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Abstract

Following acute myocardial infarction (MI), cardiomyocyte survival depends on its mitochondrial oxidative capacity. Cell
death is normally followed by activation of the immune system. Peroxisome proliferator activated receptor c-coactivator 1a
(PGC-1a) is a transcriptional coactivator and a master regulator of cardiac oxidative metabolism. PGC-1a is induced by
hypoxia and facilitates the recovery of the contractile capacity of the cardiac muscle following an artery ligation procedure.
We hypothesized that PGC-1a activity could serve as a good molecular marker of cardiac recovery after a coronary event.
The objective of the present study was to monitor the levels of PGC-1a following an ST-segment elevation acute myocardial
infarction (STEMI) episode in blood samples of the affected patients. Analysis of blood mononuclear cells from human
patients following an STEMI showed that PGC-1a expression was increased and the level of induction correlated with the
infarct size. Infarct size was determined by LGE-CMR (late gadolinium enhancement on cardiac magnetic resonance), used
to estimate the percentage of necrotic area. Cardiac markers, maximum creatine kinase (CK-MB) and Troponin I (TnI) levels,
left ventricular ejection function (LVEF) and regional wall motion abnormalities (RWMA) as determined by echocardiography
were also used to monitor cardiac injury. We also found that PGC-1a is present and active in mouse lymphocytes where its
expression is induced upon activation and can be detected in the nuclear fraction of blood samples. These results support
the notion that induction of PGC-1a expression can be part of the recovery response to an STEMI and could serve as a
prognosis factor of cardiac recovery.
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Introduction

Acute myocardial infarction (MI) is the leading cause of death of

patients with cardiovascular disease [1,2]. Left ventricular (LV)

dilatation and pump failure following MI are the main causes for

poor clinical outcomes. Clinical studies have consistently demon-

strated that development of congestive heart failure typically

depends on infarct and LV ischemic size areas. MI ischemic

process initiates a cascade of progressive structural and geometric

changes in the left ventricle, a process commonly referred to as

remodeling. The molecular and cellular changes associated with

ventricular remodeling affect both the necrotic zone and the non-

infarcted segments of the ventricle and manifest clinically as

chamber dilation, ventricular remodeling with increased sphericity

of the ventricle and worsened cardiac function, greatly limiting

patients living conditions [3,4].

MI recovery thus depends on two clearly distinct but related

factors. The first one is the capacity of cardiomyocytes to survive

the ischemia-reperfusion (IR) injury, and the second one is the

intrinsic regenerative capacity of the damaged tissue, that depend

both on the patient genetics but also on its life-style and clinical

history. Importantly, not only cardiomyocytes but several other

cell types have been proposed to play a role in the repair/

regeneration process and impact, both positively and negatively,

the final outcome [5]. For example, early activation of the

inflammatory system protects from ventricular remodeling al-

though its sustained activation favors it. Evidence suggests that T

cells play a significant role in controlling the post-infarct

inflammatory response [6]. Their behavior is likely to depend to

a large extent on the capacity of the damaged tissue of recovering

its oxidative capacity. Low oxygen tension activates critical

transcription factors like HIF (Hypoxia Induced Factor) that facilitates

cell survival by shifting the cellular metabolism from oxidative to

glycolytic [7]. If this metabolic shift were not reversed during the

‘‘recovery-regenerative’’ phase the result would be increased

cardiac overload and failure [8]. The crucial regulatory factors/

PLoS ONE | www.plosone.org 1 November 2011 | Volume 6 | Issue 11 | e26913

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/36115931?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


pathways that mediate this metabolic shift are still only partially

elucidated [9].

Peroxisome proliferator activated receptor c coactivator -1a
(PGC-1a) is a transcriptional coactivator and a master regulator of

genes involved in oxidative metabolism and mitochondrial

biogenesis [10] that plays a key role in the metabolic control in

the cardiac muscle [11] and participates in cardiomyocyte

differentiation [12]. Importantly PGC-1a knock out mice develop

ventricular dysfunction and are prone to cardiac failure following

transverse aortic constriction [13]. Accordingly, PGC-1a levels are

reduced in the heart following MI by coronary artery ligation in

rats [14] while treatment with angiotensin II receptor blockers

(ARB) and PPAR agonists (pioglitazone and rosiglitazone),

preserve both ventricular function and PGC-1a levels, and have

been demonstrated to attenuate myocardial ischemia-reperfusion

injury [15,16,17]. Another study using rats demonstrated that the

gene expression of PGC-1a was also down-regulated in the heart

in congestive heart failure [18].

