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Abstract 15 

The reactivity of a Ni-based oxygen carried prepared by hot incipient wetness 16 

impregnation (HIWI) on -Al2O3 with a NiO content of 18 wt% was studied in this 17 

work. Pulse experiments with the reduction period divided into 4-second pulses were 18 

performed in a fluidized bed reactor at 1223 K using CH4 as fuel. The number of pulses 19 

was between 2 and 12. Information about the gaseous product distribution and 20 

secondary reactions during the reduction was obtained. In addition to the direct reaction 21 

of the combustible gas with the oxygen carrier, CH4 steam reforming also had a 22 

significant role in the process, forming H2 and CO. This reaction was catalyzed by 23 

metallic Ni in the oxygen carrier and H2 and CO acted as intermediate products of the 24 

combustion. No evidence of carbon deposition was found in any case. Redox cycles 25 

were also carried out in a thermogravimetric analyzer (TGA) with H2 as fuel. Both tests 26 

showed that there was a relation between the solid conversion reached during the 27 

reduction and the relative amount of NiO and NiAl2O4 in the oxygen carrier. When 28 
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solid conversion increased, the NiO content also increased, and consequently NiAl2O4 1 

decreased. Approximately 20 % of the reduced nickel was oxidized to NiAl2O4, 2 

regardless Xs. NiAl2O4 was also an active compound for the combustion reaction, but 3 

with lower reactivity than NiO. Further, the consequences of these results with respect 4 

to the design of a CLC system were investigated. When formation of NiAl2O4 occurred, 5 

the average reactivity in the fuel reactor decreased. Therefore, the presence of both NiO 6 

and NiAl2O4 phases must be considered for the design of a CLC facility. 7 

 8 
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1. Introduction 1 

The continuous increase in the atmospheric concentration of CO2, mainly coming from 2 

the combustion of fossil fuels for power generation, transport and industry, enhances the 3 

natural greenhouse effect and contributes to the global warming [1, 2]. Therefore, there 4 

is a need to decrease CO2 emissions in order to stabilize its concentration in the 5 

atmosphere. Since fossil fuels are still the dominant energy source worldwide and the 6 

transition to renewable energy sources is a slow process, CO2 capture and sequestration 7 

(CCS) has been proposed as an important option to reduce CO2 emissions from power 8 

production. Current CCS technologies, available or under development, have the 9 

disadvantage of high costs and energy penalties, associated mainly to the CO2 capture 10 

process, recovering the gas from flue streams [1].  11 

Chemical Looping Combustion (CLC) is a novel combustion technique, proposed 12 

initially by Richter and Knoche [3], which combines power production and CO2 capture 13 

in a single stage and produces a pure CO2 stream ready for compression and 14 

sequestration. In a CLC system, the oxygen is transported from the combustion air to 15 

the fuel by a solid oxygen carrier (OC) in the form of metallic oxide particles, thus 16 

avoiding the dilution of flue gases from the power plant with the N2 of the air. In this 17 

way, the subsequent CO2 separation is not necessary, with no extra energy need and 18 

beneficial exergy efficiencies if CO2 capture is considered [1, 4-7]. Moreover, 100% 19 

CO2 capture can be virtually reached with CLC process. Another important advantage is 20 

the absence of NOx [8] as a result of the introduction of fuel and air into different 21 

reactors and the moderate air reactor operating temperature, about 1400 K.  22 

A common CLC system design [9] consists of two connected fluidized beds, a high-23 

velocity riser for the air reactor (AR) and a low-velocity fluidized bed for the fuel 24 

reactor (FR), with the oxygen carrier circulating between them. Fluidized bed reactors 25 



 4

guarantee a good contact between the gas and the solid particles. The gaseous fuel 1 

(syngas from coal gasification, natural gas or refinery gas) is oxidized by the oxygen 2 

carrier in the FR following the general reaction 3 

(2 n + m) MeyOx + CnH2m  (2 n + m) MeyOx-1 + m H2O + n CO2 (1) 4 

where MeyOx denotes a metal oxide and MeyOx-1, its reduced compound. The exit gas 5 

stream from the fuel reactor contains mainly CO2 and H2O, and almost pure CO2 is 6 

obtained after H2O condensation. 7 

The reduced oxygen carrier, MeyOx-1, is transferred to the AR where it is regenerated 8 

with air 9 

(2 n + m) MeyOx-1 + (n + m/2) O2  (2 n + m) MeyOx (2) 10 

The outlet stream of the air reactor is only composed of N2 and unreacted O2. The 11 

regenerated oxygen carrier is transported back to the fuel reactor ready for another 12 

cycle. 13 

Reaction 2 is strongly exothermic, while Reaction 1 could be either exothermic or 14 

endothermic depending on the active metal of the oxygen carrier and the fuel used. The 15 

total amount of heat evolved from both reactions is the same as from normal 16 

combustion, where the oxygen is in direct contact with the fuel.  17 

The selection of a suitable oxygen carrier is a key issue for the large-scale application of 18 

