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There are no effective antifibrotic therapies for patients with liver diseases. We 

performed an experimental and translational study to investigate whether ghrelin, an 

orexigenic hormone with pleiotropic properties, modulates liver fibrogenesis. 

Recombinant ghrelin was administered to rats with chronic (bile duct ligation) and 

acute (carbon tetrachloride) liver injury. Hepatic gene expression was analyzed by 

microarray analysis and quantitative polymerase chain reaction. The hepatic response 

to chronic injury was also evaluated in wild type and ghrelin-deficient mice. Primary 

human hepatic stellate cells were used to study the effects of ghrelin in vitro. Ghrelin 

hepatic gene expression and serum levels were assessed in patients with chronic liver 

diseases. Ghrelin gene polymorphisms were analyzed in patients with chronic 

hepatitis C. Recombinant ghrelin treatment reduced the fibrogenic response, 

decreased liver injury, myofibroblast accumulation and attenuated the altered gene 

expression profile in bile duct-ligated rats. Moreover, ghrelin reduced the fibrogenic 

properties of hepatic stellate cells. Ghrelin also protected rats from acute liver injury 

and reduced the extent of oxidative stress and inflammation. Ghrelin-deficient mice, 

developed exacerbated hepatic fibrosis and liver damage after chronic injury. In 

patients with chronic liver diseases, ghrelin serum levels decreased in those with 

advanced fibrosis and ghrelin gene hepatic expression correlated with expression of 

fibrogenic genes. In patients with chronic hepatitis C, polymorphisms of the ghrelin 

gene (–994CT and –604GA) influenced the progression of liver fibrosis. Conclusion: 

Ghrelin exerts antifibrotic effects in the liver and may represent a novel antifibrotic 

therapy. 
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 Hepatic fibrosis is the progressive accumulation of extracellular matrix that occurs in most 

types of chronic liver diseases. In patients with advanced fibrosis, liver cirrhosis ultimately 

develops. Currently, the only effective therapy to treat liver fibrosis is to eliminate the 

causative agent (e.g. successful antiviral therapy in patients with chronic hepatitis C). For 

those patients in whom the underlying cause cannot be removed, there are no effective 

antifibrotic therapies. During the last years, research has focused on molecular and cellular 

mechanisms involved in liver fibrosis and many pharmacological interventions have been 

successfully tested in experimental models of liver fibrosis.(1) However, most of the 

information derives from the experimental setting, while translational studies with human 

samples and clinical trials are scarce. In the current study, we used both experimental and 

translational approaches to characterize a new potential antifibrotic substance for patients 

with chronic liver diseases.  

 

 

 Ghrelin is a gut hormone (28-amino-acids) firstly discovered as a potent growth hormone 

secretagogue. Moreover, plays a major role in the regulation of food intake.(2) Recently, 

peripheral effects such as cytoprotection, vasodilatation, regulation of energy balance and 

gastrokinesis have been also attributed to ghrelin.(3) The primary site of ghrelin synthesis is 

the stomach but ghrelin transcripts have been detected in many other organs including the 

liver (e.g. bowel, pancreas, kidneys, lungs, etc).(4) Most of ghrelin actions are mediated by 

Growth Hormone Secretagogue Receptor (GHS-R),(2) which is mainly expressed in the 

pituitary gland but also in other organs, including pancreas, spleen and adrenal gland.(4) 

However, ghrelin probably binds to another yet unknown receptor because cells not 

expressing GHS-R respond to ghrelin stimulus.(5) 

 

 

 Recent data indicate that ghrelin has protective effects in different organs and cell types 

including the pancreas, the heart and the gastrointestinal tract.(6-8) Recombinant ghrelin has 

been successful administered to patients with a variety of disorders such as anorexia,(9) 

caquexia(10) and gastroparesis(11). Moreover, ghrelin reduces muscle wasting and 
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improves functional capacity in elderly patients with congestive heart failure and chronic 

obstructive pulmonary disease.(12, 13) We hypothesize that ghrelin regulates hepatic injury 

and fibrogenesis. To prove this hypothesis, we investigated the effect of recombinant ghrelin 

in different models of acute and chronic liver injury. Moreover, we evaluated whether 

changes in endogenous ghrelin regulate hepatic fibrosis in mice and in patients with chronic 

liver diseases due to hepatitis C virus infection. We provide evidence that recombinant 

ghrelin exerts protective and antifibrotic effects in the injured liver. Our results also suggest 

that endogenous ghrelin plays a role in hepatic fibrogenesis since ghrelin knockout (Ghrl–/–) 

mice are more susceptible to carbon tetrachloride (CCl4) induced liver injury than wild type 

(Ghrl+/+) mice. Moreover, we demonstrate that ghrelin is locally produced in the human liver. 
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Materials and Methods 

Chronic liver injury models in rodents. Male Wistar rats (250 g) were induced to 

chronic liver injury and hepatic fibrosis by prolonged bile duct ligation (BDL), as described 

previously.(14) Either saline, rat recombinant ghrelin (Phoenix Pharmaceuticals; Burlingame, 

CA) or ghrelin receptor agonist (Des-Ala3-GHRP-2) (Bachem; Bubendorf, Switzerland) were 

administered into rats through a subcutaneous osmotic minipump (Alza Corporation; Palo 

Alto, CA) at a rate of 200 µl·h–1 throughout the experiment. Doses were chosen from existing 

data in the literature. Preliminary studies in rats with advanced fibrosis (CCl4 for 8 weeks) 

were performed to assess the tolerability of both ghrelin and (Des-Ala3-GHRP-2). The 

selected doses for the peptides (10 µg·Kg–1·d–1 for recombinant ghrelin and 30 µg·Kg–1·d–1 for 

Des-Ala3-GHRP-2) were well tolerated and did not cause arterial hypotension. Experimental 

groups were as follows (n=12 per group): rats with BDL or sham-operated rats and infused 

with saline, recombinant rat ghrelin or the ghrelin receptor agonist (Des-Ala3-GHRP-2). Ghrl–

/– mice (C57BL/6 background) were obtained from Regeneron Pharmaceuticals (Tarrytown, 

NY). The generation and characterization of these mice has been extensively described 

previously.(15) We used mice aged 8–10 weeks. Because C57BL/6 mice early develop 

biliary infarcts and have a high rate of mortality following bile duct ligation,(16) we used a 

different experimental model to induce chronic liver injury and hepatic fibrosis. Carbon 

tetrachloride (CCl4) (Sigma-Aldrich; St. Louis, MO) was administered intraperitoneally at a 

dose of 1 mL·Kg–1, 12.5% diluted in olive oil (Sigma-Aldrich) twice a week during 4 weeks. 

Control mice were administered olive oil at the same dose. Each group included at least 12 

mice. Rats and mice were housed in temperature and humidity-controlled rooms and kept on 

a 12-h light cycle. Animal procedures were approved by the Ethics Committee of Animal 

Experimentation of the Universitat de Barcelona and were conducted in accordance with the 

Guide for the Care and Use of Laboratory Animals published by the National Institutes of 

Health.  
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   Assessment of hepatic necroinflammatory injury and fibrosis. Paraffin-

embedded liver sections were stained with H&E. Hepatic necroinflammation was estimated 

by quantifying the presence of necrosis, hepatocyte ballooning and/or swelling, inflammatory 

cell infiltration and lipid droplets. The degree of necroinflammatory changes was assessed as 

the percentage of hepatic parenchyma with any of the above described changes: 1, lower 

than 30%; 2, 30–60%; 3, more than 60%. Analyses were blindly performed by an expert 

pathologist (LNZR). To assess liver fibrosis, liver specimens were stained with picrosirius red 

(Gurr-BDH Lab Supplies; Poole, England). The positive area stained with picrosirius red was 

quantified using a morphometric method. Briefly, six images per specimen were obtained 

with an optic microscope (Nikon Corporation; Tokyo, Japan) at magnification of 40x. Images 

were imported to an image-analysis software (AnalySIS, Olympus; Münster, Germany) and 

automatically merged.   

 

   Acute liver injury model in rats. Acute liver injury was induced in male Wistar rats 

(250 g) by a single intraperitoneal injection of CCl4 (Sigma-Aldrich; 1 mL·Kg–1 body weight, 

30% diluted in olive oil). Control rats received the same amount of olive oil. Animals were 

treated with either saline or 20 µg·Kg–1 rat recombinant ghrelin (Phoenix Pharmaceuticals) 

intravenously one hour before CCl4 administration. Rats were divided into three experimental 

groups (n=8 per group): rats receiving saline and olive oil, rats receiving saline and CCl4 and 

rats receiving ghrelin and CCl4. Twenty-four hours after the intraperitoneal injection, animals 

were anesthetized and sacrificed for blood and tissue samples collection. Rats were housed 

in temperature and humidity-controlled rooms and kept on a 12-h light cycle. Animal 

procedures were conducted in compliance with the Guide for the Care and Use of Laboratory 

Animals published by the National Institutes of Health.  

    

  Human samples. For analysis of ghrelin serum levels, blood samples from patients 

with chronic hepatitis C (n=67) and alcoholic hepatitis (n=24) were obtained. Moreover, 

samples from healthy controls (n=24) matched for age, gender and body mass index with 
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patients were collected. Blood samples were obtained after an overnight fasting. Hepatic 

gene expression was assessed in liver specimens obtained by a transjugular approach from 

patients with alcoholic hepatitis (n=37) and by a percutaneous approach in patients with 

chronic hepatitis C (n=45) and in patients with non alcoholic steatohepatitis (n=23). Normal 

liver specimens (n=5) were obtained from fragments of resections of colon metastases 

before the vascular clamping as described previously.(17) For the analysis of the role of 

variations of the ghrelin gene on the progression of liver fibrosis, DNA from patients with 

chronic hepatitis C (n=284) was obtained from peripheral blood. The study protocol 

conformed to the ethical guidelines of the 1975 Declaration of Helsinki and was approved by 

the Ethics Committee of the Hospital Clínic of Barcelona. All patients gave informed consent.  

 

   Data analysis. Data are representative of at least three independent experiments. 

Results are expressed as mean ± SEM. The normality of the data was assessed by the 

Kolmogorov-Smirnov test. Comparisons between groups were performed by Student t-test or 

non parametric Mann-Whitney test depending on the normality of data. Statistical analysis of 

correlations was performed by Spearman rho. P values <0 .05 were considered significant. 

For multiple comparisons, Bonferroni correction was applied to P values, with significance 

set at P<0.001. 

 

Other methods are shown in Supplementary Materials and Methods. 
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Results 

Liver fibrosis is reduced in rats treated with recombinant ghrelin. To investigate 

whether recombinant ghrelin regulates hepatic fibrogenesis following chronic liver injury, a 

model of secondary biliary fibrosis was induced in rats through prolonged ligation of the 

common bile duct. Both bile duct ligated or sham operated rats were continuously infused 

with either saline or recombinant ghrelin through a subcutaneous osmotic pump for 2 weeks. 