All these results support the notion that while severe hypoxia

activates HIF [19] and down-regulates PGC-1a levels in the

cardiomyocyte, PGC-1a induction is likely to be crucial during the

regenerative phase to facilitate the recovery of the cardiac muscle

oxidative capacity [20]. Therefore, monitorization of the patient’s

capacity to induce PGC-1a expression post-infarction would be of

potential use to pre-evaluate its later recovery, however that

monitorization could only be feasible if PGC-1a induction post-

infarction could be detected in the nuclear fraction of blood

samples. In this respect PGC-1a has been previously reported to

be present in circulating neutrophils and lymphocytes [21].

In summary, from what we know so far from PGC-1a biology

we think that the capacity of a tissue to induce PGC-1a after an

hypoxic event, such as a MI, could predict the regenerative

capacity of the tissue. In the particular case of the human heart

following a MI, that predictive value is both particularly relevant

and hard to assess directly, because we cannot take biopsies of the

infarcted heart in order to measure PGC-1a levels. Hence, the

potential use of PGC-1a as a predictor of a patient’s recovery

capacity would have no translational use unless we showed first

that we could detect PGC-1a induction in circulating immune

cells of infarcted patients.

Therefore, we decided to test if PGC-1a could be detected in

human blood mononuclear cells and if its expression was induced

following lymphocyte activation post-infarction.

Our results show that PGC-1a is present and active in both B

and T lymphocytes, and its expression is activated upon

lymphocyte activation. More importantly, PGC-1a induction

can be detected in blood mononuclear cells from MI patients,

72 hours (h) post-infarction, with PGC-1a induction correlating

well with the size of the hypoxic area.

Materials and Methods

Humans
This is a cohort study of 38 patients with confirmed ST-segment

elevation myocardial infarction (STEMI) that were subjected to a

reperfusion strategy and discharged alive from Coronary Care

Unit of the ‘‘Consorcio Hospital General Universitario de

Valencia’’ (CHGUV), Spain. The patients were admitted in the

period from March-2009 through March-2010. The diagnosis of

STEMI was based on the definition of the European Society of

Cardiology (ESC) Guidelines [22,23], by the presence of clinically

appropriate symptoms (ischemic characteristic chest pain and/or

autonomic nervous system activation), increased blood levels of

biomarkers troponin I (TnI) and creatin-kinase MB (CK-MB) and

persistent ST-segment elevation on the electrocardiogram (ECG).

Reperfusion therapy included mechanical and pharmacological

procedures, such as fibrinolytic treatment, primary percutaneous

coronary intervention (PCI) and rescue PCI after failed pharma-

cological reperfusion. For exclusion criteria see Supp. Info. Blood

samples were drawn on admission to the hospital and 72 h later.

Total mRNA and protein were isolated from the blood

mononuclear fraction.

Infarct size was estimated from the determination of the

necrotic area by late gadolinium enhancement (LGE) in cardiac

magnetic resonance (CMR) studies. Maximun CK-MB and TnI

plasma levels, left ventricular ejection function (LVEF) and

regional wall motion abnormalities (RWMA) were also used as

markers of cardiac injury.

Patient exclusion criteria
Were excluded patients with previous history of coronary artery

disease, in order to avoid bias measuring myocardial necrosis

images obtained by CMR. We also excluded patients with chest

pain latency longer that 150 minutes, to avoid miss interpretation

of the results obtained from blood samples at the time of hospital

admission. Moreover, patients resuscitated, those that suffered a

second infarction in the first 72 h post admission, or having their

highest CK value on admission, were also not included in the

study. The presence of left bundle branch block or atrial

fibrillation of ECG at admission was also an exclusion criteria.