CLC. The oxygen carrier must have sufficient oxygen transport capacity, high reactivity 19 

under alternating reducing and oxidizing conditions, high conversion to CO2 and H2O, 20 

low tendency to carbon deposition, avoidance of agglomeration and high mechanical 21 

and chemical stability for successive cycles in a fluidized-bed system. Other 22 

requirements are high availability and low cost of the metal, as well as low 23 

environmental impact. Several transition state metals, such as Ni, Cu, Mn, Fe and Co 24 

have been proposed as the most suitable materials for oxygen carriers in CLC [10-25]. 25 
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The metallic oxide is usually supported on an inert material, which increases its 1 

mechanical strength and provides a higher surface area for the reaction. Oxygen carriers 2 

prepared using Al2O3, SiO2, TiO2 and yttrium stabilized zirconia (YSZ) as binders can 3 

be found in the literature. 4 

Ni-based oxygen carriers have shown very high reactivity with methane, main 5 

component of natural gas and refinery gas [10, 13, 26-32]. These materials allow to 6 

work at high temperatures (1200-1400 K) due to the high melting point of nickel oxide 7 

(2228 K) and metallic nickel (1728 K). Nevertheless, thermodynamic restrictions avoid 8 

full conversion of the fuel into CO2 and H2O and this results in small amounts of CO 9 

and H2 in the outlet gas stream from the FR.  10 

The use of Al2O3 as support has been widely studied in the literature [10, 25-31] due to 11 

its good fluidization properties and thermal stability. However, a drawback of this 12 

material with Ni-based oxygen carriers for its use in CLC is NiAl2O4 formation [33]. At 13 

high calcination temperatures (> 1073 K), part of the NiO can react with the alumina to 14 

form nickel aluminate [26], which has lower reactivity than free NiO. Cheng et al. [34] 15 

found that free nickel oxide and a surface spinel, NiAl2O4, are formed when a -Al2O3 16 

support is impregnated with Ni(II) ions and heated to a temperature about 873 K. The 17 

nickel oxide is in weak interaction with the alumina surface and it is easily reducible at 18 

temperatures higher than 623 K by H2, while the nickel surface compound like NiAl2O4 19 

is in strong interaction with the alumina and it is difficult to reduce below 973 K in H2 20 

[33]. 21 

Although NiAl2O4 could be reduced by methane, the conversion to CO2 and H2O would 22 

be lower than for the reaction with NiO. The equilibrium concentrations of CO and H2 23 

are 9.0 and 13.2 vol. %, respectively, at 1223 K [35]. If the only active phase in the 24 

oxygen carrier was NiAl2O4, it should be not expected that the H2 and CO 25 
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concentrations at the outlet stream were lower than the equilibrium values. In this case, 1 

the conversion of gas would be too low and the use of NiAl2O4 as the only active 2 

material in a CLC system would not be acceptable. Cho et al. [36] proposed to use a 3 

nickel excess in order to compensate the loss of nickel as nickel aluminate. Other 4 

authors have suggested the use of NiAl2O4 as support instead Al2O3 [26-29, 37]. 5 

Although its characteristics are suitable for a CLC system, the main drawback is the 6 

higher amount of Ni needed. It must be taken into account that nickel is an expensive 7 

metal and it can produce environmental problems, so it would be interesting to 8 

minimize the active phase content in the oxygen carrier. The addition of Mg and Ca also 9 

reduced the interaction of Ni with the support due to the formation of MgAl2O4 and 10 

CaAl2O4 and improved the stability of the spinel structure in the support material [31, 11 

33-34, 38-41]. 12 

Alternatively, Gayán et al. [38] used a thermal treatment of the support, sintering the -13 

Al2O3 at high temperature to produce its deactivation. In this way, the interaction 14 

between the NiO and the support to form the aluminate was minimized. At 1423 K, the 15 

phase transformation to -Al2O3 took place. Bolt et al. [42] demonstrated that the 16 

interdiffusion of Ni2+ and Al3+ ions occurs much faster in NiO/-Al2O3 than in NiO/-17 

Al2O3 samples. Gayán et al. [43] also studied the influence of the preparation method 18 

and the nature of the support on the redox properties of NiO/Al2O3 oxygen carriers. The 19 

oxygen carriers prepared using -Al2O3 showed a weak interaction of NiO with the 20 

thermally modified alumina. Independently of the method of preparation, all samples 21 

with -Al2O3 showed the presence of free NiO through X-ray diffraction analysis. It is 22 

important to maintain a high proportion of this compound to have a high reactivity. 23 

