33:1 conversions are far away from equilibrium. 

H2:CO ratios obtained for all the feed composition studied allows to use the syn-gas 

produced in the Fischer-Tropsch process. At the same time, nanostructured 

carbonaceous material with a high added value is obtained and the amount deposited 

increases with the CH4:CO2 ratio. 

3.2. Characterization of the carbon nanofibers 

3.2.1 Structural and textural parameters 

Samples obtained after CDB (used catalyst + deposited carbon) presented a 

graphitic structure as evidenced by the presence of an intense symmetric peak (002) at 

approximately 26º (XRD patterns not shown). Ni was also observed whereas no 

presence of NiO was detected, showing that the active phase was completely reduced 

prior to CDB tests. Crystal domains size (Lc), interlayer spacing (d002), catalyst particle 
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diameter after reaction (dp), BET surface area (SBET) and ID/IG Raman ratio of the 

carbonaceous samples are shown in Table 4. 

Carbons deposited on the catalyst after CDB show a significant degree of 

structural order as reveal the interlayer spacing (d002) of the analyzed samples. Values in 

the range of 0.3383-0.3404 nm are obtained. According to Franklin’s classification, this 

range corresponds to a turbostratic carbon structure [35]. Turbostratic carbon is 

generally regarded as a variant of hexagonal high ordered graphite with higher d002

values (d002, turbostratic > d002, graphite), low values of Lc and La (crystal domain sizes) and 

where graphite crystallites have an essentially random orientation. Despite the fact that 

Lc does not vary considerably, an increase in the Lc is observed when temperature is 

increased for all the CH4:CO2 ratios analyzed. Samples present values between 5.42 and 

5.75 nm. In the case of the d002 is not possible to determine a relationship between the 

operation conditions and the graphitization degree, however all the values are close to 

the graphite interlayer spacing (d002=0,3354 nm), in a narrow range and differences are 

not significant. 

Catalyst particle diameter (dp) was 31 nm before reaction while for spent 

catalyst was in the range between 34.5-42.3 nm. An increased in the diameter is 

appreciated. This effect could be explained by the fact that the temperature reached 

during the reaction (600-700ºC) is higher than in the reduction period (550ºC), inducing 

a regrouping of the catalyst clusters. 

The specific surface area is associated with the presence of several types of 

mesopores that are located in both the nanofiber interior along the axis and the spaces 

between the filaments in those areas of granules with varying picking density [36]. SBET

samples are shown in Table 4. A decrease is observed when temperature is increased 

regardless of the CH4:CO2 ratio fed. At higher temperatures, carbon nanofibers (CNFs) 
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acquire a greater graphitic character and consequently a more ordered surface, thus 

explaining the observed trend. Nevertheless, values are in a narrow range (94-105 m2/g) 

and differences are not very large. 

Finally, samples were characterized by Raman spectroscopy, after which two 

well resolved bands were observed: The G (at ~ 1350 nm) and the D (at~ 1580 nm) 

band. The G band is associated with the in-plane carbon-carbon stretching vibrations of 

graphite layers, whereas D band is related to graphite imperfections. The intensity ratios 

of these two bands (ID/IG) are exposed in Table 4.  

As expected, an increase in the reaction temperature enhances the deposition of 

more ordered CNFs, as derived from the increase in the crystal domain size (Lc) as well 

in the reduction of both the SBET and the ID/IG ratio.  

3.2.2 TEM study 

Based on the results shown in Table 4, a slight influence of the temperature in 

the CNFs properties is observed but no influence of the CH4:CO2 ratio or the WHSV are 

clearly detected. Nevertheless, apparent differences among samples are observed from 

TEM micrographs. Even though WHSV influence is still no significant, the effect of the 

temperature or the CH4:CO2 ratio is clear.  