Clinical data collected included: clinical history including, cardio-

vascular risk factors and ambulatory treatment, relevant biochem-

ical values, including fasting glucose (mean of three independent

values), hemoglobin and hematocrit at admission, leucocytes at

admission and 72 h later (including total leucocytes, lymphocytes,

monocytes and their relative percentages), CRP at admission,

creatinine at admission and the glomerular filtration rate estimated

by MDRD equation, lipid profile (including total cholesterol,

LDLc, HDLc and triglycerides), glycosilated hemoglobin (Hb1Ac),

and the plasma curve of cardiac biomarkers (peak values were used

for the analysis), reperfusion procedure used (pharmacological

strategy with tenecteplase or mechanical process as primary or

recue PCI), echocardiographic data, performed on the first 72 h,

with all the M-mode parameters and two dimensional analysis,

including LVEF and RWMA, hemodynamic data, including

LVEF by ventriculography and coronary arteries affected by the

coronarography (considering significant stenosis those with more

than 75% of the vessel lumen of epicardial coronary arteries or

more than 50% of the main left artery, and CMR data, including

the regular determinations of both ventricles, their EF and

myocardial mass, the necrotic mass estimated by late gadolinium

enhancement (LGE), and the presence of microvascular obstruc-

tion).

Cardiac Magnetic Resonance (CMR) studies
CMR was performed with a 1.5 T unit (Magneton Sonata,

Siemens, Erlangen, Germany). Functional images of long-axis and

short axis were obtained using ECG-gated SSFP (Steady State Free

Precession) sequences (8 mm slice thickness with 2-mm gap between

short-axis slices). Edema detection was carried out using short-axis

black-blood, T2-weighted (short time inversion recovery) in the

same views as the cine sequences using a HASTE (Half-Fourier

Acquisition Single-shot Turbo spin Echo) multisection sequence (RT, 2

R-R intervals; ET, 33 ms; IT, 170 ms; slice thickness, 8 mm;

inter-slice interval, 2 mm; flip angle, 160u; matrix, 2566151;

bandwidth, 781 Hz/pixel) and a segmented TSE (Turbo Spin-Echo)

sequence (RT, 2 R-R intervals; ET, 100 ms; IT, 170 ms; slice

thickness, 8 mm; interval, 2 mm; flip angle, 180u; matrix,
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2566146; bandwidth, 235 Hz/pixel) in case of poor quality with

HASTE sequence. Late-gadolinium images were acquired after

intravenous injection (0,15 ml/kg) of dimeglubine gadobenate

0.5 M. Non breath-holding ECG-gated single-shot IR-SSFP

short-axis in the same views as the cine sequences were performed

1–2 min after contrast administration with fixed long TI (600 ms)

to discriminate normal myocardium, infarcted myocardium and

microvascular obstruction (MVO). Ten minutes after contrast

administration, the same short-axis slices were repeated adjusting

the IT to null normal myocardium using non breath-holding

single-shot IR-SFP sequences and finally breath-holding 2D and

3D turbo-FLASH (Fast Low Angle Shot) sequences. A standard 17-

segmented cardiac-model was used for short-used for short-axis

slice segmentation and assessing areas of edema and late-

gadolinium images. Perfusion defects were assessed visually as

persistent deficit during the first–pass contrast. Areas of high T2

signal intensity were identified by visual inspection. Finding of a

low-signal-intensity area surrounded by a high-signal-intensity

area in these images was considered to indicate an area of MVO.

Areas with LGE were also identified by visual inspection, where

MVO was defined as an area without signal located within an area

of LGE. Transmurality was considered when the area of affected

myocardium was .50%. Both edema and LGE were evaluated by

manual tracing of these areas, and given values are expressed as

percentage of total myocardium mass, as calculated by tracing

endocardium and epicardium contours in a dedicated work-station

(Argus, Siemens, Erlangen, Germany).

Mice
C57BL6 PGC-1a2/2 mice were originally provided by Dr.

Bruce Spiegelman (DFCI, USA) and following embryonic transfer

a colony was established within the SPF area of the CNIC animal

facility. Male C57BL6 PGC-1a+/+ and PGC-1a2/2 of 6–8 weeks

of age were used.

Preparation of splenocytes and thymocytes from mice
Spleen and thymus were removed aseptically. Single-cell

suspensions were obtained by mechanically disrupting the organs

with a syringe plunger in cold PBS supplemented with 2 mM

EDTA and 0.1% FBS. Red blood cells were removed incubating

the cells in ACK lysis buffer for 5 min at 4uC. Splenocytes and

thymocytes were washed in cell culture medium (RPMI 1640

supplemented with 10% FBS, 10 mM HEPES, 2 mM L-

Glutamine, 1 mM sodium pyruvate, 1% non essential aminoacids,

100 U/ml penicillin and 100 mg/ml streptomycin) and filtered

through a 70 mm nylon cell strainer. Cells were adjusted to a final

concentration of 106 cells/ml. Spleen cells were stimulated for 3, 6

and 24 hours with anti-IgM F(ab9)2 fragment (1 mg/ml; Jackson

immunoresearch).