Particles prepared by impregnation were selected due to their high reactivity together 24 
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with very good fluidization behaviour, low attrition rates and absence of agglomeration 1 

problems. 2 

A Ni-based oxygen carrier prepared by hot incipient wet impregnation (HIWI) on -3 

Al2O3 with a NiO content of 18 wt% was used to perform CLC tests in a 500 Wth 4 

continuous pilot plant for 100 hours using CH4 (30 vol.%) as fuel [44]. These 5 

experiments showed that the relative amount of free NiO in the oxygen carrier varied 6 

depending on the oxygen carrier-to-fuel ratio,  in the CLC process, related to the solid 7 

conversion. The relative abundance of free NiO phase decreased when  value 8 

decreased and, consequently, the amount of NiAl2O4 increased. As NiAl2O4 must be at 9 

least partially reduced in a CLC system to fulfil mass balances, temperatures should be 10 

high, at least in the range 1123-1173 K, and the oxygen carrier-to fuel ratio higher than 11 

2-3 to obtain high combustion efficiency [44]. No carbon formation was found on 12 

particles at these conditions. 13 

The aim of this work is to study the reactivity of a Ni-based oxygen carrier prepared by 14 

hot incipient wetness impregnation on -Al2O3 as a function of the content of NiO and 15 

NiAl2O4 in the solid sample. Pulse experiments in a batch fluidized bed reactor and 16 

TGA were used to determine the relative amounts of free NiO and NiAl2O4 as a 17 

function of the change in conversion in each redox cycle. 18 

 19 

20 
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2. Experimental 1 

2.1. Oxygen carrier 2 

A Ni-based oxygen carrier prepared by hot incipient wet impregnation (HIWI) on -3 

Al2O3, designated as Ni18-Al, has been used in this work. Previous studies showed 4 

that high reactivity with Ni-based oxygen carriers using Al2O3 as support was achieved 5 

when this inert phase was in the form of -Al2O3 [38]. Commercial -Al2O3 (Puralox 6 

NWa-155, Sasol Germany GmbH) particles of 100-300 m were calcined at 1423 K for 7 

2 h to obtain -Al2O3 ( = 1900 kg/m3,  = 0.47). The HIWI method [43] involved the 8 

addition of a volume of a saturated solution (6 M) of Ni(NO3)2·6H2O (> 99.5% Panreac) 9 

at 333-353 K over hot -Al2O3 particles (353 K), which corresponded to the total pore 10 

volume of the particles. A planetary mixer was used to stir thoroughly the aqueous 11 

solution and the solid. Two consecutive impregnation steps were applied to obtain the 12 

desired active phase loading (18 wt% of NiO). The resulting solid was calcined at 823 13 

K in air atmosphere for 30 min to decompose the impregnated metal nitrate into the 14 

metal oxide. Finally, the oxygen carrier was sintered in a furnace at 1223 K for 1 h.  15 

The experiments of this work were performed with Ni18-Al particles previously used 16 

in a 500 Wth continuous pilot plant for 100 hours with CH4 (30 vol. %) as fuel [44]. The 17 

main characteristics of the fresh material and after its use in the CLC continuous pilot 18 

plant are shown in Table 1. No major changes in the porosity, density, Brunauer-19 

Emmett-Teller (BET) surface area, mechanical strength or oxygen transport capacity 20 

were observed in the particles after its use in the CLC system. The oxygen transport 21 

capacity was defined as the mass fraction of oxygen that can be used in the oxygen 22 

transfer, calculated as ROC = (mox – mred)/mox. There was not evidence of redistribution 23 

or migration of Ni sites during the redox cycles and signs of agglomeration were not 24 

observed. The powder XRD patterns of the used Ni18–Al carrier revealed no new 25 
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crystalline phases. Nevertheless, the relative amount of free NiO fell from 65% to 24% 1 

of the total Ni in the oxygen carrier after its use in the CLC pilot plant. Consequently, 2 