Bile duct ligated rats infused with saline showed severe septal hepatic fibrosis with a marked 

disruption of the hepatic architecture (Fig. 1A). Hepatic collagen content was increased over 

7-fold compared to control rats. In contrast, bile duct ligated rats infused with ghrelin had only 

mild collagen deposition without formation of bridging fibrosis. Morphometric analysis 

revealed that ghrelin decreased collagen deposition about 40%. To uncover the mechanisms 

underlying this beneficial effect, we first investigated whether ghrelin modulates the 

accumulation of myofibroblastic fibrogenic cells (smooth muscle α-actin positive cells). 

Myofibroblastic cells markedly accumulated throughout the hepatic parenchyma in bile duct 

ligated rats. Ghrelin treatment reduced the amount of fibrogenic cells by 25% (Fig. 1B). 

Moreover, ghrelin treatment decreased α-SMA protein expression, as assessed by western 

blot (Fig. 1C) and hepatic content of hydroxyproline (Fig. 1D). In addition, ghrelin infusion 

reduced the elevation of serum aspartate aminotransferase levels, a parameter indicative of 

hepatocellular damage, induced by bile duct ligation (Fig. 1E). Because ghrelin stimulates 

guanosin 3’,5’-cyclic monophosphate production in other tissues(18) we next studied whether 

the beneficial effect of ghrelin is associated with increased guanosin 3’,5’-cyclic 

monophosphate hepatic content. We did not find differences between any of the groups (Fig. 

1F). 

 

Recombinant ghrelin prevents changes in hepatic gene expression during liver 

fibrogenesis. To explore the effects induced by ghrelin in the fibrotic liver, we analyzed 

changes in hepatic gene expression by complementary DNA microarray analysis. Bile duct 

ligation stimulated the hepatic expression of 1543 genes and repressed the expression of 
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997 genes compared to sham-operated rats. Ghrelin treatment attenuated changes in the 

expression of 231 genes including collagen-α1(II), plasminogen activator-urokinase receptor, 

matrix metallopeptidase 2 and chemokine receptor 5 (Fig. 2A). A list of all the genes modified 

by ghrelin treatment is shown in Supplementary Table 1. The complete dataset is available at 

the NCBI's Gene Expression Omnibus public database (http://www.ncbi.nlm.nih.gov/geo/), 

accession number GSE13747. Quantitative polymerase chain reaction confirmed the 

changes found in microarray analysis in some selected genes (Fig. 2B). Rat liver samples 

were clusterized depending on gene expression profile. Rats were perfectly classified in the 

different experimental groups. A heatmap of the clustering can be seen in Supplementary 

Fig. 1. 

 

   Increased liver injury and fibrogenesis in Ghrl–/– mice. To investigate the role of 

endogenous ghrelin in liver fibrogenesis, we next analyzed the fibrogenic response in Ghrl–/– 

and Ghrl+/+ mice. Chronic liver injury was induced by intraperitoneal injections of CCl4 twice a 

week for 4 weeks. The extent of liver fibrosis was assessed in both groups of mice. We found 

that ghrelin deficient mice were more susceptible to CCl4-induced liver fibrosis and liver injury 

than wild type mice, as indicated by increased collagen deposition (Fig. 3A and B) and 

increased necroinflammatory score (Fig. 3C). Moreover, Ghrl–/– mice treated with CCl4 

showed a reduced weight gain compared to Ghrl+/+ mice (Fig. 3D). In addition, procollagen-

α2(I) and TIMP1 expression were overexpressed in ghrelin deficient mice treated with CCl4 

compared to wild type littermates (Fig. 3E and 3F).  

 

A GHS-R agonist attenuates liver fibrosis. We first analyzed by polymerase chain 

reaction the expression of GHS-R in human and rat liver samples. We found transcripts of 

GHS-R in both human and rat livers (Fig. 4A and B). Specifically, we detected GHS-R 

expression in human hepatocyes and activated hepatic stellate cells (HSC) but not in 

quiescent HSC (Figure 4B). To investigate whether stimulation of GHS-R attenuates liver 

fibrosis new groups of rats were submitted to BDL or sham operation in the presence or 
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absence of a GHS-R agonist (Des-Ala3-GHRP-2) for two weeks. We found that the degree of 

liver fibrosis was reduced in rats treated with the GHS-R agonist, as indicated by decreased 

collagen deposition (Fig. 4C and D).  

 

Recombinant ghrelin reduces hepatocellular injury in a model of acute liver 

injury in rats. The results in bile duct-ligated rats suggest that ghrelin may attenuate fibrosis 

by exerting a hepatoprotective effect. To prove this hypothesis, we analyzed the effects of 

ghrelin in a model of acute liver injury in rats (single intraperitoneal administration of CCl4). 

Ghrelin or vehicle were administered to rats intravenously one hour before CCl4. Pre-

treatment with ghrelin, but not saline, strongly reduced the hepatocellular injury induced by 

CCl4, as indicated by decreased necroinflammatory score (Fig. 5A) and aspartate 

aminotransferase serum levels (170 and 90 IU/l in CCl4-damaged rats in the absence and the 

presence of ghrelin respectively, P<0.05). This beneficial effect was associated with 

decreased infiltration of inflammatory cells, as assessed by quantification of infiltrating 

leucocytes (CD43-positive cells) in liver sections (P<0.05, Fig. 5B). Because oxidative stress 

mediates CCl4-induced hepatocellular injury, we also explored whether ghrelin reduces this 

pathogenic event by quantifiying 4-hydroxynonenal protein adducts. As shown in Fig. 5C, 

ghrelin attenuated the accumulation of 4-hydroxynonenal in hepatocytes. We next explored 

the effects on hepatocyte cell death by Terminal dUTP Nick End Labeling (TUNEL) analysis. 

Ghrelin diminished the number of TUNEL-positive hepatocytes, indicating that it reduces cell 

apoptosis (Fig. 5D). This effect was associated with decreased activation of nuclear factor 

κB, as assessed by p65 nuclear translocation (Fig. 5E). Moreover, ghrelin treatment 

attenuated the effects of CCl4 on Akt and extracellular signal-regulated kinase ERK 

phosphorylation, two intracellular pathways involved in hepatocyte survival and proliferation 

(Fig. 5F). All together, these results indicate that ghrelin exerts hepatoprotective effects. 
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Ghrelin modulates fibrogenic, but not proinflammatory, properties of hepatic 

stellate cells. To further elucidate possible mechanisms of the protective effects of ghrelin in 

the liver, we next investigated whether ghrelin modulates the fibrogenic actions of HSC, the 

main fibrogenic cell type in the injured liver.(1) Stimulation of primary cultured HSC with 

angiotensin II (0.1 µM), a well-known fibrogenic agonist, resulted in a marked increase in 

intracellular calcium concentration ([Ca2+]i). Pre-incubation with ghrelin (0.1 µM) for 10 

minutes attenuated angiotensin-II induced [Ca2+]i increase (Fig. 6A). Ghrelin (0.1 µM) also 

reduced by 40% the expression of collagen-α1(I) and transforming growth factor-β1 in 

unstimulated HSC (Fig. 6B). We then investigated whether ghrelin inhibits the pro-

inflammatory actions of HSC. Ghrelin did not modulate the activation of nuclear factor κB or 

the release of interleukin-8 (Fig. 6C and D respectively). These results indicate that ghrelin 

reduces the fibrogenic but not the inflammatory properties of cultured HSC.  

 

Serum ghrelin levels and hepatic ghrelin expression in patients with chronic 

liver diseases. To analyze the potential role of ghrelin in chronic human liver diseases, 

serum ghrelin concentration was measured in control subjects (n=24) and in patients with 

liver fibrosis including alcoholic hepatitis (n=24) and chronic hepatitis C (n=67). Serum 

ghrelin levels were significantly lower in both patients with alcoholic hepatitis and chronic 

hepatitis C compared to control subjects, after adjusting by age, gender and body mass 

index (Fig. 7A). Interestingly, ghrelin serum levels were lower in patients with advanced 

fibrosis (Metavir score 3–4) than in those with mild fibrosis (Metavir score 0–2) (Fig. 7B). 

Next, we assessed ghrelin gene (GHRL) expression in normal (n=5) and diseased human 

livers (37 patients with alcoholic hepatitis, 45 patients with chronic hepatitis C and 23 patients 

with non alcoholic steatohepatitis). Ghrelin transcripts were found in both normal and 

diseased livers. Interestingly, GHRL was clearly overexpressed in livers with non alcoholic 

steatohepatitis compared to the rest of groups (Fig. 7C). Moreover, in the whole series of 

patients with chronic liver diseases, GHRL hepatic expression positively correlated with the 

expression of genes involved in fibrogenesis (Supplementary Table 3) as well with BMI 
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(r=0.675, P < 0.0001). At the cellular level, GHRL transcripts were found in both hepatocytes 

and HSC freshly isolated from human livers as well as in culture-activated human HSC (Fig. 

7D). 

 

Polymorphisms in the ghrelin gene are associated with the degree of fibrosis in 

patients with chronic hepatitis C. Finally, we investigated whether ghrelin gene 

polymorphisms are associated with the progression of liver fibrosis in patients with chronic 

liver diseases. For this purpose, we analyzed six single nucleotide polymorphisms on the 

ghrelin gene (Supplementary Fig. 2A): –994CT, –604GA, –501AC, Arg51Gln, Met72Leu and 

Leu90Gln (GeneBank numbers can be found in Supplementary Materials and Methods) in 

284 patients with HCV-induced liver disease. One single nucleotide polymorphisms in the 

promoter (–994CT) was differently represented between women with advanced fibrosis (F3-

F4) and those with mild fibrosis (F0-F2). Moreover, we found that patients with the haplotype 

–994T and –604A are more susceptible to severe liver fibrosis after adjusting by age and 

gender (Table 1). These results suggest that variations in GHRL modulate the progression of 

chronic hepatitis C. To investigate the functionality of these polymorphisms, we constructed 

plasmids containing the promoter of ghrelin with different haplotypes (wild type and–994CT –

604GA) bound to the luciferase gene. Plasmids were transfected to Huh7 hepatocytes. The 

plasmid with the promoter containing the haplotype associated with an increased risk to 

develop advanced fibrosis was found to be more active than the plasmid containing the wild 

type promoter (Supplementary Fig. 2B). 
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Discussion 

Gut hormones play a major role in food intake and energy homeostasis at different 

levels, from central regulation of appetite to motility of the gastrointestinal tract. They also 

regulate inflammatory and fibrogenic processes in a variety of tissues. Ghrelin is a gut 

hormone that is also produced by extraintestinal tissues and exerts a variety of pleiotropic 

effects in parenchymal cells.(3) We provide extensive evidence that ghrelin exerts antifibrotic 

and hepatoprotective effects in the injured liver in rodents. We demonstrate that recombinant 

ghrelin regulates the fibrogenic response of the liver to acute and chronic injury. Moreover, 

endogenously-produced ghrelin also regulate fibrogenesis in mice and humans. The 

hepatoprotective effects of ghrelin confirm previous studies indicating that ghrelin exerts 

protective effects in parenchymal cells and in damaged tissues such as the heart and the 

colon.(6, 19) In the liver, a single study(20) suggests protective effects of ghrelin in a model 

of chronic liver injury. Our study extensively expands this notion by demonstrating a role for 

ghrelin in liver fibrosis. This new effect of ghrelin has potential therapeutic implications, as 

discussed later. 