Preparation of mononuclear cells from human peripheral
blood

4 mL of human peripheral blood collected in K3EDTA

Vacutainers (BD) were used to isolate mononuclear cells by Ficoll

density gradient centrifugation using Ficoll-PaqueTM (Miltenyi

Biotec) and following the manufacturer’s instructions. Isolated cells

were analyzed using Cytospin and Fast Panoptic Staining

(Panreac). Only those preparations containing $90% of mono-

nuclear cells were used for the analysis.

Molecular Biology Analysis
Total RNA was isolated using TrizolTM (Invitrogen) and

following the manufacturer’s instructions. The quality of the

RNA was evaluated in a Bioanalyzer and quantitated in a

Nanodrop. The RNA used had a ratio of the absorbance at 260

and 280$1.8 and a RNA integrity number (RIN) $8. Relative

mRNA expression levels of PGC-1a, cytochrome c (Cyt c) and Mn

superoxide dismutase (MnSOD) were determined by quantitative

PCR of retro transcribed cDNA (qRT-PCR) with specific primers

as previously described [24]. Whole cell extracts were used to

analyze protein levels. PGC-1a, Cyt c and MnSOD protein levels

in mouse splenocytes were determined by western blot using

specific antibodies. The Zeptosens reverse array platform was used

to quantify Cyt c protein levels is human samples.

Mitochondria
Mitochondrial mass was estimated using MitoTracker Green

labeling. In short, 2.56105 splenocytes were incubated in 96-well

U- bottom plates with 0.1 mM MitoTracker Green (Invitrogen) in

PBS for 30 min at 37uC, washed twice with PBS and fixed with

4% paraformaldehyde for 15 min at 4uC. A FACSCantoTM II

cytometer (Becton Dickinson) was used to measure fluorescence

intensity of $20.000 events per sample. Data was analyzed using

the FACSDiva software (Becton Dickinson).

Ethics
The human experimental protocols were approved by the

Institutional Ethical Committee of the Instituto de Salud Carlos III

(ISCIII) and the CHGUV (Permit number PI 10/09). All patients

signed a written informed consent form. The animal experimental

protocols were approved by the Institutional Animal Care and Use

Committee of the CNIC (Permit number PA 13/09), and all

efforts were made to minimize suffering. All procedures conformed

to the Declaration of Helsinki and the NIH guidelines for animal

care and use (NIH publication No. 85-23).

Statistics
Statistical analyses were performed using SPSS for Windows,

release 17.0 (SPSS Inc., Chicago, IL). Levene’s test for equality of

variances and t-test for equality of means were used. All p-values

refer to two-tailed tests of significance; p, 0.05 was considered

significant.

Results

To determine if PGC-1a levels are induced during lymphocyte

activation we used a mouse model. First, we evaluated if PGC-1a
mRNA could be detected in total splenocyte, thymocytes and

lymph nodes from mice. We found that although PGC-1a mRNA

was detectable in both preparations PGC-1a levels were about 15

fold higher in splenocytes than in thymocytes and lymph nodes

(Fig. 1A). Next, we tested whether PGC-1a protein could be

detected in mouse splenocytes. A protein band of the predicted

molecular weight could be detected by western blot with a specific

antibody (Fig. 1B). In order to asses if this band was in fact PGC-

1a, a preparation of total splenocytes from PGC-1a2/2 mice was

used as negative control. We confirmed that the band was missing

from PGC-1a2/2 splenocytes and therefore we concluded that

PGC-1a is present in mouse splenocytes (Fig. 1B).

To evaluate if the detected PGC-1a protein was playing an

active role in the metabolic control of the splenocytes, we tested by

western blot the expression levels of well characterized molecular

targets of PGC-1a. Cyt c, that is part of the mitochondrial electron

transport chain [10], and the detoxification enzyme MnSOD [24]

and both were also found to be reduced in the total nuclear

fraction of blood samples from PGC-1a2/2 mice, suggesting that

PGC-1a is not only present, but is active in splenocytes (Fig. 1B).