NiAl2O4 content increased after the operation. 3 

 4 

2.2. Fluidized bed reactor 5 

A fluidized bed reactor of quartz was used to determine the gas product distribution and 6 

the solid conversion of the Ni18-Al oxygen carrier. The experimental set-up has been 7 

described elsewhere [45]. Different series of 10 reduction-oxidation cycles were carried 8 

out using samples of 15 g of oxygen carrier. In each cycle, the reduction period was 9 

divided into numerous pulses of 4 seconds in order to investigate smaller conversion 10 

intervals. During each pulse, a mixture of 30 vol.% CH4-70 vol.% N2 was fed as 11 

combustible gas. Between the pulses, N2 was introduced for one minute to be sure that 12 

the remaining gas from the last pulse had left the reactor system. In order to avoid a 13 

large increase in the reactor temperature during the oxidation step, a gas mixture with 5 14 

vol.% O2 in N2 was used instead pure air, with an oxidation time of 500 s. To avoid 15 

mixing of CH4 and O2, nitrogen was introduced for 3 min after each reducing and 16 

oxidizing period. Depending on the number of pulses, a different conversion of the 17 

oxygen carrier was achieved at the end of the reduction period. This method allowed to 18 

study the relation between the degree of conversion and the reactivity of the solid. After 19 

the 10 redox cycles of each test, a reference cycle with 5 pulses of 4 s during the 20 

reduction using 50 vol.% CH4 was conducted in the fluidized bed reactor. This 21 

reference cycle was used to compare oxygen carrier reactivity and gas product 22 

distribution obtained depending on the variation of solid conversion during the redox 23 

cycles.  24 
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All tests were carried out at 1223 K with an inlet gas flow of 900 mLN/min (NTP: 1 

normal temperature and pressure) for the reacting gas. For the inert and the oxidizing 2 

period, the gas flows were 900 and 1000 mLN/min, respectively.  3 

The solid conversion was calculated from the outlet concentrations of CO2, CO and 4 

H2O by means of the following equation 5 

O

OHCOCO
s n

nnn2
X 22


  (3) 6 

where ni is the number of moles of the gas i measured during the whole reduction time 7 

of a redox cycle and nO is the total number of oxygen moles available for the reduction 8 

reaction in the oxygen carrier. H2 and H2O concentrations could not be measured but 9 

they were calculated from mass balances and considering that the outlet gas 10 

concentrations were those from the water gas shift equilibrium (WGS) at the operating 11 

temperature [45] 12 

CO + H2O   CO2 + H2 (4) 13 

 14 

2.3. Reactivity tests in TGA 15 

Reactivity tests of Ni18-Al oxygen carrier were carried out in a thermogravimetric 16 

analyzer (TGA), CI Electronics type, at 1223 K. Detailed information about this 17 

experimental facility was described elsewhere [10]. The oxygen carrier was loaded in a 18 

platinum basket and heated to the set operating temperature in air atmosphere. After 19 

weight stabilization, the experiment was started by exposing the oxygen carrier to 20 

alternating reducing and oxidizing conditions. Reactivity data as a function of time were 21 

obtained from the weight variations during the reduction-oxidation cycles. The reacting 22 

gas was composed by 5 vol.% H2 and N2 (balance) and the gas used for oxidation was 23 
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100 vol.% air. Nitrogen was introduced for 2 min after each reducing and oxidizing 1 

period to avoid mixing of combustible gas and air.  2 

To convert data into solid conversions the involved chemical reactions (Reactions 1 and 3 

2) were considered. The solid conversion was calculated by means of the following 4 

equation 5 

redox

ox
s mm

mm
X




  (5) 6 

where m is the actual mass of sample, mox is the mass of the sample when it is fully 7 

oxidized, and mred is the mass of the sample in the fully reduced form.  8 

Six experiments with 10 redox cycles using different reaction times (Table 2) were 9 

carried out in the TGA to achieve, consequently, different solid conversions in each of 10 

them. The oxidation time, 180 s in all cases, was also included in Table 2. Previous 11 

experiments had demonstrated that NiAl2O4 formation was not affected by the length of 12 

the oxidation period, so the oxidation time was selected only to assure complete 13 

oxidation of the oxygen carrier. After the 10 redox cycles, two different tests were 14 

carried out to analyze the relation between the degree of conversion and the fraction of 15 

NiO and NiAl2O4 present in the oxygen carrier. The first one consisted of a long cycle 16 

with complete conversion of the oxygen carrier. In the second series, a temperature-17 

programmed reduction (TPR) analysis of the sample was performed in the same TGA 18 

system with 15 vol.% H2 and heating the sample to 1223 K at 20 K/min. In the TPR 19 

experiments it was possible to separate the reduction of free NiO from that of NiAl2O4 20 

and thus to determine the fractional amount of each one. 21 

 22 

3. RESULTS AND DISCUSSION 23 

3.1. Pulse experiments in batch fluidized reactor 24 
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Several experiments were carried out in a batch fluidized bed reactor to study the 1 

reactivity of the Ni18-Al oxygen carrier and to analyze the product distribution during 2 

the reduction period. To analyze the conversion intervals more accurately, the reduction 3 

time was divided into pulses of 4 seconds, with 1 minute of inert gas between them.  4 