 

 The main finding of our study is that ghrelin regulates hepatic fibrosis. Although a number 

of studies have suggested that ghrelin has protective effects against cell death,(5, 21) the 

current study expands this effect by demonstrating that ghrelin also prevents scar tissue 

formation in chronically injured tissues. Most importantly, we demonstrate for the first time 

that endogenously produced ghrelin regulates fibrogenesis in the liver. Besides the effects in 

experimental models of liver injury (BDL and CCl4), we used a translational approach to 

study the potential role of ghrelin in samples from patients with chronic liver injury. First, we 

analyzed ghrelin hepatic expression in patients with different liver diseases. We found ghrelin 

expression in both normal and diseased livers. Interestingly, obesity and the presence of non 

alcoholic steatohepatitis were associated with increased hepatic expression of ghrelin. This 

interesting result is probably related to the deregulated energetic metabolism in obese 

subjects and deserves further investigation. We also analyzed serum ghrelin levels in 
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patients with chronic liver diseases. We found that ghrelin serum levels decreased in patients 

with advanced fibrosis. Our results apparently differ from a recent report showing that ghrelin 

serum levels are increased in patients with chronic liver diseases.(22) In this latter study, 

ghrelin serum levels were increased in patients with advanced cirrhosis. This advanced state 

is associated with profound hepatic failure, caquexia, endotoxinemia and hemodynamic 

disturbances, which could influence serum levels of cytokines and vasoactive substances. In 

our series, the vast majority of patients have mild to moderate degree of fibrosis, which could 

explain the discrepant results. Finally, we studied the role of ghrelin gene variations in the 

progression of liver fibrosis, in a well-characterized series of patients with biopsy-proven 

chronic hepatitis C.  We analyzed GHRL polymorphisms and compared their frequencies in 

patients with mild fibrosis and patients with advanced fibrosis. We found two single 

nucleotide polymorphisms in the GHRL associated with advanced fibrosis in women but not 

in men. The fact that polymorphisms affect mainly women is a very intriguing question. It is 

well known that gender is a major factor influencing ghrelin expression and serum levels.(23, 

24) In fact, previous studies indicate that gender markedly influences the effect of ghrelin 

polymorphisms in different diseases.(25, 26) Therefore, it is not surprising that in our study 

the influence of ghrelin polymorphisms on liver fibrosis were gender-dependent. Further 

studies are required to investigate this issue. Moreover, it is well known that fibrosis 

progression is modulated by estrogens.(27)  

 

 Different mechanisms may explain the antifibrotic effects of ghrelin in the injured liver. 

First, ghrelin seems to protect hepatocytes from cell death, as indicated by decreased 

necroinflammatory injury and serum levels of aminotransferases in rats subjected to both 

acute and chronic liver injury. This effect was related to a reduction in the number of 

infiltrating inflammatory cells as well as decreased apoptosis in hepatocytes in the model of 

acute liver injury. These results confirm previously published data indicating that ghrelin 

prevents parenchymal cell death in different injured tissues.(8, 18, 28) Interestingly, we found 

that ghrelin administration to injured rats resulted in increased hepatic expression of 
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hepatoprotective signaling pathways such as phospho-Akt and phospho- extracellular signal-

regulated kinase. These results are in keeping with several studies showing that ghrelin 

induces activation of Akt and extracellular signal-regulated kinase in different cell types.(5, 7, 

29) Second, we found that ghrelin decreases the extent of oxidative stress in the liver, which 

is a major pathogenic event in the wound healing response to injury. This antioxidant effect 

of ghrelin has been shown in other organs.(30, 31) Whether ghrelin reduces the formation of 

reactive oxygen species or increases the activity of antioxidant defenses is unknown and 

deserves further investigation. Fourth, we provide evidence that ghrelin reduces the 

accumulation of activated HSC in the liver and it directly reduces collagen synthesis by 

cultured HSC. This effect is associated with decreased TGF-β1 expression, a major 

profibrogenic cytokine in the liver. Finally, microarray analysis revealed several potential 

mechanisms by which ghrelin could exert its antifibrotic effect. Thus, besides reducing 

expression of genes involved in extracellular matrix synthesis, ghrelin reduced the 

expression of genes involved in apoptosis (caspases), inflammation (osteopontin, chemokine 

receptor 5) and cellular contractility (tropomyosin). 

 

 This study has several limitations. First, it is unknown whether locally produced ghrelin or 

extrahepatic synthesis of ghrelin (e.g. by the stomach) regulate hepatic fibrogenesis. The 

finding that ghrelin serum levels are decreased in patients with more aggressive fibrosis 

suggests that extrahepatic sources of ghrelin could be implicated in the progression of 

fibrosis. Second, further studies using GHS-R antagonists should confirm the involvement of 

this receptor in the beneficial effects induced by ghrelin. Third, the role of ghrelin in fibrosis 

resolution and the therapeutic effect of exogenous ghrelin in established cirrhosis should be 

evaluated. Fourth, since ghrelin requires a post-traslational modification (octanylation) to be 

active,(32) further analysis of the ghrelin active form should be performed in liver samples 

and cell types. Fifth, the results in Ghrl-/- are less impressive than in rats receiving 

recombinant ghrelin probably because constitutive knockout mice usually develop strategies 

to overcome the lack of a given gene. Further studies using ghrelin conditional knockout 
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mice and/or ghrelin receptor knockout mice are should clarify this question. And sixth, 

although we provide evidence that ghrelin exerts direct antifibrotic effects in fibrogenic cells, 

the precise molecular mechanisms by which ghrelin exerts beneficial effects in liver 

undergoing acute and/or chronic injury should be uncovered in further studies.  

 

 The results of our study have potential therapeutic implications. Recombinant ghrelin has 

been tested in patients with different conditions including gastroparesis(11) anorexia(9), 

caquexia(10) and chronic heart failure.(12) In these studies, ghrelin is generally well tolerated 

and only causes a mild decrease in arterial pressure. Our results suggest that ghrelin could 

also be useful in patients with liver injury and liver fibrosis. Further studies should evaluate 

this hypothesis. Moreover, due to the orexigenic properties of ghrelin, ghrelin receptor 

antagonists have been recently proposed for the treatment of diabetes and obesity.(33) Due 

to its protective effects, prolonged blockade of ghrelin receptors may cause adverse effects 

such as accelerated tissue fibrosis, which is commonly seen in the heart and the kidney of 

patients with metabolic syndrome. 

 

 In summary, the results of the current study indicate that ghrelin exerts hepatoprotective 

and antifibrogenic effects in the liver. Further studies should evaluate the safety and efficacy 

of ghrelin and/or ghrelin agonists in patients with chronic liver diseases. 
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Figure 1. Ghrelin reduces hepatic fibrosis induced by bile duct ligation (BDL) in rats. (A) 

Representative pictures of Sirius red staining (original magnification, x40) from rats submitted 

to BDL or sham-operated rats treated with saline or ghrelin. Graph shows quantification of 

Sirius red stained area. (B) Representative pictures and quantification of smooth muscle α-

actin positive cells, α-SMA (original magnification, x400). (C) Representative western blot for 

α-SMA in liver samples. (D) Hydroxyproline content in liver samples from sham-operated rats 

or rats submitted to bile duct ligation treated or not with ghrelin (E) Aspartate 

aminostransferase serum levels from all groups of rats. (F) Guanosin 3’,5’-cyclic 

monophosphate hepatic content in liver extracts from all groups of rats. Data shown are 

mean from at least 10 animals per group; error bars show SEM. #P < 0.05 respect to sham-

operated rats, *P < 0.05 respect to saline-BDL rats.  

 

Figure 2. Hepatic gene expression in rats submitted to sham-operation or bile duct ligation 

(BDL). (A) Microarray data from hepatic complementary DNA. Expression of key genes was 

modified by BDL. Ghrelin treatment attenuated changes in gene expression profile. All genes 

have a False Discovery Rate < 0.2 and are deviated from the control by at least ± 1.8 fold (B) 

Quantitative polymerase chain reaction confirmed the results obtained in the microarray 

analysis in procollagen-α1(II) (Col1a2), matrix metallopeptidase 2 (Mmp2), endothelin 

receptor type A (Ednra) and sterol regulatory element binding factor 1 (Srebf1). Data shown 

are mean from at least 5 animals per group; error bars show SEM. #P < 0.05 respect to 

sham-operated rats, *P < 0.05 respect to saline-BDL rats.  

 

Figure 3. Role of endogenous ghrelin in liver fibrosis in mice. Ghrl+/+ and Ghrl–/– mice were 

induced to liver fibrosis by administration of CCl4 for 4 weeks. Ghrl–/– mice show a modest 

increase in the extent of liver fibrosis and increased liver damage after chronic liver injury 

induced by CCl4 compared to Ghrl+/+. (A) Representative pictures and (B) quantification of 

Sirius red staining (original magnification, x40) from Ghrl+/+ and Ghrl–/– mice treated 
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chronically with oil or CCl4. (C) Necroinflammatory score of liver samples from Ghrl+/+ and 

Ghrl–/– mice chronically treated with oil or CCl4. (D) Weight increase during the four weeks of 

CCl4 treatment in all groups of mice. (E) and (F) Gene expression of genes involved in 

fibrogenesis. Procollagen-α2(I) and tissue inhibitor of metalloproteases (TIMP-1) were 

overexpressed in ghrelin deficient mice induced to liver fibrosis when compared with wild 

type mice. Data shown are mean from at least 10 animals per group; error bars show SEM. 

#P < 0.05 respect to oil-treated mice, *P < 0.05 respect to CCl4-wild type mice.  

 

Figure 4. Effects of a GHS-R agonist, (Des-Ala3)-GHRP-2, on experimental liver fibrosis. 