PGC-1a Expression Is Induced in STEMI
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We further analyzed the mitochondrial content of murine

splenocytes from PGC-1a+/+ and PGC-1a2/2 mice. The cells

were labeled with MitoTracker Green, a non-membrane poten-

tial-dependent fluorescent marker, and analyzed by flow cytom-

etry. The results show that PGC-1a2/2 splenocytes have as an

average 20% less mitochondrial content than the PGC-1a+/+

splenocytes, indicating that the absence of PGC-1a has a net

impact on the number of mitochondria in splenocytes (Fig. 1C).

Finally, we tested if PGC-1a levels were modified upon

lymphocyte activation. First we examined the change in total

PGC-1a levels upon stimulation of total splenocytes with specific

stimuli for B lymphocytes (a-IgM). Splenocytes stimulated with a-

IgM showed an increase in both PGC-1a and Cyt c mRNA levels

3 h post stimulation, (Fig. 1D). We concluded that PGC-1a
expression is induced upon B cell stimulation. These results support

the notion that PGC-1a is present and active in lymphocytes and its

levels and activity are induced following lymphocyte stimulation.

In order to evaluate if we could detect the induction of PGC-1a
expression following STEMI, we isolated total mRNA from blood

mononuclear cells, isolated immediately upon admission and 72 h

later. PGC-1a levels were monitored by qRT-PCR. We found that

the samples segregated in two groups, those that induced PGC-1a

and those that did not (#1/.1). The induction group was further

subdivided in those that induced PGC-1a up to 10 fold (1–10), and

those that induced it more ($10) (Fig. 2A). To monitor PGC-1a
activity we also determined the induction of the PGC-1a target

genes Cyt c and MnSOD. We found that following STEMI not

only PGC-1a but also Cyt c and MnSOD mRNA levels were

increased (Fig. 2B–C), suggesting that not only PGC-1a mRNA

levels are higher, but also its transcriptional activity is elevated

following STEMI. This notion is further supported by the

observation that the induction of both Cyt c and MnSOD is

significantly higher in those patients that induced PGC-1a
expression more than 10 fold. To confirm the significance of this

observation Cyt c protein levels were directly monitored in whole

cell extracts from blood mononuclear cells, and were found to be

significantly elevated following STEMI only in the group of

patients that induced PGC-1a expression more than 10 fold

(Fig. 2D).

Importantly, we noted that the induction of PGC-1a after

STEMI inversely correlated with the mRNA levels of both PGC-

1a and Cyt c at the time of admission (Fig. 3), suggesting that

reduced basal PGC-1a activity, would result in stronger inductions

following STEMI.

Figure 1. PGC-1a mRNA is induced in mouse splenocytes following stimulation with aIgM. A) PGC-1a is present in mouse splenocytes and
tymocytes. Relative PGC-1a mRNA levels mouse splenocytes and tymocytes. B) Whole cell extracts of total splenocytes isolated from PGC-1a+/+ and
PGC-1a2/2 mice analyzed by western blot with specific antibodies against PGC-1a, Cyt c, MnSOD and b-actin as loading control. C) Total splenocytes
isolated from PGC-1a+/+ and PGC-1a2/2 mice were labeled with MitoTracker Green and analyzed by flow cytometry. D) Total splenocytes isolated
from C57BL6 mice were stimulated with aIgM for 3 h. Total RNA was extracted and PGC-1a and Cyt c mRNA levels were analyzed by qRT-PCR. Data
are means +/2SD. (*) p,0.05.
doi:10.1371/journal.pone.0026913.g001
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Figure 2. PGC-1a induction after STEMI correlates with Cyt c and MnSOD induction. A) PGC-1a mRNA levels, B) MnSOD mRNA levels, C)
Cyt c mRNA levels, D) Cyt c protein levels, in the blood mononuclear fraction of 37 STEMI patients right after hospital admission (t = 0) and 72 h later
(t = 72 h). Samples were grouped according to the induction rate of PGC-1a mRNA leves after STEMI (PGC-1a mRNA 72 h/PGC-1a mRNA 0 h) in three
groups, those that did not induce PGC-1a (#1), those that induced PGC-1a up to 10-fold (1–10) and those that induced PGC-1a more that 10-fold
($10). Data are means +/2SD. n.s = non statistically significant. Significance: p,0.05.
doi:10.1371/journal.pone.0026913.g002