 5 

3.1.1. Distribution of gaseous products6 

Figure 1 shows an example of the product distribution during a reduction period 7 

consisting of 12 pulses of CH4. It has to be highlighted that the concentrations are quite 8 

low because the methane was diluted with the nitrogen flow introduced between the 9 

pulses. As can be seen, most of the CH4 was converted to CO2 in the first pulse. During 10 

the first three pulses, CO2 concentration remained almost constant and, so, CO 11 

concentration did not vary either, with very low values. As the oxygen carrier was more 12 

reduced and the amount of available oxygen was diminishing, CO2 concentration 13 

decreased and CO increased with each pulse. CH4 left the reactor only during the first 14 

pulse in a very low concentration and disappeared in the second pulse, achieving a fuel 15 

conversion almost complete during the whole reaction time.  16 

By means of the analysis of the distribution of gaseous products, we can obtain 17 

important information about secondary reactions during the oxygen carrier reduction 18 

with CH4, e.g. methane steam reforming and carbon formation through methane 19 

decomposition or Boudouard reaction. Johansson et al. [45] attributed the small amount 20 

of unreacted CH4 during the first pulse to the lack of Ni0 sites on the fully oxidized 21 

particles. When the reduction reaction progressed and the content of Ni increased, CH4 22 

disappeared. In this case, most of the unconverted gases were CO and H2. This 23 

suggested that the steam reforming of CH4, catalyzed by metallic nickel, was a reaction 24 

that contributed to the conversion of CH4 [26]  25 



 13

CH4 + H2O  CO + 3 H2 (6) 1 

CO and H2 act as intermediate products during CH4 reaction with the Ni18-Al oxygen 2 

carrier. This reaction mechanism of the combustion through the steam reforming 3 

reaction could explain the absence of CH4 in the outlet gases, even when CO 4 

concentrations were quite high. 5 

 6 

3.1.2. Carbon formation 7 

Pulse experiments were also used to study carbon formation during CH4 combustion 8 

with the Ni18-Al oxygen carrier. A suitable oxygen carrier for chemical-looping 9 

combustion process should not promote the formation of carbon during the oxidation of 10 

the fuel. Carbon deposition could have negative effects on the particles, such as 11 

deactivation of the oxygen carrier and/or agglomeration problems in the system. 12 

Depending on the operating conditions, carbon can be gasified with the CO2 and H2O 13 

present in the FR or it could be transferred with the solid particles to the AR, where it 14 

would be burnt with the oxygen of the fed air. The release of CO and/or CO2 in the AR 15 

together with the N2 and the unused O2 would cause a decrease in the CO2 capture 16 

efficiency of the CLC process.  17 

Carbon formation in the fuel reactor mainly takes place through two ways: methane 18 

decomposition (7) and Boudouard reaction (8). 19 

CH4  C + 2 H2 (7) 20 

2 CO  C + CO2 (8) 21 

Both reactions are slow in the absence of a catalyst, but metallic Ni formed during the 22 

reaction of the oxygen carrier with the fuel can catalyze them.  23 

The carbon deposition can be determined by the analysis of the curves of CO and CO2 24 

concentration during consecutive pulses. Figure 2 shows the concentration of CO and 25 
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CO2 from pulses 1, 4, 6, 8 and 10, corresponding to a redox cycle with 10 pulses of 4 s 1 

during the reducing period. These profiles are close to the pattern of a Gaussian curve 2 

due to the dispersion of the gases in the transport lines of the system. A slight tail in the 3 

Gaussian curve was detected in the latter part of the curve for every pulse because the 4 

dispersion in the pipes was high [46]. A different profile was observed by Johansson et 5 

al. [45] when carbon formation happened. The carbon formation was proved by a 6 

significant shoulder of either CO2 and/or CO leaving the reactor during the inert period 7 

between pulses. The presence of CO or CO2 during the inert period was due to a solid-8 

solid reaction with the remaining oxygen in the particles. 9 

C + MeyOx  CO+ MeyOx-1  CO2 + MeyOx-2 (9) 10 

However, the characteristic shoulder in concentration profiles due to the reaction of 11 

carbon with NiO was not observed. Moreover, neither CO nor CO2 were measured 12 

during the oxidation period. This fact indicates that there was no carbon formation 13 

during the reduction stage. 14 

Previous work using the same nickel-based oxygen carrier had shown no tendency to 15 

carbon deposition [43-44, 47-49]. When Ni18-Al was used in a 500 Wth CLC 16 

continuous pilot plant, neither CO or CO2 were detected in the air reactor, indicating 17 

that there was no carbon deposition in the fuel reactor, independently of the selected 18 

fuel (CH4 or syngas), the presence of impurities in the fuel gas, such as sulphur or light 19 