Expression of GHS-R was detected in rat (A) and human (B) livers. NC, negative control; PC, 

positive control; L, liver; Hep, hepatocytes; Q-HSC, quiescent HSC and A-HSC, activated 

HSC. A GHS-R agonist, (Des-Ala3)-GHRP-2, was infused in sham-operated rats and rats 

with BDL during the two weeks of the experiment. (C) Representative pictures and (D) 

quantification of the area stained by Sirius red (original magnification, x40). Data shown are 

mean ± SEM from 8 rats per group.  #P < 0.05 respect to sham, *P < 0.05 respect to saline-

BDL. 

 

Figure 5. Ghrelin exerts hepatoprotective effects in rats with acute liver injury induced by 

CCl4. Rats received ghrelin (20 µg·Kg-1) intravenously one hour before CCl4 administration. 

(A) Representative pictures of H&E staining in livers from CCl4-injured rats treated with saline 

or ghrelin (original magnification, x200). Carbon tetrachloride induced hepatocyte ballooning, 

parenchymal necrosis and inflammatory infiltrate. Graph shows evaluation of the 

necroinflammatory score. (B) Representative pictures of CD43 immunostaining in CCl4-

treated rats (original magnification, x400). Graph shows quantification of CD43-positive cells 

per field (x200 magnification). (C) Representative pictures of 4-hydroxynonenal 

immunostaining in CCl4-treated rats (original magnification, x400). Quantification of the area 

stained is shown in the graph. (D) Representative pictures of TUNEL immunostaining in 

CCl4-treated rats (original magnification, x400). Graph shows quantification of TUNEL-
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positive cells per field (x400 quantification). (E) Representative pictures of p65 

immunostaining (original magnification, x400). Graph shows quantification of p65-positive 

nuclei per field (x400 magnification). #P < 0.05 respect to control, *P < 0.05 respect to rats 

receiving saline-CCl4. (F) Intracellular pathways involved in CCl4-induced liver damage and 

ghrelin hepatoprotection. Western blot studies showing Akt and extracellular signal-regulated 

kinase phosphorylation in extracts from rat livers. Numbers underneath represent fold 

expression compared with oil-treated rats. Data shown are mean ± SEM from 8 animals per 

group. 

 

Figure 6. Effects of ghrelin on pro-fibrogenic and proinflammatory properties in primary 

human HSC. (A) Intracellular calcium concentration ([Ca2+]) as evidenced by Fura 2 intensity 

in HSC. Cells were pre-incubated for 10 minutes with ghrelin (0.1 µmol/L) and then 

challenged with angiotensin II (0.1 µmol/L). (B) Expression of procollagen-α1(I) and TGF-β1 

mRNA in HSC exposed to ghrelin (0.1 µmol/L) for 24 hours. *P < 0.05 respect to vehicle. (C) 

Activity of nuclear factor κB assessed by luciferease reporter gene assay. Cells were 

infected with an adenovirus containing luciferase gene with the promoter region for nuclear 

factor κB transcription factor and incubated overnight with vehicle, ghrelin or phorbol 12-

myristate 13-acetate (PMA). Ghrelin (0.1 µmol/L) did not modulate nuclear factor κB activity 

in HSC. 12-myristate 13-acetate (1mg/mL) was used as a positive control. Preincubation of 

cells with ghrelin for 10 minutes did not modulate the effect of 12-myristate 13-acetate. (D) 

Cells were incubated with vehicle, ghrelin or tumor necrosis factor-α (TNF-α) for 24 hours. 

Medium was collected to analyze interleukin 8 concentration. Ghrelin (0.1 µmol/L) did not 

modulate interleukin 8 release by HSC to the culture medium. Tumor necrosis factor α (1 

ng/mL) was used as a positive control. Preincubation of cells with ghrelin for 10 minutes did 

not modulate the effect of TNF-α;. Data shown are mean ± SEM from 3 independent 

experiments. 
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Figure 7. Ghrelin serum levels and hepatic ghrelin expression in control subjects and in 

patients with chronic liver diseases. (A) Fasting ghrelin serum levels were analyzed in blood 

samples from patients with chronic HCV infection, alcoholic hepatitis (AH) and healthy 

controls. Serum ghrelin levels were decreased in all groups of patients. (B) Ghrelin levels 

were lower in patients with advanced fibrosis compared to those with mild fibrosis *P < 0.05 

respect to control or to F0-F2. (C) GHRL hepatic expression was analyzed in samples from 

controls, chronic hepatitis C, AH and non alcoholic steatohepatitis (NASH) patients *P < 0.05 

respect to all the groups. (D) Ghrelin expression was analyzed in different hepatic cell types. 

NC, negative control; Hep, primary human hepatocytes; Q-HSC, quiescent human hepatic 

stellate cells; A-HSC, human in culture-activated HSC. 

 

Table 1. Effects of ghrelin genetic polymorphisms in the progress of fibrosis in patients with 

chronic hepatitis C.  

 

Supplementary Figure 1. Heatmap showing clustering in rat liver samples according to 

similarity in gene expression. Rats were classified according to hepatic gene expression 

profile. C, sham-saline; t1, BDL-ghrelin; t0, BDL-saline. 

 

Supplementary Figure 2. (A) Gene structure of the ghrelin gene showing the SNPs 

analyzed. Six ghrelin gene SNPs were analyzed in patients with chronic hepatitis. C. Three 

of them were located on the promoter, two of them in introns and one of them was in the 

codon of the last aminoacid of the mature protein. (B) Analysis of ghrelin promoter activity. 

Plasmids with different haplotypes for the ghrelin promoter linked to the luciferase gene were 

transfected to Huh7 cells. Ghrelin promoter activity was assessed by luminiscence. *P < 0.05 

respect to the control vector. #P < 0.05 respect to wild type haplotype. 
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Figure 1. Ghrelin reduces hepatic fibrosis induced by bile duct ligation (BDL) in rats. (A) 
Representative pictures of Sirius red staining (original magnification, x40) from rats submitted to 
BDL or sham-operated rats treated with saline or ghrelin. Graph shows quantification of Sirius red 

stained area. (B) Representative pictures and quantification of smooth muscle α-actin positive cells, 
α-SMA (original magnification, x400). (C) Representative western blot for α-SMA in liver samples. 

(D) Hydroxyproline content in liver samples from sham-operated rats or rats submitted to bile duct 
ligation treated or not with ghrelin (E) Aspartate aminostransferase serum levels from all groups of 
rats. (F) Guanosin 3’,5’-cyclic monophosphate hepatic content in liver extracts from all groups of 
rats. Data shown are mean from at least 10 animals per group; error bars show SEM. #P < 0.05 

respect to sham-operated rats, *P < 0.05 respect to saline-BDL rats.  
209x297mm (150 x 150 DPI)  
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Figure 2. Hepatic gene expression in rats submitted to sham-operation or bile duct ligation (BDL). 
(A) Microarray data from hepatic complementary DNA. Expression of key genes was modified by 

BDL. Ghrelin treatment attenuated changes in gene expression profile. All genes have a False 
Discovery Rate < 0.2 and are deviated from the control by at least ± 1.8 fold (B) Quantitative 

polymerase chain reaction confirmed the results obtained in the microarray analysis in procollagen-
α1(II) (Col1a2), matrix metallopeptidase 2 (Mmp2), endothelin receptor type A (Ednra) and sterol 
regulatory element binding factor 1 (Srebf1). Data shown are mean from at least 5 animals per 

group; error bars show SEM. #P < 0.05 respect to sham-operated rats, *P < 0.05 respect to saline-
BDL rats.  
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Figure 3. Role of endogenous ghrelin in liver fibrosis in mice. Ghrl+/+ and Ghrl–/– mice were 
induced to liver fibrosis by administration of CCl4 for 4 weeks. Ghrl–/– mice show a modest increase 
in the extent of liver fibrosis and increased liver damage after chronic liver injury induced by CCl4 

compared to Ghrl+/+. (A) Representative pictures and (B) quantification of Sirius red staining 
(original magnification, x40) from Ghrl+/+ and Ghrl–/– mice treated chronically with oil or CCl4. (C) 
Necroinflammatory score of liver samples from Ghrl+/+ and Ghrl–/– mice chronically treated with 
oil or CCl4. (D) Weight increase during the four weeks of CCl4 treatment in all groups of mice. (E) 
and (F) Gene expression of genes involved in fibrogenesis. Procollagen-α2(I) and tissue inhibitor of 

metalloproteases (TIMP-1) were overexpressed in ghrelin deficient mice induced to liver fibrosis 
when compared with wild type mice. Data shown are mean from at least 10 animals per group; 

error bars show SEM. #P < 0.05 respect to oil-treated mice, *P < 0.05 respect to CCl4-wild type 
mice.  
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Figure 4. Effects of a GHS-R agonist, (Des-Ala3)-GHRP-2, on experimental liver fibrosis. Expression 
of GHS-R was detected in rat (A) and human (B) livers. NC, negative control; PC, positive control; 
L, liver; Hep, hepatocytes; Q-HSC, quiescent HSC and A-HSC, activated HSC. A GHS-R agonist, 

(Des-Ala3)-GHRP-2, was infused in sham-operated rats and rats with BDL during the two weeks of 
the experiment. (C) Representative pictures and (D) quantification of the area stained by Sirius red 

(original magnification, x40). Data shown are mean ± SEM from 8 rats per group.  #P < 0.05 
respect to sham, *P < 0.05 respect to saline-BDL.  
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Figure 5. Ghrelin exerts hepatoprotective effects in rats with acute liver injury induced by CCl4. Rats 
received ghrelin (20 mg•Kg-1) intravenously one hour before CCl4 administration. (A) 

Representative pictures of H&E staining in livers from CCl4-injured rats treated with saline or ghrelin 
(original magnification, x200). Carbon tetrachloride induced hepatocyte ballooning, parenchymal 
necrosis and inflammatory infiltrate. Graph shows evaluation of the necroinflammatory score. (B) 

Representative pictures of CD43 immunostaining in CCl4-treated rats (original magnification, x400). 
Graph shows quantification of CD43-positive cells per field (x200 magnification). (C) Representative 
pictures of 4-hydroxynonenal immunostaining in CCl4-treated rats (original magnification, x400). 