Figure 3. PGC-1a induction after STEMI negative correlates with PGC-1a basal levels. The graph shows average Cyt C and PGC-1a mRNA
levels at the time of hospital admission in the three groups of PGC-1a induction.
doi:10.1371/journal.pone.0026913.g003
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To evaluate the functional significance of PGC-1a induction,

expression of PGC-1a was compared with: blood levels of

biomarkers (maximum values of TnI and CK-MB), echocardio-

graphic parameters (LVEF and RWMA), and infarct size estimated

by LGE in the CMR study. We found that induction of PGC-1a
expression 72 h after STEMI correlates with bigger infarcted areas

(% of necrotic area: 24.91 vs 10.9%) (Fig. 4A) and with higher

enzymatic peak (TnI 119.87 vs 63.01 ng/ml and CKMB 474.08 vs

170.73 ng/mL) (Fig. 4B), suggesting that induction of PGC-1a
expression is part of the cellular response to a STEMI.

PGC-1a induction tends to be more frequent in patients with

altered glucose metabolism and correlates with higher C-reactive

protein (CRP) levels, although the differences do not reach

statistical significance (Fig. 4D and Fig. 5).

Importantly, we also found that induction of PGC-1a
expression 72 h after STEMI correlates with more ventric-

ular dysfunction, with reduced LVEF, 53.96 vs 47.41% (Fig. 6A),

and increased RWMA (1.43 vs 1.79). Remarkably, left ventric-

ular dysfunction is more frequent in patients with a strong PGC-

1a induction, independently of the localization of the necrotic

area and despite the bigger size of the anterior infarctions

(Fig. 6C). This important observation may relate both to a

stronger immune response, and to a lower systemic level of

PGC-1a.

Figure 4. Patients that induce PGC-1a after STEMI have bigger necrotic areas. A) Necrotic areas as estimated by late gadolinium
enhancement (LGE). The infarct sizes, of the cohort of STEMI patients under survey, was determined by LGE on cardiac RMN (CMR). The estimated
mean infarct size for patients that induced PGC-1a levels (PGC-1a 72 h/0 h $1) is compared to that of patients that did not induce PGC-1a (PGC-1a
72 h/0 h #1) after STEMI. B–D) PGC-1a induction positively correlates with cardiac necrosis as estimated by TnImax (B), CKMBmax (C), and CRP plasma
levels (D). TnImax, CKMBmax, and CRP levels of the cohort of STEMI patients under survey The estimated mean for patients that induced PGC-1a levels
(PGC-1a 72 h/0 h $1) is compared to that of patients that did not induce PGC-1a (PGC-1a 72 h/0 h #1) after STEMI. Data are means +/2SD. (*)
p,0.05.
doi:10.1371/journal.pone.0026913.g004
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In order to evaluate if the observed induction of PGC-1a
monitored gross differences in the immune response after STEMI,

the total and relative blood count of total leukocytes, lymphocytes

and monocytes were monitored at t = 0 h and t = 72 h. As

previously noted a relative lymphocyte count tends to be reduced

after 72 h while the monocyte count tends to be increased. No

major differences were observed between the group of patients

that induced PGC-1a and the group that did not, indicating that

the observed increase in PGC-1a is likely a specific induction of its

expression and not just a reflection of changes in the number of

leukocytes following STEMI (Fig. 7).

Discussion

This study suggests that the monitorization of PGC-1a mRNA

levels has potential interest as a novel marker for the recovery after

STEMI, since high t = 0 PGC-1a levels and absence of PGC-1a
induction 3 days following STEMI, strongly correlate with

reduced cardiac injury. Furthermore, our data show that PGC-

1a mRNA levels can be readily detected in blood mononuclear

cell samples and are a good indicator of its activity.

Recovery of the cardiomyocyte oxidative capacity is crucial

during the reperfusion phase after STEMI. PGC-1a is a master

regulator of cellular oxidative metabolism. Since PGC-1a has been

found in lymphocytes, and induction of the immune system is also

a key factor in the STEMI recovery phase, we decided to evaluate

if PGC-1a induction could be detected in human patients after

STEMI. We found a good correlation between its post-hypoxic

expression and the size of the infarcted area.