hydrocarbons, or the operating conditions (fuel reactor temperature, solids circulation 20 

rate). The high reactivity of the oxygen carrier particles could explain the absence of 21 

carbon formation. Carbon can also be gasified quickly to form CO and H2 that are 22 

subsequently oxidized by the oxygen carrier, avoiding its detection. Cho et al. [36] 23 

suggested that carbon formed during the period when the fuel conversion was high, 24 
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could be a possible reaction intermediate and that methane conversion proceeded via 1 

carbon and hydrogen oxidation on the surface of the oxygen carrier. 2 

Successive reduction-oxidation cycles performed in a batch fluidized reactor in a 3 

previous work [43] showed that, initially, when CH4 was fed to the system, the 4 

conversion was complete and mainly selective to CO2 and H2O for more than 70 5 

seconds. When the solid conversion was about 25 %, CO and H2 concentrations started 6 

to increase while CO2 and H2O concentrations decreased. The formation of carbon took 7 

place in this period, when less oxygen was available in the reactor, and it was detected 8 

by the presence of CO and CO2 during the oxidation stage. Nevertheless, formed carbon 9 

could affect the obtained results with respect to reactivity of the Ni-based oxygen carrier 10 

taking into account the work of Cho et al. [36]. In the pulse experiments carbon 11 

deposition was not observed, as in the experiments in the pilot plant, so the obtained 12 

information about reactivity was closer to that kind of continuous systems.  13 

 14 

3.1.3. Analysis of the oxygen carrier reactivity 15 

To analyze the reactivity of the Ni18-Al oxygen carrier during successive redox 16 

cycles, normalized concentrations of CO and CO2 were calculated as the ratio between 17 

the CO or CO2 partial pressure and the sum of partial pressures of the carbon-containing 18 

gases in the outlet stream of the batch fluidized bed reactor. 19 

out ,COout ,2COout ,4CH

out ,CO
CO PPP

P


  (10) 20 

out ,COout ,2COout ,4CH

out ,2CO

2CO PPP

P


  (11) 21 

where Pi, out is the partial pressure of outgoing gaseous species i in dry basis. 22 

Figures 3a and 3b show CO and CO2 normalized concentrations in the outlet gases of 23 

the reactor as a function of the solid conversion, corresponding to experiments with 4 24 
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and 10 pulses during the reduction period, respectively. In both cases, it can be 1 

distinguished a first section of the reduction where the CO2 concentration remained 2 

above 90% followed by a sharp decrease and, therefore, an increase of CO 3 

concentration. The value of solid conversion where this change was observed depended 4 

on the number of cycle and the number of pulses in each redox cycle. 5 

On the one hand, differences were observed in the CO and CO2 concentrations with 6 

respect to the number of cycle. As seen in Figure 3, the outlet concentrations of CO and 7 

CO2 became stable from the second cycle when the reduction period consisted of 4 8 

pulses of CH4. Nevertheless, when the reduction stage was divided into 10 pulses, five 9 

cycles were necessary to achieve a stable value of concentration of the carbon-10 

containing gases, with the differences between the cycles being more distinct in this 11 

case. On the other hand, the evolution of CO and CO2 concentration with the solid 12 

conversion changed significantly depending on the total number of pulses in each cycle. 13 

Thus, to observe a considerable increase in CO concentration, it was necessary to reach 14 

a solid conversion about 0.2 and 0.4 for the 4 and 10-pulse cycles, respectively, after 15 

stabilization. This clearly indicated a significant difference in the reactivity of the Ni18-16 

Al oxygen carrier depending on the number of the cycle and the number of pulses. The 17 

faster the CO2 concentration started to decrease and CO to increase, the less reactive the 18 

oxygen carrier was. 19 

The evolution of the oxygen carrier reactivity with the number of pulses and cycles can 20 

be inferred from data shown in Figure 4. The solid conversion needed to reach a 21 

normalized CO2 concentration of 90% in every cycle for experiments with 2 to 12 22 

pulses of methane during the reduction of the fuel is shown in this Figure. There are 23 

three different tendencies in the curves depending of the number of CH4 pulses. When 2 24 

pulses were used, the curve had a negative slope, indicating that the reactivity of the 25 
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oxygen carrier decreased with the number of cycles. For tests with 4 and 6 pulses, the 1 

solid conversion hardly varied during the whole series of 10 cycles. Nevertheless, with a 2 

higher number of pulses, the solid conversion increased with the number of cycles, 3 

indicating an increasing reactivity of the oxygen carrier. 4 

To analyze better the reactivity of Ni18-Al oxygen carrier with different number of 5 

pulses in the reduction, a reference cycle with the same conditions in all cases (5 pulses, 6 