Quantification of the area stained is shown in the graph. (D) Representative pictures of TUNEL 
immunostaining in CCl4-treated rats (original magnification, x400). Graph shows quantification of 

TUNEL-positive cells per field (x400 quantification). (E) Representative pictures of p65 
immunostaining (original magnification, x400). Graph shows quantification of p65-positive nuclei 
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per field (x400 magnification). #P < 0.05 respect to control, *P < 0.05 respect to rats receiving 
saline-CCl4. (F) Intracellular pathways involved in CCl4-induced liver damage and ghrelin 

hepatoprotection. Western blot studies showing Akt and extracellular signal-regulated kinase 
phosphorylation in extracts from rat livers. Numbers underneath represent fold expression 
compared with oil-treated rats. Data shown are mean ± SEM from 8 animals per group.  
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Figure 6. Effects of ghrelin on pro-fibrogenic and proinflammatory properties in primary human 
HSC. (A) Intracellular calcium concentration ([Ca2+]) as evidenced by Fura 2 intensity in HSC. Cells 
were pre-incubated for 10 minutes with ghrelin (0.1 mmol/L) and then challenged with angiotensin 
II (0.1 mmol/L). (B) Expression of procollagen-α1(I) and TGF-β1 mRNA in HSC exposed to ghrelin 
(0.1 mmol/L) for 24 hours. *P < 0.05 respect to vehicle. (C) Activity of nuclear factor κB assessed 

by luciferease reporter gene assay. Cells were infected with an adenovirus containing luciferase 
gene with the promoter region for nuclear factor κB transcription factor and incubated overnight 

with vehicle, ghrelin or phorbol 12-myristate 13-acetate (PMA). Ghrelin (0.1 mmol/L) did not 
modulate nuclear factor κB activity in HSC. 12-myristate 13-acetate (1mg/mL) was used as a 

positive control. Preincubation of cells with ghrelin for 10 minutes did not modulate the effect of 12-

myristate 13-acetate. (D) Cells were incubated with vehicle, ghrelin or tumor necrosis factor-a 
(TNF-α) for 24 hours. Medium was collected to analyze interleukin 8 concentration. Ghrelin (0.1 
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mmol/L) did not modulate interleukin 8 release by HSC to the culture medium. Tumor necrosis 
factor α (1 ng/mL) was used as a positive control. Preincubation of cells with ghrelin for 10 minutes 

did not modulate the effect of TNF-α. Data shown are mean ± SEM from 3 independent 
experiments.  
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Figure 7. Ghrelin serum levels and hepatic ghrelin expression in control subjects and in patients with 
chronic liver diseases. (A) Fasting ghrelin serum levels were analyzed in blood samples from 

patients with chronic HCV infection, alcoholic hepatitis (AH) and healthy controls. Serum ghrelin 
levels were decreased in all groups of patients. (B) Ghrelin levels were lower in patients with 

advanced fibrosis compared to those with mild fibrosis *P < 0.05 respect to control or to F0-F2. (C) 
GHRL hepatic expression was analyzed in samples from controls, chronic hepatitis C, AH and non 

alcoholic steatohepatitis (NASH) patients *P < 0.05 respect to all the groups. (D) Ghrelin expression 
was analyzed in different hepatic cell types. NC, negative control; Hep, primary human hepatocytes; 

Q-HSC, quiescent human hepatic stellate cells; A-HSC, human in culture-activated HSC.  
209x297mm (150 x 150 DPI)  
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          Table 1. Effects of ghrelin genetic polymorphisms in the progress of fibrosis in patients with chronic 

hepatitis C.  

 

 

-994 CT polymorphism 

Sex Genotype n (%) 

         F0-F2                   F3-F4 

Odd ratio 

(95% CI) 

P value 

All CC 134 (84.3) 93 (74.4) 1.00 -- 

 TT + CT 25 (15.7) 32 (25.6) 1.79 (0.96-3.37) .068 

Females CC 55 (90.2) 29 (69) 1.00 -- 

 TT+ CT 6 (9.8) 13 (31) 9.75 (1.34-71.05) .010 

Males CC 79 (80.6) 64 (77.1) 1.00 -- 

 TT+ CT 19 (19.4) 19 (22.9) 1.01 (0.47-2.19) .981 

Haplotype 

Sex -994 CT   -604 GA n (%) 

         F0-F2                   F3-F4 

Odd ratio 

(95% CI) 

P value 

All C                  A 82 (51.64) 63 (50.4) 1.00 -- 

 C                  G 64 (40.5) 44 (35.6) 0.97 (0.66-1.41) .850 

 T                   A 11 (7.17) 17 (14.0) 2.06 (1.08-3.91) .028 

 T                  G 1 (0.7) 0 (0.0) 0.00 1.00 

Females C                  A 32 (51.64) 21 (51.19) 1.00 -- 

 C                  G 26 (43.44) 13 (30.95) 0.96 (0.35-2.66) .943 

 T                   A 3 (4.92) 8 (17.86) 8.47 (1.31-54.84) .029 

 T                  G 0 (0.00) 0 (0.00) 0.00 1.00 

Males C                  A 51 (51.82) 42 (50.00) 1.00 -- 

 C                  G 38 (38.49) 31 (37.95) 1.12 (0.61-2.05) .712 

 T                   A 8 (8.39) 10 (12.05) 1.40 (0.48-4.05) .54 

 T                   G   1 (1.31) 0 (0.00) 1.08 (0.00-1088) .982 
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SUPPLEMENTARY MATERIALS AND METHODS 

 

 Cell cultures.  

Human hepatic stellate cells (HSC) were isolated from fragments of normal 

livers obtained from resections of liver metastasis of colon cancer as described in detail 

previously.(1) Experiments were performed with HSC activated in culture. Cells were 

cultured in standard conditions in Dulbecco’s modified Eagle’s medium (Sigma-Aldrich, 

St. Louis, MO) containing 15% fetal bovine serum, non essential aminoacids, 

glutamine, sodium pyruvate and antibiotics. The protocols were approved by the 

Investigational Review Board of the Hospital Clínic of Barcelona. Huh7 cells were 

cultured in Dulbecco’s modified Eagle’s medium containing 10% fetal bovine serum, 

glutamine and non essential aminoacids. Cells were serum starved for at least 12 

hours before the experiments.  

 

Immuhistochemistry studies. 

Paraffine-embedded liver sections were deparaffinized, rehydrated and stained 

using the DAKO Envision system (DAKO; Carpinteria, CA). To evaluate the degree of 

liver inflammation, CD43 immunostaining was performed using a monoclonal antibody 

against CD43 (1:1000, Serotec Inc; Oxford, UK). CD43 positive cells were counted (10 

fields per specimen at x200 magnification). p65 immunohistochemistry was performed 

using a monoclonal antibody against p65 (1:100, Santa Cruz Biotechnology; Santa 

Cruz, CA). Hepatocytes with p65 positive nuclei per field (30 fields per specimen at 

x400 magnification) were counted. To evaluate oxidative stress, 4-hydroxynonenal 

protein adducts (4-HNE) immunostaining was performed (1:200, A.G. Scientific Inc; 

San Diego, CA). The percentage of positive area (30 fields per specimen at x400 

magnification) was calculated as described above for Sirius red. To quantify cell death, 

Terminal dUTP Nick End Labeling (TUNEL) staining was performed using a 

commercial kit (Promega Corporation; Madison, WI). Hepatocytes with positive nuclei 

were counted (10 fields per specimen at x400 magnification). To estimate the amount 

of fibrogenic myofibroblasts, liver sections were incubated with a monoclonal antibody 
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 2 

against smooth muscle α-actin (α-SMA) (1:1000, DAKO). Positive cells per field were 

counted (10 fields per specimen at x400 magnification). 

 

Hepatic hydroxyproline content. 

Hydroxyproline content was quantified colorimetrically from 80 mg of frozen liver 

samples. Tissue was homogenized in 300 µl of 6N chloridric acid and hydrolyzed at 

100°C overnight. The hydrolysate was filtered, aliquots were evaporated under 

vacuum, and the sediment was redissolved in 50% isopropanol. Samples were then 

incubated in a solution containing 0.84% chloramine-T 42 mM sodium acetate, 2.6 mM 

citric acid, and 39.5% (vol/vol) isopropanol (pH 6.0) for 10 minutes at room 

temperature. Next, samples were incubated in a solution containing 0.248 g p-

dimethylaminobenzaldehyde dissolved in 0.27 ml of 60% perchloric acid and 0.73 ml of 

isopropanol for 90 minutes at 50°C. Hydroxyproline content was quantified 

photometrically at 558 nm. Results are expressed as µmol hydroxyproline per litre of 

the last solution.  

 

Gene expression analysis.  

RNA was obtained from cultured cells and human liver samples using the 

TRIzol reagent (Life Technologies Inc; Rockville, MD). RNA was extracted from rat liver 

samples by the QIAGEN RNeasy kit. In all cases, retrotranscriptions were performed 

using the High Capacity cDNA Archive Kit (Applied Biosystems; Foster City, CA). 

Quantitative PCR were performed using TaqMan gene expression assays (Applied 

Biosystems) for procollagen-α2(I), metallopeptidase 2, endothelin receptor type A and 

sterol regulatory element binding factor 1 for rat liver samples, procollagen-α2(I) and 

tissue inhibitor of metaloproteases (TIMP-1) for mice samples and procollagen-α1(I) 

and transforming growth factor β for samples from hepatic stellate cells (HSC). TaqMan 

reactions were carried out in duplicate on an ABI PRISM 7900 Machine (Applied 

Biosystems). For human liver samples, quantitative PCR for 64 genes were performed 

using pre-designed TaqMan low density array cards (Applied Biosystems) and carried 
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out in triplicate on an ABI PRISM 7900HT (Applied Biosystems). All data were 

normalized to 18S content and were expressed as fold increase over the control group 

or as correlations with expression of other genes in case of human liver samples. 

Reactions for qualitative PCR contained 7.5 ng cDNA , 0.75 µM of each primer, 3.2 

µmol/L of each deoxynucleoside triphosphate (dATP, dGTP, dCTP, and dTTP), 1X 

buffer (HotStar), 0.25X Q solution (Qiagen; Hilden, Germany), and 0.04 U·µL–1 of DNA 

polymerase HotStarTaq (Qiagen). Water was added to a final volume of 10 µl. An initial 

denaturation step at 95°C for 15 min was followed by 60 cycles of 95°C for 30 s, 

annealing temperature for 30 s, and 72°C for 90 s, with a final step at 72°C for 15 min. 

Annealing temperature was 65ºC for the ghrelin gene (GHRL) and 58ºC for the growth 

hormone secretacogue receptor gene (GHSR). The size of the PCR products (2-µL 

aliquot) was analyzed by electrophoresis on 2% agarose gels. The oligonucleotides 

used for GHRL were: 5’-GAGAGTCCAGCAGAGAAAGGAGTC-3’ (forward) and 5’-

GACAGCTTGATTCCAACATCAAAG-3’ (reverse) and the oligonucleotides used for the 

ghrelin receptor gene (GHSR) were: 5’-CTCTGGACTGCTCACGGTCAT-3’ (forward) 

and 5’- AACACCACTACAGCCAGCATTTT-3’ (reverse).  

 

Microarray studies.  