38 patients were prospectively selected with STEMI diagnostic

that underwent a re-perfusion procedure. Blood samples were

obtained right after their arrival to the hospital and 72 h later,

being processed for RNA isolation. PGC-1a mRNA levels were

analyzed by qRT-PCR. Expression of PGC-1a in blood

mononuclear cells was compared with the severity of the cardiac

injury estimated by: enzymatic peak, LVEF and necrotic area

determined by LGE-CMR. We found that induction of PGC-1a
in blood mononuclear cells positively correlates with higher levels

of myocardium damage, a more severe left ventricular dysfunc-

tion, a higher RWMA score, and larger necrotic areas. This

observation showed that PGC-1a induction can be detected in

human blood mononuclear cells as part of the response to an

STEMI, and suggested that PGC-1a is induced in the immune

system (Table 1 and 2).

Interestingly, PGC-1a induction tends to be more frequent in

patients with altered glucose metabolism and higher C-reactive

protein (CRP) levels. CRP is generally acknowledged as an

important predictor of vascular death and has been shown to allow

reliable risk stratification of STEMI patients [25]. Elevated PGC-

1a mRNA levels have been previously reported in the liver of

diabetic patients [26]. However, metabolic data in diabetic

patients is generally consistent with a loss of PGC-1a activity

[27]. This apparent paradox may be related to the well-established

observation that diabetic patients have a chronic basal activation

of the immune system [28].

Although there were no major differences in the immune

response between the groups, some significant differences where

observed. The induction group had significantly more lympho-

Figure 5. PGC-1a induction correlates with higher plasma glucose levels in the cohort of STEMI patients under survey. The estimated
mean for patients that induced PGC-1a levels (PGC-1a 72 h/0 h $1) is compared to that of patients that did not induce PGC-1a (PGC-1a 72 h/0 h #1)
after STEMI. Data are means +/2SD. (*) p,0.05.
doi:10.1371/journal.pone.0026913.g005
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cytes at the time of hospitalization, and the increase in monocyte

count at t = 72 h was significantly more pronounced in the

induction group Although the significance of these differences

requires further evaluation, it is likely that they may just be the

correlate of a more severe cardiac damage.

Neutrophils, lymphocytes and monocytes are part of this response

with neutrophil’s count peak 12 h post-infarction, lymphocytes and

monocytes 48 h post-infarction. PGC-1a has been previously found

in human lymphocytes. To directly test if PGC-1a is induced in

stimulated leukocytes we measured PGC-1a levels in murine

splenocytes and we found that PGC-1a levels were induced

following B-cell receptor (BCR) stimulation. These results support

the notion that induction of PGC-1a in lymphocytes could be part

of the immune activation that follows an STEMI. A possible role of

PGC-1a in lymphocyte activation is supported by different

observations. For example, oxygen consumption is increased in B

lymphocytes following IgM activation [29], and mitochondrial

activity is associated with T cell activation [30,31,32].

It should be noted that no changes in PGC-1a levels can

be detected in murine splenocytes at times shorter than 3 h

post-stimulation. Since patients with a latency time of over

150 min were excluded from the study, we believe that the values

detected in human blood mononuclear cells at the time of the

patient admission are a close correlate of the normal the basal

levels for the patient. Nevertheless, this remains an estimate that

cannot unfortunately be fixed, since it was not possible to get blood

samples of the patients before the STEMI.

Overall, we interpret these results as an indication that PGC-1a
expression is induced as part of the immune responsiveness

following myocardial infarction in humans, and furthermore, they

possibly suggest that low basal PGC-1a levels negatively correlate

with cardiac damage. Following myocardial infarction an

inflammatory cascade is activated and circulating total white

blood cell counts increase dramatically. Larger infarct sizes and

adverse outcomes correlate with white blood cell count in STEMI.