Figure 4 shows some representative micrographs obtained of the samples after 

CDB. In Figure 4, temperature effect is appreciated. At 600ºC (Figure 4A and 4B) 

fishbone like nanofibers, which are characterized by the inclination of the graphene 

layers with respect to the fibre axis, are formed. On the other hand, a mixture of 

fishbone and ribbon like nanofibers are formed a 700ºC (Figure 4C). Ribbon structures 

are straight, unrolled graphene layers that are parallel to the fibril axis with non-

cylindrical cross-sections [37]. These carbonaceous structures bear a striking 
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resemblance with multi-walled carbon nanotubes composed by concentric graphene 

sheet rolled up into a cylinder with increasing diameter and coaxially disposed, being 

not possible to differentiate them from the TEM study [37]. However, since the 

conditions used to obtain the carbonaceous structures shown in Figure 4 differ only in 

the reaction temperature (600 vs. 700ºC), and taking into account that the TEM picture 

shown in Figure 4A and 4B is commonly considered as a fishbone (also called 

herringbone) CNF, it is likely that the carbon deposited at 700ºC may have a similar 

graphene arrangement to the one obtained at 600ºC. Thus, for the case of the fibre 

shown in Figure 4C, it seems more plausible the adoption of ribbon like arrangement, so 

that the main difference as respect to the fibres observed at 600ºC would be the lack of 

graphene inclination with respect the fibre axis, rather than having a completely new 

rearrangement in form of concentric graphene sheets rolled up. 

The structure of the CNF is related to the catalyst particle shape. At 600ºC (Figure 

4B), the trailing face of the particle presents an arrow shape resulting in fishbone 

nanofibers whose graphene layers acquire the inclination of the catalyst particle. At 

700ºC (Figure 4D), catalyst particles present an elongated, poorly defined shape. As a 

result, both structures could be formed depending on the trailing face of each catalyst 

particle. 

CNFs hollow core also depends on the temperature. At 600ºC, due to the well 

defined shape of the catalyst, no hollow core is appreciated (Figure 4B), resulting in 

solid core fishbone nanofibers. On the other hand, a clear hollow core is observed in the 

CNFs obtained at 700ºC (Figure 4C). The hollow core width is related to the width of 

the trailing face of the catalyst particle and it may represent a third of the total width of 

the nanofiber. 
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Another important issue which is observed in TEM micrographs is catalyst 

covering/uncovering by encapsulating graphitic layers. This phenomenon depends on 

both temperature and CH4 feed concentration. While at 600ºC no covered catalyst 

particles are observed (Figure 4B), at 700ºC encapsulated catalyst particles are noted 

(Figure 4D, Figure 5A and B). The degree of covering depends on the CH4:CO2 ratio.  

The higher the CH4 feed concentration is, the greater the number of encapsulated 

catalyst particles is.  This is in good agreement with the results presented in the 

parametric study in which a decrease in both CH4 and CO2 conversion was observed 

with time. This decreasing effect was more pronounced when a high CH4 concentration 

was fed. This behaviour is related to the net rate of carbon deposition on the leading 

face of the catalyst particle. The higher the temperature or the CH4 concentration are, 

the greater the rate of carbon formation is and consequently the encapsulating degree.  
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4. Conclusions 

Results showed in this work evidenced that catalytic decomposition of biogas 

(CH4/CO2 mixtures) can be carried out with a Ni/Al2O3 catalyst obtaining 

simultaneously a syn-gas with high H2 content together with carbonaceous 

nanostructured materials with high added value.  

The parametric study revealed that temperature, WHSV and CH4:CO2 feed ratio 

influence directly in CH4 and CO2 conversion, H2:CO ratio and carbon generation 

(gC/gcat).  

A temperature increase provokes CH4 and CO2 conversions increase. 

Furthermore, thermodynamics predicts a decrease of the gC/gcat with temperature. 

Nevertheless, a valley is observed between 600 and 700ºC. Two opposite effects take 

place: kinetics and thermodynamics, but a third aspect should be taken into account, 

catalyst deactivation. 

An increase of the WHSV results in a decrease of both CH4 and CO2 conversions 

and the H2:CO ratio. By increasing the WHSV, the active sites number is decreased and 

consequently catalytic adsorption reactions are impaired. On the other hand, high 

WHSV favoured the RWGS reaction and thus diminishes the H2:CO ratio. 