RNA was isolated from rat livers using the QIAGEN RNeasy kit (Qiagen). RNA 

integrity was checked with the Agilent 2100 Bioanalyser  (Agilent Technologies; Santa 

Clara, CA) and only high quality RNA samples were hybridized to Rat Genome 230 2.0 

GeneChips (Affymetrix; Santa Clara, CA). Briefly, 2 µg of total RNA were used to 

generate double strand complementary DNA (cDNA) using an oligo dT- primer 

containing the T7 RNA polymerase promoter site and the SuperScript Choice System 

kit (Invitrogen; Leek, The Netherlands). cDNA was purified by the GeneChip Sample 

Clean Up Module, followed by in vitro synthesis of biotinylated complementary RNA 

(cRNA) using the BioArray High Yield RNA transcription kit (Affymetrix). The resulting 

cRNA was purified and fragmented and 15 µg were hybridized to Rat Genome 230 2.0 

GeneChips for 16 hours, at 45ºC and 30 g. The arrays were then washed and labelled 
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with streptavidin-phycoerythrin (SAPE), and the signal was amplified with an anti-

streptavidin biotinylated antibody followed by a second round of staining with SAPE 

using the Affymetrix fluidics station 450. Finally, the labelled arrays were scanned with 

a Gene chip scanner 3000. Microarray data from 17 samples (6 for the control group, 6 

for BDL-saline group, and 5 for the ghrelin-BDL group) were normalized using the 

guanidine-cytosine content-adjusted robust multiarray algorithm, which computes 

expression values from probe-intensity values incorporating probe-sequence 

information. Next, we employed a conservative probe-filtering step excluding those 

probes not reaching a log2 expression value of 5 in at least 1 sample, which resulted in 

the selection of a total of 15,445 probes out of the original 31,099 set. Differential 

expression was assessed by using linear models and empirical Bayes moderated t-

statistics using LIMMA R-package software.(2) Inter-groups comparisons and 

determinations of false discovery rates (FDR computation using Benjamini-Hochberg 

procedure) for each comparison were performed and FDR values ≤0.2 were deemed 

potentially significant and selected for further study. 

 

Assessment of hepatic guanosin 3’,5’-cyclic monophosphate (cGMP). 

Forty mg of frozen tissue were dropped into 10 volums of 5% trichloroacetic acid 

(TCA) and homogenized. Precipitated was removed by centrifugation at 1500g for 10 

min and the supernantant was transferred to a clean test tube. The supernatants were 

washed with water-saturated diethyl ether three times to remove the TCA. The 

aqueous suspension and the standars were acetylated and cGMP levels were 

determined by enzymeimmunoassay (Cayman Chemical Co; Ann Arbor, MI). 

 

Serum biochemical measurements. 

Serum aspartate aminotransferase (AST) levels were measured using standard 

enzymatic procedures. 
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Measurement of intracellular Ca2+ concentration ([Ca2+]i). 

Changes in [Ca2+]i were measured in Fura-2 (Calbiochem) loaded cells using an 

inverted epifluorescence microscope as described in detail previously.(3) Cells were 

pre-incubed for 10 minutes with human recombinant ghrelin (Sigma-Aldrich) or saline 

and tested with angiotensin-II (Sigma-Aldrich). Cells were considered as responders 

when [Ca2+]i increased more than 50% above the resting value. 

 

NF-κκκκB responsive luciferase assay. 

Human HSC were infected with a recombinant adenoviral vector expressing a 

luciferase reporter gene driven by nuclear factor κB (NF-κB) transcriptional activation 

(Ad5NF-κBLuc) for 12 hours. Medium was replaced and cells stimulated with 12-

myristate 13-acetate (PMA, Sigma-Adrich) or vehicle for 8 hours. Human recombinant 

ghrelin or vehicle was added to the medium 10 minutes before PMA. NF-κB-mediated 

transcriptional induction was assessed by a luciferase assay system kit (Promega 

Corporation). Cells were serum starved from 12 hours before the adenoviral infection. 

 

  Determination of interleukin 8 secretion.  

Human HSC were cultured in 6-well plates at a density of 4x105 cells/well. 

Medium was removed and cells incubated in serum-free medium for 24 hours in the 

presence of tumor necrosis factor α (TNF-α, R&D Systems; Minneapolis, MN) or 

vehicle. Human recombinant ghrelin was added to the medium 10 minutes before TNF-

α. Supernatants were collected and stored at –80ºC until analysis. An 

enzymeimmunoassay for human interleukin 8 (BLK Diagnostics; Barcelona, Spain) was 

performed. 

 

Western blotting.  

Tissue protein extracts were obtained in radio-immunoprecipitation assay 

(RIPA) lysis buffer containing phosphatase and protease inhibitors. Forty micrograms 
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of protein were loaded onto 10% sodium dodecyl sulfate-acrylamide gels and blotted 

onto nitrocellulose membranes. Membranes were then incubated with antibodies 

against phospho-Akt, Akt, phospho-extracellular signal-regulated kinase (ERK), ERK 

(Cell Signaling Technology; Berverly, MA), smooth muscle α-actin (DAKO, Carpinteria, 

CA) or GADPH (Abcam, Cambridge, UK). After extensive washing, membranes were 

incubated with blocking buffer containing horseradish-peroxidase conjugated 

secondary antibody. Proteins were detected by chemoluminescence (Amersham 

Biosciences; Fairfield, CT). 

 

Serum ghrelin levels analysis. 

Total ghrelin serum levels were analyzed by radioimmunoassay (Linco 

Research; St. Charles, MI). Blood samples from all subjects were obtained after an 

overnight fasting in the early morning. Serum was frozen at –80ºC until analysis. 

 

DNA extraction and genotyping. 

DNA was isolated from peripheral blood cells using the Chemagic System 

(Chemagen; Baesweiler, Germany). Polymerase chain reaction (PCR) amplicons were 

designed by Primer3 program(4) to completely traverse the promoter, exon 1, exon 3 

and exon 4 of GHRL. The size of PCR products was analyzed by electrophoresis on 

2% agarose gels. Products were treated with Exonuclease I (Amersham Biosciences) 

and shrimp alkaline phosphatase (Amersham Biosciences) to remove excess primers 

and deoxynucleotide triphosphates. For the examination of the six single nucleotide 

polymorphisms (SNPs), extension SNaPshot primers specific to the polymorphic sites 

(see table below) were used for the SNapshot minisequencing reaction using the ABI 

PRISM SNaPshot Multiplex Kit (Applied Biosystems). The resulting products were 

purified by one unit of Calf Intestine Phosphatase (New England Biolabs, Ipswich, MA). 

Snapshot products were resuspended in 4,5 µL Hi-Di™ Formamide (Applied 

Biosystems) and 0.5 µL GeneScan Size Standard. Then, they were electrophoretically 
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analyzed using a DNA Analyzer 3730 (Applied Biosystems). The results of genotyping 

were analyzed and evaluated by GeneMapper software v. 3.7 (Applied Biosystems). 

SNPs statistical analysis. 

Allele and genotype frequencies as well as Hardy–Weinberg equilibrium for 

every SNP were calculated by chi-square test with one degree of freedom. SNPs 

association with fibrosis were calculated by logistic regression and adjusted by age and 

gender. Co-dominant, dominant, recessive and over-dominant inheritance models were 

analyzed for genotype association with fibrosis. The model with lower AIC (Akaike 

information) was used for every SNP. Haplotypes were stimated by Expectation 

Maximization algorithm and haplotypes association with fibrosis was calculated by 

logistic regression models and adjusted by age and gender as covariates. All analysis 

were performed using SPSS and SNPStats software.(5) We considered statistically 

significant for association with a P value <0.05. Odd ratio was used to evaluate the 

association of disease state with each SNP or haplotype. 

 

Construction of the human GHRL promoter-Luciferase plasmids 

The fragment containing 599 bp, corresponding to the -1049 to -450 bp 

upstream region of the human ghrelin gene (GHRL), was amplified by PCR and cloned 

into pcR2.1-Topo vector (Invitrogen). The (−1049 −450) GHRL-luc plasmid was 

obtained by releasing restriction fragments from the pcR2.1-Topo constructs followed 

by subcloning into the pGL3-basic vector (Promega Corporation). 

 

Lluciferase assay for GHRL promotor activity  

HuH7 cells were seeded in 24-well culture plates and co-transfected using 

Fugene (Roche applied science, Penzberg, Germany) with 980 ng of GHRL-reporter 

plasmids and 20 ng of a Renilla luciferase construct (pRL-TK) as an internal control.  

Transactivation activities were measured 48 h after transfection in a VICTOR3 

luminometer (Perkin Elmer, Wellesley, MA) according to the technical manual of the 

Dual-Luciferase Reporter Assay System (Promega Corporation). The mean firefly 
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luciferase/renilla ratio was considered. Values represent the means ± S.E.M. of four 

independent transfection experiments run in duplicate
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Single nucleotide polymorphism information for ghrelin gene (GHRL) 

 

SNP 
A
 Reference 

B
 Primers 

 

rs26312 -994
 
C>T 

  Forward             TCCTCGGGAAGGTGTAGAATC  

  Reverse             AGGCCCAGAGAGGTTAAACG 

  -994 C>T*          tagttatatatattaGCTGTTGCTGCTCTGGCCTCT 

rs27647 -604 G>A 

  Forward              TCCTCGGGAAGGTGTAGAATC  

  Reverse              AGGCCCAGAGAGGTTAAACG 

  -604 G>A*          atacgttatatTGGGATGGGGTTGCTGGTTTA 

rs26802 –501 A>C 

  Forward             TCCTCGGGAAGGTGTAGAATC  

  Reverse             AGGCCCAGAGAGGTTAAACG 

  -501 A>C*          agatatatcgtatgatCAGCAGTCACGGACAATAAACCTG 

rs34911341 
Arg51Gln, 304 G>A 

(exon 3) 

  Forward             CCTTCCAGCAGAGAAAGGAG  

  Reverse             TGTAGTTGGGACCCTGTTCAC  

  R51Q*                atatattctatctCGGAGCCAGCCTGCTAGAGCT 

rs696217 
Met72Leu, 366 C>A  

(exon 3) 

  Forward             CCTTCCAGCAGAGAAAGGAG  

  Reverse             TGTAGTTGGGACCCTGTTCAC  

  M72T*                 cgtcctaGCAGAAGGGGCAGAGGATGAA 

rs4684677 
Leu90Gln 421 A>T 

(exon 4) 

  Forward            CTGACATCTCCTGGGTCCTC  

  Reverse            AAACCGAGCAAACCCAGTC  

  L90Q*               taatataactccatattacattaTGGAATCAAGCTGTCAGGGGTTC 

 

 

A Single nucleotide polymorphism, B Begins in the first nucleotide of first codon of GHRL, accession 

number of reference sequence was NM_016362 on NCBI. 