Results obtained with animal models and in vitro cell assays have

shown that reduced blood flow and reduced oxygen tension induce

PGC-1a, and conversely PGC-1a is necessary to induce

angiogenesis and recover the tissue capacity to access and use

oxygen, as well as to maintain muscle contraction capacity, while

Figure 6. PGC-1a induction positively correlates with cardiac ventricular dysfunction. A) LVEF and B) RWMA, were determined by
ecocardiography. The estimated mean for patients that induced PGC-1a levels (PGC-1a 72 h/0 h $1) is compared to that of patients that did not
induce PGC-1a (PGC-1a 72 h/0 h #1) after STEMI. C) Antero-lateral infarcts are associated to larger necrotic areas than inferior-posterior infarcts as
determine by LGE on CRM. The graph shows mean LVEF and necrotic area (LGE) of patients with antero-lateral or inferior-posterior infarcts. Data are
means +/2SD. (*) p,0.05.
doi:10.1371/journal.pone.0026913.g006
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Figure 7. STEMI patients that induce PGC-1a do not show gross differences in the number of leukocytes. Total number of leukocytes,
lymphocytes, and monocytes in blood samples of patients at the time of hospitalization (t = 0) and 72 h later. The estimated mean for patients that
induced PGC-1a levels (PGC-1a 72 h/0 h $1) is compared to that of patients that did not induce PGC-1a (PGC-1a 72 h/0 h #1) after STEMI. Data are
means +/2SD. (*) p,0.05.
doi:10.1371/journal.pone.0026913.g007

Table 1. Demographic data, Biochemistry and CMR Characteristics of the Patients with and without PGC-1a Induction.

PGC-1a mRNA 72 h/0 h .1 (n = 12) PGC-1a mRNA 72 h/0 h #1 (n = 26) p value

Base line characteristics

Age (years) 61.08 (sd 3.03) 60.88 (sd 2.33) 0.959

Males sex (%) 10 (83.3%) 22 (84.6%) 0.924

Diabetes (%) 5 (41.7%) 8 (30.8%) 0.541

Hypertension (%) 9 (75%) 18 (69.2%) 0.722

Hypercholesterolemia (%) 6 (50%) 14 (53.8%) 0.834

Current smoker (%) 6 (50%) 15 (57.7%) 0.674

Coronary event

Mean time to reperfusion (minutes) 189 (137–242) 184 (160–208) 0.942

Median troponin I peak value (ng/mL) 119.87 (97–143) 63.01 (52–74) 0.039

Median creatine kinase MB peak value (ng/mL) 474.08 (264–684) 170.73 (148–193) 0.043

Elective ACTP (%) 3 (25%) 10 (38%) 0.417

Rescue ACTP (%) 7 (58.4%) 4 (16%) 0.006

Reperfusion by thrombolysis (%) 2 (16.6%) 12 (46%) 0.084

Anterior infarction (%) 8 (66.6%) 9 (34.6%) 0.075

Biochemistry (plasma)

Creatinine (mg/dL) 1.03 (0.95–1.11) 1.01 (0.97–1.05) 0.811

Haemoglobine (mg/dL) 13.10 (12.6–13.6) 13.86 (13.4–14.3) 0.249

Cholesterol (mg/dL) 177.08 (165–189) 180.92 (170–191) 0.812

LDLc (mg/dL) 116.50 (107–126) 122.19 (115–130) 0.642

HDLc (mg/dL) 38.58 (37–40) 36.23 (35–38) 0.269

Glucose (mg/dL) 120.83 (113–128) 105.26 (102–109) 0.091

CRP (mg/dL) 0.98 (0.71.1.25) 0.64 (0.57–0.71) 0.126

Ecocardiography and magnetic resonance

Ejection fraction by echocardiography (%) 47.41 (sd 2.2) 53.96 (sd 1.6) 0.025

Score regional wall motion abnormalities 1.79 (sd 0.1) 1.43 (sd 0.1) 0.013

Left ventricle ejection fraction ,35% (%) 16.6 (sd 11.2) 3.8 (sd 0.4) 0.136

Late gadolinium enhancement by CMR (%) 24.91 (sd 6.3) 10.90 (sd 2.1) 0.012

Data are means +/2SD. n.s = non statistically significant. Significance: p,0.05.
doi:10.1371/journal.pone.0026913.t001
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its absence leads to heart failure. These results, although highly

informative lack so far a human correlate, mainly due to the

obvious need and impossibility to take human heart samples. Our

results now open a new window of possibilities since the

observation that PGC-1a induction can be observed in the

mononuclear cells of blood samples makes now feasible to test if

PGC-1a has in fact a prognostic value for cardiac recovery.

It is widely accepted that metabolic dysfunctions, where PGC-

1a levels are reduced, are an important risk factor for

cardiovascular disease. Our results suggest that PGC-1a activity

is also likely to be relevant in the limitation of cardiac damage

following an STEMI, and that its monitorization is feasible and

likely to be a relevant prognosis factor both for cardiovascular

disease and for the extent of cardiac damage following STEMI.
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