It was observed that catalytic deactivation was related with carbon formation 

which encapsulates leading face catalyst particle. An increase in the CH4:CO2 ratio 

increases carbon formation as the CH4 decomposition reaction is favoured. To avoid 

catalyst deactivation, temperature could be reduced. By diminishing temperature 100ºC, 

a stable catalytic behaviour is achieved for all the CH4:CO2 ratio analyzed. Moreover, 
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after three hours on stream, CH4 conversion is higher at 600ºC (35%) than at 700ºC 

(25%) for a CH4:CO2 ratio of 2.33:1. 

Carbon structure depends on temperature. At 600ºC, fishbone like nanofibers with 

no hollow core are obtained while at 700ºC a mixture of fishbone and ribbon like 

nanofibers with a clear hollow core are formed.  
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Figure Captions 

Figure 1. CH4 (a) and CO2 (b) conversions as a function of the temperature and the time 

on stream. WHSV= 60 LN·gcat
-1·h-1 and CH4:CO2 ratio of 1:1. 

Figure 2. CH4 (a) and CO2 (b) conversions as a function of the WHSV and the time on 

stream. T= 650ºC and CH4:CO2 ratio of 1:1. 

Figure 3. CH4 conversion as a function of the time on stream at 600ºC (open symbols) 

and 700ºC (closed symbols) for different compositions: 1:1 (red line), 1.5:1 (blue line) 

and 2.33:1 (black line). WHSV = 60 LN·gcat
-1·h-1. 

Figure 4. TEM micrographs of the carbon nanostructures formed by CDB. “A” and 

“B”: 600ºC, CH4:CO2=1:1 and 120 LN·gcat
-1·h-1; “C”: 700ºC, CH4:CO2=1.5:1 and 60 

LN·gcat
-1·h-1; “D”: 700ºC, CH4:CO2=1:1 and 120 LN·gcat

-1·h-1. 

Figure 5. TEM micrographs of the carbon nanostructures formed by CDB. “A”: 700ºC, 

CH4:CO2=1.5:1 and 60 LN·gcat
-1·h-1; “B”: 700ºC, CH4:CO2=2.33:1 and 60 LN·gcat

-1·h-1. 

  



Table 1. Effect of the temperature and the space velocity (LN·gcat
-1·h-1) on CH4 and CO2

conversion (conversions at equilibrium have been included in brackets), %H2, H2:CO 

ratio, CH4 decomposition rate and the amount of carbon deposited per gram of catalyst 

initially loaded (gC/gcat) at the early stage of the reaction (i.e. 15 minutes). CH4:CO2

ratio = 1:1 

CDB with CH4:CO2 ratio = 1:1

Temp.
(ºC)

WHSV 
(LN·gcat

-1·h-1)
CH4

conv.(%)
CO2

conv.(%)
%H2

H2:CO 
ratio

CH4

decomposition rate 
(mmol·gcat

-1·h-1)
gC/gcat

*

600ºC

30 44

[82]

46

[47]

26 0.95 3.59 5.2

60 44 42 26 0.91 9.72 8.5

120 34 39 24 0.97 15.24** 10.4

650ºC

30 59

[87]

55

[55]

35 0.97 6.60 5.5

60 59 55 34 0.94 13.09 9.0

120 51 52 31 0.87 22.77** 10.4

700ºC

30 73

[91]

67

[67]

42 1.04 8.18 4.6

60 73 67 40 0.95 16.31 7.0

120 69 62 35 0.79 30.88** 6.6
*: Carbon deposition after 3 hours time on stream.
**: Deactivation phenomenon is clearly observed.



Table 2. Effect of the feed composition on CH4 and CO2 conversion, %H2, H2:CO ratio, 

CH4 decomposition rate and the amount of carbon deposited per gram of catalyst 

initially loaded (gC/gcat) at the early stage of the reaction (i.e. 15 minutes).  