* SNaPshot primers for GHRL polymorphism detection. 
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Supplemental Table 1. Effect of ghrelin on hepatic gene expression in rats with fibrosis as assessed by microarray 

analysis. Only annotated genes were considered.  

 

Gene 

symbol 
GeneName 

BDL-saline vs 

sham (fold) 

BDL-ghrelin 

vs BDL-saline 

(fold
*
) 

Extracellular matrix   

Lox lysyl oxidase 41.97 -2.61 

Plaur plasminogen activator, urokinase receptor 4.17 -2.50 

Sparcl1 SPARC-like 1 (mast9, hevin) 5.77 -2.50 

Cthrc1 collagen triple helix repeat containing 1 8.17 -2.41 

Plod2 procollagen lisine, 2-oxoglutarate 5-dioxygenase 2 25.64 -2.19 

Lamc1 laminin, gamma 1 10.48 -1.97 

Mmp2 matrix metallopeptidase 2 15.42 -1.95 

Fbn1 fibrillin 1 11.87 -1.93 

Fgl2 fibrinogen-like 2 2.46 -1.92 

Adam9 a disintegrin and metalloproteinase domain 9 (meltrin gamma) 1.58 -1.89 

Timp3 tissue inhibitor of metalloproteinase 3 (Sorsby fundus dystrophy, 

pseudoinflammatory) 

1.66 -1.84 

Mgp matrix Gla proteín 18.36 -1.81 

Mxra8 matrix-remodelling associated 8 5.31 -1.77 

Ermp1 endoplasmic reticulum metallopeptidase 1 1.92 -1.76 

Plat plasminogen activator, tissue 16.99 -1.75 

Thbs1 thrombospondin 1 17.34 -1.74 

Col5a2 procollagen, type V, alpha 2 11.51 -1.72 

Col1a1 procollagen, type 1, alpha 1 24.85 -1.67 

Loxl1 lysyl oxidase-like 1 118.96 -1.65 

Col4a1 procollagen, type IV, alpha 1 13.60 -1.64 

Col12a1 procollagen, type XII, alpha 1 12.64 -1.63 

Col3a1 procollagen, type III, alpha 1 5.64 -1.60 

Ltbp1 latent transforming growth factor beta binding protein 1 8.72 -1.59 
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Col5a1 procollagen, type V, alpha 1 5.43 -1.53 

Reln reelin 1.60 -1.50 

Inflammation / Immunity   

C7 complement component 7 20.03 -2.85 

Colec12 collectin sub-family member 12 12.89 -2.49 

Spp1 secreted phosphoprotein 1 46.04 -2.38 

Mcam melanoma cell adhesion molecule 4.45 -2.34 

Tnfrsf14 tumor necrosis factor receptor superfamily, member 14 

(herpesvirus entry mediator) 

2.95 -2.34 

Cd200 Cd200 antigen 3.15 -2.19 

Ahr aryl hydrocarbon receptor 1.71 -2.16 

Cd3g CD3 antigen, gamma polypeptide 2.15 -1.89 

Igsf10 immunoglobulin superfamily, member 10 7.58 -1.83 

Ccl2 chemokine (C-C motif) ligand 2 17.57 -1.83 

Cd44 CD44 antigen 54.65 -1.78 

Tnfrsf11b tumor necrosis factor receptor superfamily, member 11b 

(osteoprotegerin) 

2.78 -1.70 

Catna1 catenin (cadherin-associated protein), alpha 1 1.83 -1.67 

Cd38 CD38 antigen 2.19 -1.64 

Ccr5 chemokine (C-C motif) receptor 5 2.32 -1.63 

Af6 Afadin 1.76 -1.58 

Irf8 interferon regulatory factor 8 2.10 -1.57 

Tia1 cytotoxic granule-associated RNA binding protein 1 2.06 -1.55 

Sla src-like adaptor 2.79 -1.54 

Cd276 CD276 antigen 6.50 -1.50 

Igha_mapped immunoglobulin heavy chain (alpha polypeptide) (mapped) -4.17 2.73 

Energetic metabolism   

Oldlr1 oxidized low density lipoprotein (lectin-like) receptor 1 16.44 -2.87 

Fabp4 fatty acid binding protein 4, adipocyte 23.44 -2.55 

Vldlr very low density lipoprotein receptor 5.29 -2.11 

B3galt3 UDP-Gal:betaGlcNAc beta 1,3-galactosyltransferase, 17.61 -2.07 
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polypeptide 3 

Mlstd2 male sterility domain containing 2 2.94 -2.07 

Lpl lipoprotein lipase 25.40 -2.01 

St3gal2 ST3 beta-galactoside alpha-2,3-sialyltransferase 2 6.55 -1.83 

Pfkp Phosphofructokinase, platelet 5.18 -1.70 

Soat1 sterol O-acyltransferase 1 3.72 -1.64 

Pdk3 pyruvate dehydrogenase kinase, isoenzyme 3 6.33 -1.57 

St3gal4 ST3 beta-galactoside alpha-2,3-sialyltransferase 4 3.40 -1.55 

Asah1 N-acylsphingosine amidohydrolase 1 3.33 -1.50 

Acly ATP citrate lyase -2.88 1.50 

Ptms Parathymosin -1.99 1.50 

Dhcr7 7-dehydrocholesterol reductase -1.85 1.52 

Igfals insulin-like growth factor binding protein, acid labile subunit -3.47 1.56 

Dcxr dicarbonyl L-xylulose reductase -3.61 1.60 

Pdk2 pyruvate dehydrogenase kinase, isoenzyme 2 -2.45 1.61 

Igf2bp3 insulin-like growth factor 2, binding protein 3 -5.19 1.79 

Fasn fatty acid synthase -1.87 1.87 

Elovl6 ELOVL family member 6, elongation of long chain fatty acids 

(yeast) 

-2.23 1.88 

Gcat glycine C-acetyltransferase (2-amino-3-ketobutyrate-coenzyme 

A ligase) 

-4.28 1.97 

Gpd1 glycerol-3-phosphate dehydrogenase 1 (soluble) -4.26 2.00 

Cryl1 Crystallin, lamda 1 -2.44 2.09 

Aacs acetoacetyl-CoA synthetase -1.59 2.21 

Fads2 fatty acid desaturase 2 -3.10 2.24 

Metabolism   

Cyp1b1 cytochrome P450, family 1, subfamily b, polypeptide 1 2.37 -2.18 

Cybb cytochrome b-245, beta polypeptide 4.30 -2.06 

Heph Hephaestin 6.66 -1.95 

Gls Glutaminase 3.85 -1.83 

Cybrd1 cytochrome b reductase 1 1.84 -1.74 
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Glrx2 glutaredoxin 2 (thioltransferase) 1.91 -1.70 

Hprt hypoxanthine guanine phosphoribosyl transferase 1.84 -1.64 

Chdh choline dehydrogenase -3.40 1.50 

Hfe2 hemochromatosis type 2 (juvenile) homolog (human) -1.60 1.59 

Cyp2t1 cytochrome P450 monooxygenase CYP2T1 -3.69 1.62 

Dao1 D-amino acid oxidase 1 -3.99 1.64 

Prodh2 proline dehydrogenase (oxidase) 2 -2.67 1.70 

Sts steroid sulfatase -2.27 1.75 

Abat 4-aminobutyrate aminotransferase -6.01 1.77 

Gstm2 glutathione S-transferase, mu 2 -3.46 1.77 

Srd5a1 steroid 5 alpha-reductase 1 -4.03 2.29 

Signaling    

Rgs4 regulator of G-protein signaling 4 10.05 -4.29 

Prkacb protein kinase, cAMP dependent, catalytic, beta 1.55 -2.73 

Egr2 early growth response 2 4.92 -2.51 

Zfhx1b zinc finger homeobox 1b 1.99 -2.26 

Arl11 ADP-ribosylation factor-like 11 6.01 -2.25 

Pkia protein kinase inhibitor, alpha 12.72 -2.04 

Ptprc protein tyrosine phosphatise, receptor type, C 4.08 -1.99 

Gng2 guanine nucleotide binding proteína, gamma 2 2.76 -1.97 

Egr3 early growth response 3 2.07 -1.97 

Gadd45b growth arrest and DNA-damage-inducible 45 beta 1.93 -1.94 

Sp1 Sp1 transcription factor 1.70 -1.87 

Edg2 endothelial differentiation, lysophosphatidic acid G-protein-

coupled receptor, 2 

3.44 -1.85 

Ddit4 DNA-damage-inducible transcript 4 2.84 -1.84 

Slk serine/threonine kinase 2 1.75 -1.80 

Bhlhb3 basic helix-loop-helix domain containing, class B3 2.06 -1.74 

Adcy3 adenylate cyclase 3 1.96 -1.73 

Plcl1 phospholipase C-like 1 3.04 -1.73 

Prkcb1 protein kinase C, beta 1 2.71 -1.70 
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Gucy1a3 guanylate cyclase 1, soluble, alpha 3 1.86 -1.67 

Anxa3 annexin A3 2.82 -1.67 

Rem1 rad and gem related GTP binding protein 1 1.78 -1.65 

Pld1 phospholipase D1 2.31 -1.63 

Rgs5 regulator of G-protein signaling 5 8.51 -1.62 

Prkaa1 protein kinase, AMP-activated, alpha 1 catalytic subunit 1.88 -1.61 

Tcf21 transcription factor 21 4.61 -1.60 

Tfec transcription factor EC 3.08 -1.58 

Mtf2 metal response element binding TF 2 1.58 -1.58 

Ptprz1 protein tyrosine phosphatise, receptor-type, Z polypeptide 1 9.63 -1.57 

Rgs2 regulator of G-protein signaling 2 10.46 -1.57 

Stk17b serine/threonine kinase 17b (apoptosis-inducing) 2.79 -1.56 

Arpp19 cAMP-regulated phosphoprotein 19 2.91 -1.56 

Hnrpa3 heterogeneous nuclear ribonucleoprotein A3 1.57 -1.56 

Ap2b1 adaptor-related protein complex 2, beta 1 subunit 2.00 -1.55 

Znf292 zinc finger protein 292 1.60 -1.54 

Akap13 A kinase (PRKA) anchor protein 13 3.21 -1.54 

Runx3 runt-related transcription factor 3 1.90 -1.54 

Atm ataxia telangiectasia mutated homolog (human) 1.63 -1.54 

Pak2 p21 (CDKN1A)-activated kinase 2 1.61 -1.52 

Prkch protein kinase C, eta 1.90 -1.52 

Rhoq ras homolog gene family, member Q 2.53 -1.51 

Dab2 disabled homolog 2 (Drosophila) 3.05 -1.51 

Anxa2 annexin A2 15.79 -1.50 

Rnf39 ring finger protein 39 -2.67 1.99 

Nfe2 nuclear factor, erythroid derived 2 -3.17 1.89 

Prkaca protein kinase, cAMP-dependent, catalytic, alpha -1.95 1.78 

Hes6 hairy and enhancer of split 6 (Drosophila) -3.68 1.71 

Rnf126 ring finger protein 126 -1.67 1.70 

Srebf1 sterol regulatory element binding factor 1 -2.95 1.67 

Rgs3 regulator of G-protein signalling 3 -2.55 1.58 
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Tcf1 transcription factor 1 -1.72 1.57 