50 vol. % CH4) was performed after the series of 10 redox cycles. Figure 5 shows the 7 

solid conversion obtained in this reference cycle for particles having different number of 8 

pulses and the original oxygen carrier recovered from the continuous CLC pilot plant. 9 

As can be seen, there was an initial period of high reactivity where the curves were 10 

overlapped. Then, there was a change of slope in the curves of conversion in all cases, 11 

which corresponded to a decrease in reactivity. This change of reactivity occurred at 12 

different solids conversion depending of the number of pulses in the reduction. The 13 

inflection point shifted to higher values with the number of pulses. The observed 14 

tendency is the same as the one described for Figure 4. Low number of pulses meant 15 

that the inflection point shifted to lower values of solids conversion than the one 16 

obtained with the initial sample in the reference cycle. If the number of reduction pulses 17 

increased, the solids conversion at the inflection point was higher than the one reached 18 

with the initial sample.  19 

Changes in reactivity observed in these tests are related to different relative amounts of 20 

free NiO and NiAl2O4 in the oxygen carrier, as will be shown below. The first period of 21 

high reactivity is attributed to the fast reaction of the free NiO with CH4, and the second 22 

period of lower reactivity corresponds to the reduction of NiAl2O4 [44]. The formation 23 

of NiAl2O4 affects negatively to the methane combustion selectivity towards CO2 and 24 

H2O since the rate of oxygen release by NiAl2O4 is lower than the one of NiO. In 25 
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previous works, during experiments carried out in a 500 Wth continuous pilot plant [44], 1 

it was observed that the relative abundance of free NiO decreased when there was a 2 

decrease in the change of the solids conversion that occurred in the cycle from air to 3 

fuel reactor and back, i.e. when circulation was increased. Reactivity of the NiO phase 4 

is different from that of the NiAl2O4 phase, which explains the change in reactivity of 5 

the oxygen carrier with the variation of solid conversion. 6 

During the pulse experiments, when the number of pulses increased, the solid 7 

conversion reached during the test also increased, and so the reactivity. The amount of 8 

free NiO can be estimated from the point where the curve of conversion changed the 9 

slope, i.e. the amount of free NiO was related to the first period of high reactivity. 10 

Figure 6 shows the amount of free NiO in the samples as a function of the solid 11 

conversion reached after the last reduction cycle for different number of pulses. As can 12 

be seen, the relative amount of free NiO was lower than the solid conversion in the 13 

reduction period. This means that a fraction of the reduced Ni was converted into 14 

NiAl2O4 during the oxidation. It was estimated from the shading area in the graph, 15 

which includes all obtained data, that about 60-85% of the reduced Ni was oxidized to 16 

nickel oxide, and, consequently, 15-40 % of Ni was oxidized towards NiAl2O4. This 17 

reaction of metallic nickel to NiAl2O4 seems to be a too complex reaction to take place 18 

in only one step. The fraction of NiAl2O4 in the oxygen carrier depended on the solid 19 

conversion during the reduction, i.e. the amount of metallic Ni formed and subsequently 20 

that needed to be oxidized. Therefore, Ni was not unequivocally joined to a molecule of 21 

Al2O3 to form NiAl2O4. From this, it can be suggested that the formation of NiAl2O4 22 

took place through two steps. Firstly, metallic Ni was oxidized to NiO and then, part of 23 

this NiO reacted with the alumina to form NiAl2O4 while the rest remained as free NiO 24 

in the oxygen carrier.  25 
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In Figure 6, the fraction of NiO as a function of the solid conversion for the original 1 

Ni18-Al particles is also shown (see black point). These particles were previously used 2 

in a 500 Wth continuous CLC unit with a variation of the solid conversion about 32% 3 

and a NiO content about 24%. The conversion data of the original sample was very 4 

close to the ones obtained in the tests with 4 and 6 pulses, about 25-35%. When the 5 

reduction period was composed by 2 pulses, the solids conversion was 14%, lower than 6 

the 32% reached in the CLC system for the original sample. Correspondingly, the 7 

fraction of NiO in the oxygen carrier decreased and the reactivity and the NiO content 8 

were also lower (Figures 4 and 5). Nevertheless, when the number of pulses during the 9 

reduction was higher than 6, the solids conversion was higher than 50%. In these cases, 10 

the opposite effect was observed, i.e. NiO content increased as well as reactivity. In 11 

conclusion, if there was no variation in the solid conversion with respect to the initial 12 

sample, the amount of NiO would remain constant through the cycles as indicated by 13 

the straight lines shown in Figure 4. However, if the solid conversion during the 14 

reduction period was varied, the content of NiO would stabilize in a new value, which 15 