WHSV = 60 LN·gcat
-1

·h
-1

Feed
composition

Temp.
(ºC)

CH4 conv.
(%)

CO2 conv.
(%)

%H2
H2:CO 
ratio

CH4 rate
(mmol·gcat

-1·h-1)
gC/gcat

*

CH4:CO2= 1:1

600ºC 44 [82] 42 [47] 26 0.91 9.72 8.5

650ºC 59 [87] 55 [55] 34 0.94 13.09 9.0

700ºC 73 [91] 67 [67] 40 0.95 16.31 7.0

CH4:CO2= 1.5:1

600ºC 40 [78] 45 [55] 30 1.26 10.64 12.2

650ºC 48 [84] 57 [61] 34 1.09 12.74 11.9

700ºC 65 [89] 72 [72] 46 1.32 17.30** 9.0

CH4:CO2= 2.33:1

600ºC 36 [74] 51 [63] 33 1.68 11.40 14.9

650ºC 47 [81] 66 [69] 43 1.73 14.69** 17.4

700ºC 58 [87] 77 [78] 49 1.70 18.17** 12.6
*: Carbon deposition after 3 hours time on stream.
**: Deactivation phenomenon is clearly observed.



Table 3. Optimum operation conditions at CH4:CO2 ratios studied for the DCB.

Feed composition
Temp
(ºC) 

WHSV
(LN·gcat

-1·h-1)
CH4 conv.

(%)
%H2 H2:CO ratio gC/gcat

*

CH4:CO2= 1:1 700ºC 60 73 40 0.95 7.0

CH4:CO2= 1.5:1 650ºC 60 48 34 1.09 11.9

CH4:CO2= 2.33:1 600ºC 60 36 33 1.68 14.9
*: After 3 hours on stream



Table 4. Crystal domain size (LC), interlayer spacing (d002), catalyst particle diameter 

after reaction (dp), BET surface area (SBET) of the materials (used catalyst + deposited 

carbon) and Raman (ID/IG) ratio of the carbons deposited on the catalyst after CDB. 

WHSV of 120 LN·gcat
-1·h-1 (CH4:CO2 ratio 1:1) and 60 LN·gcat

-1·h-1 (1.5:1 and 2.33:1).  

Feed composition
Temp. 
(ºC) 

LC

(nm) 
d002

(A) 
dp Ni 
(nm) 

SBET

(m2/g) 
ID/IG

CH4:CO2=1:1 
600ºC 5.54 0.3393 42 105 1.25 
700ºC 5.75 0.3387 38 94 1.11 

CH4:CO2=1.5:1 
600ºC 5.48 0.3389 40 97 1.23 
700ºC 5.72 0.3404 38 95 0.91 

CH4:CO2=2.33:1 
600ºC 5.54 0.3383 37 100 1.27 

700ºC 5.67 0.3389 34 93 1.26 
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Figure 1. CH4 (a) and CO2 (b) conversions as a function of the temperature and the time on 

stream. WHSV= 60 LN·gcat
-1·h-1 and CH4:CO2 ratio of 1:1. 
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Figure 2. CH4 (a) and CO2 (b) conversions as a function of the WHSV and the time on stream. 

T= 650ºC and CH4:CO2 ratio of 1:1. 
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Figure 3. CH4 conversion as a function of the time on stream at 600ºC (open symbols) and 

700ºC (closed symbols) for different compositions: 1:1 (red line), 1.5:1 (blue line) and 2.33:1 

(black line). WHSV = 60 LN·gcat
-1·h-1. 



  

Figure 4. TEM micrographs of the carbon nanostructures formed by CDB. “A” and “B”: 600ºC, 

CH4:CO2=1:1 and 120 LN·gcat
-1·h-1; “C”: 700ºC, CH4:CO2=1.5:1 and 60 LN·gcat

-1·h-1; “D”: 

700ºC, CH4:CO2=1:1 and 120 LN·gcat
-1·h-1. 
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Figure 5. TEM micrographs of the carbon nanostructures formed by CDB. “A”: 700ºC, 

CH4:CO2=1.5:1 and 60 LN·gcat
-1·h-1; “B”: 700ºC, CH4:CO2=2.33:1 and 60 LN·gcat

-1·h-1. 
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