Membrane proteins   

Jam2 junction adhesion molecule 2 2.17 -2.29 

Abcc5 ATP-binding cassette, sub-family C (CFTR/MRP), member 5 2.65 -2.06 

Itga8 integrin alpha 8 14.03 -1.96 

Gja1 gap junction membrane channel protein alpha 1 12.37 -1.87 

Slc25a4 solute carrier family 25 (mitochondrial carrier; adenine 

nucleotide translocator), member 4 

8.49 -1.68 

Slc39a6 solute carrier family 39 (metal ion transporter), member 6 2.06 -1.58 

Gja7 gap junction membrane channel protein alpha 7 3.18 -1.51 

Slc17a5 solute carrier family 17 (anion/sugar transporter), member 5 -1.79 1.51 

Atp6v0a1 ATPase, H+ transporting, lysosomal V0 subunit A1 -1.55 1.57 

Slc39a3 solute carrier family 39 (zinc transporter), member 3 -2.10 1.57 

Abcd3 ATP-binding cassette, sub-family D (ALD), member 3 -2.02 1.58 

Slc26a1 solute carrier family 26 (sulfate transporter), member 1 -3.12 1.62 

Slc23a1 solute carrier family 23 (nucleobase transporters), member 1 -4.44 1.64 

Adrm1 adhesion regulating molecule 1 -1.81 1.90 

Vasoactive substances/Coagulation   

Ddr2 discoidin domain receptor family, member 2 3.50 -3.06 

Serpine1 serine (or cysteine) peptidase inhibitor, clade E, member 1 2.36 -2.33 

Ednra endothelin receptor type A 2.54 -1.93 

Tfpi2 tissue factor pathway inhibitor 2 1.82 -1.86 

F2r coagulation factor II (thrombin) receptor 6.01 -1.82 

Ednrb endothelin receptor type B 9.69 -1.80 

Ptafr platelet-activating factor receptor 2.15 -1.67 

Adra1b adrenergic receptor, alpha 1b -3.60 1.56 

Apoptosis    

Ripk2 receptor (TNFRSF)-interacting serine-threonine kinase 2 2.55 -1.88 

Bcl2a1 B-cell leukemia/lymphoma 2 related protein A1 4.99 -1.80 

Casp2 caspase 2 2.09 -1.77 

Casp1 caspase 1 3.60 -1.68 
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Bmf Bcl2 modifying factor -7.09 1.72 

Cytoskeleton   

Eml2 echinoderm microtubule associated protein like 2 3.01 -2.02 

Tpm4 tropomyosin 4 7.64 -1.68 

Lbr lamin B receptor 2.05 -1.67 

Kif2 kinesin heavy chain family, member 2 3.26 -1.57 

Tpm3 tropomyosin 3, gamma 2.09 -1.55 

   

Growth factors   

Fgf13 fibroblast growth factor 13 3.93 -4.03 

Pdgfd platelet-derived growth factor, D polypeptide 7.09 -2.67 

Fgfr2 fibroblast growth factor receptor 2 3.26 -2.25 

Ptn Pleiotrophin 6.41 -1.71 

Fgfr1 Fibroblast growth factor receptor 1 5.68 -1.68 

Hgf hepatocyte growth factor 2.67 -1.56 

Pdgfra platelet derived growth factor receptor, alpha polypeptide 4.16 -1.51 

Others    

Emp1 epithelial membrane protein 1 6.36 -3.05 

RT1-Aw2 RT1 class Ib, locus Aw2 2.54 -2.75 

Sf3b1 splicing factor 3b, subunit 1 1.56 -2.66 

Cdh11 cadherin 11 10.61 -2.53 

Nedd4 neural precursor cell expressed, developmentally down-

regulated gene 4 

2.09 -2.39 

Ogt O-linked N-acetylglucosamine (GlcNAc) transferase (UDP-N-

acetylglucosamine:polypeptide-N-acetylglucosaminyl 

transferase) 

1.77 -2.15 

Hspa4 heat shock protein 4 2.24 -2.02 

Kitl kit ligand 4.91 -1.99 

Crygc Crystallin, gamma C 2.15 -1.92 

Fblim1 filamin binding LIM protein 1 15.74 -1.92 

Olfml1 olfactomedin-like 1 3.18 -1.86 
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Pqlc3 PQ loop repeat containing 3 27.64 -1.84 

Tfrc Transferrin receptor 2.13 -1.80 

Fstl1 follistatin-like 1 4.95 -1.78 

Ctsk Cathepsin K 3.98 -1.78 

Spnb2 spectrin beta 2 3.64 -1.75 

Cugbp2 CUG triplet repeat, RNA binding protein 2 2.68 -1.73 

Osbpl5 oxysterol binding protein-like 5 4.03 -1.72 

Pcsk1 Proprotein convertase subtilisin/kexin type 1 4.81 -1.70 

Clecsf6 C-type (calcium dependent, carbohydrate recognition domain) 

lectin, superfamily member 6 

5.00 -1.70 

Ssg1 steroid sensitive gene 1 4.68 -1.69 

Fhl2 four and a half LIM domains 2 25.51 -1.69 

Ddx46 DEAD (Asp-Glu-Ala-Asp) box polypeptide 46 2.49 -1.69 

Ppic peptidylprolyl isomerase C 26.91 -1.68 

Ctse Cathepsin E 5.74 -1.68 

RT1-Ba RT1 class II, locus Ba 3.04 -1.65 

Mgl1 Macrophage galactose N-acetyl-galactosamine specific lectin 1 3.26 -1.65 

Robo2 roundabout homolog 2 (Drosophila) 12.90 -1.64 

Sfpq splicing factor proline/glutamine rich (polypyrimidine tract 

binding protein associated) 

1.53 -1.63 

Ddx17 DEAD (Asp-Glu-Ala-Asp) box polypeptide 17 1.58 -1.61 

Ddx21a DEAD (Asp-Glu-Ala-Asp) box polypeptide 21a 1.55 -1.61 

Lgals1 Lectin, galactose binding, soluble 1 18.79 -1.60 

Gpiap1 GPI-anchored membrane protein 1 1.90 -1.59 

RT1-N3 RT1 class Ib gene, H2-TL-like, grc region (N3) 1.95 -1.58 

S100a6 S100 calcium binding protein A6 (calcyclin) 30.28 -1.55 

App amyloid beta (A4) precursor protein 6.69 -1.55 

Mdn1 midasin homolog (yeast) 1.53 -1.54 

Cdr2 cerebellar degeneration-related 2 1.97 -1.54 

Rab31 RAB31, member RAS oncogene family 5.25 -1.54 

RT1-Da RT1 class II, locus Da 4.03 -1.53 
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Trip10 thyroid hormone receptor interactor 10 1.65 -1.53 

Btg3 B-cell translocation gene 3 7.20 -1.51 

Plekhb1 pleckstrin homology domain containing, family B (evectins) 

member 1 

-3.18 2.33 

Cct6a chaperonin subunit 6a (zeta) -2.53 1.81 

Ddhd1 DDHD domain containing 1 -2.65 1.78 

Bmsc-UbP bone marrow stromal cell-derived ubiquitin-like protein -1.57 1.76 

Cml4 camello-like 4 -48.15 1.74 

Npy neuropeptide Y -1.75 1.72 

Xkr8 X Kell blood group precursor related family member 8 homolog -2.71 1.68 

Mig12 MID1 interacting G12-like proteína -1.98 1.66 

Snrpn small nuclear ribonucleoprotein N -1.53 1.63 

Pex16 peroxisome biogenesis factor 16 -2.82 1.54 

Kat3 kynurenine aminotransferase III -2.90 1.52 

Lrp16 LRP16 protein -3.09 1.51 

 

*At least 50% of variation respect to BDL-saline. FDR < 0.2 
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Supplemental Table 3. Correlation of GHRL hepatic expression with expression of other genes in patients with 

chronic liver diseases. 

 

 

Gene Symbol Gene name Group r P value 

SERPINE1 Plasminogen activator inhibitor type 1 A 0.713 <0.0001 

TGFB1 Transforming growth factor beta 1 A 0.708 <0.0001 

ACE Angiotensin I converting enzyme A 0.641 <0.0001 

TNFRSF1B Tumor necrosis factor receptor superfamily, member 1B A 0.687 <0.0001 

ADIPOR1 Adiponectin receptor 1 B 0.671 <0.0001 

IGF1 Insulin-like growth factor 1 B 0.624 <0.0001 

IRS1 Insulin receptor substrate 1 B 0.642 <0.0001 

PBEF1 Visfatin B 0.673 <0.0001 

ABCG1 ATP-binding cassette, sub-family G member 1 C 0.703 <0.0001 

ABCG8 ATP-binding cassette, sub-family G member 8 C 0.671 <0.0001 

ABCG5 ATP-binding cassette, sub-family G member 5 C 0.690 <0.0001 

SP2 Sp2 transcription factor D 0.642 <0.0001 

JAK1 Janus kinase 1 D 0.694 <0.0001 

SREBF1 Sterol regulatory element binding transcription factor 1 D 0.702 <0.0001 

SOCS1 Suppressor of cytokine signaling 1 D 0.628 <0.0001 

STAT3 Signal transducer and activator of transcription 3 D 0.688 <0.0001 

SP1 Sp1 transcription factor D 0.671 <0.0001 

JAK2 Janus kinase 2 D 0.705 <0.0001 

PPARG Peroxisome proliferator-activated receptor gamma D 0.701 <0.0001 

PPARD Peroxisome proliferator-activated receptor delta D 0.665 <0.0001 

PPARA Peroxisome proliferator-activated receptor alpha D 0.631 <0.0001 

SREBF2 Sterol regulatory element binding transcription factor 2 D 0.666 <0.0001 

ATF4 Activating transcription factor 4 D 0.673 <0.0001 

EIF2AK3 Eukaryotic translation initiation factor 2-alpha kinase 3 E 0.647 <0.0001 

HMGCR 3-hydroxy-3-methylglutaryl-Coenzyme A reductase E 0.646 <0.0001 

SMPD1 Sphingomyelin phosphodiesterase 1, acid lysosomal E 0.699 <0.0001 

HSP5A Heat shock protein 5 E 0.668 <0.0001 

 

A. Fibrosis/inflammation, B. Hormones/adipokines, C. Transporters, D. Intracellular signaling, E. Others 
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