would be higher or lower than the initial one when the solid conversion increased or 16 

decreased, respectively. This fact is clearly visible in Figure 4.  17 

 18 

3.2. Thermogravimetric experiments 19 

The pulse experiments carried out in the batch fluidized bed reactor gave interesting 20 

information about CH4 conversion, secondary reactions and NiO/NiAl2O4 distribution 21 

in the Ni18-Al oxygen carrier. Nevertheless, they provided only a few conversion-time 22 

data in each cycle so it was difficult to determine accurately the solid conversion where 23 

the change of reactivity from NiO to NiAl2O4 took place, obtaining a great dispersion in 24 
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the NiO fraction present in the oxygen carrier (60-85%). For this reason, additional tests 1 

were performed in a thermogravimetric analyzer.  2 

The experimental series in TGA consisted of 10-redox-cycle experiments. In each 3 

experiment, different reduction times were used to achieve different solid conversions. 4 

These tests were carried out twice. At the end of the first series, a redox cycle long 5 

enough to reach complete conversion during the reduction was done. After the second 6 

series, the samples were cooled and a temperature programmed reduction (TPR) 7 

analysis was performed to analyze the relative amount of NiO and NiAl2O4 in the 8 

oxygen carrier. In all TGA tests, 5 vol.% H2 was used as fuel and the temperature was 9 

1223 K.  10 

In a similar way to the pulse experiments, the conversion-time curves varied during the 11 

first redox cycles until they were stabilized. Figure 7 shows the conversion-time curves 12 

for the reference cycle after 10 redox cycles with different times of reaction as was 13 

indicated in Table 2. The reduction of the oxygen carrier particles proceeded in two 14 

stages. In the first seconds, the reaction was fast and all the samples followed the same 15 

trend with curves almost overlapped. Then, there was a slope change in the curves due 16 

to a decrease in reactivity. The conversion value in which the slope of the curves 17 

changed was a function of the reduction time during the 10 previous redox cycles. As 18 

can be seen in Table 2, when the reduction time increased, the solid conversion reached 19 

also increased. A relation between the variation of solid conversion during the redox 20 

cycle and the reactivity of the oxygen carrier was proved, agreeing with the results 21 

obtained from the pulse experiments. 22 

H2-TPR analysis of the solids allowed determination of the relative amount of NiO and 23 

NiAl2O4 in the oxygen carrier. Figure 8a shows TPR of the samples after the TGA 24 

experiments from Table 2. Each curve shows two peaks of H2 consumption which 25 



 21

corresponded to literature data [33, 50-52]. Several works about Ni/Al2O3 catalysts 1 

reported a H2 consumption peak in the low-temperature range of 650-900 K and a high-2 

temperature peak with a maximum near 1150-1200 K. The peak in the low-temperature 3 

range is attributed to the reduction of Ni2+ in the free NiO phase, whereas the high-4 

temperature one corresponds to the reduction of Ni2+ in the NiAl2O4 spinel. It can be 5 

observed in Figure 8 that the peak corresponding to NiO reduction increased when the 6 

time of the reduction period increased, i.e. the solid conversion increased. The opposite 7 

effect was registered for NiAl2O4 peak. 8 

Figure 8b also shows the solid conversion of samples during TPR carried out in TGA. 9 

The first increase in the solid conversion corresponds to the H2-consumption peak of 10 

NiO reaction and the second one to NiAl2O4 reduction. Thus, NiO amount in the 11 

oxygen carrier can be obtained from the conversion corresponding to the flat part of the 12 

curve. NiO fraction was depicted in Figure 9 as a function of the conversion reached in 13 

the TGA experiments. As the variation of solid conversion increased, the relative 14 

amount of NiO also increased and, therefore, the fraction of NiAl2O4 decreased. 15 

However, the relative fraction of NiO after oxidation was lower than the conversion of 16 

the oxygen carrier during the reduction period. According to Figure 9, about 80% of the 17 

reduced Ni was oxidized to NiO and remaining Ni was oxidized to NiAl2O4. These 18 

results agree with the ones found in the previous batch fluidized bed reactor tests and 19 

experiments in a 500 Wth continuous CLC pilot plant [44]. 20 

The influence of the oxidation degree on the NiO/NiAl2O4 ratio was also studied by 21 

means of a new experiment in the TGA with the oxygen carrier partially oxidized ( 22 

50% oxidized). A fraction of metallic Ni remained in the particles during the cyclic test, 23 

in a similar way as in a real scale CLC pilot plant, where the solid is not fully oxidized. 24 
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As it was found previously, about 80% of the metallic nickel formed during the 1 

reduction step was oxidized to NiO while the rest reacted to NiAl2O4. 2 

 3 

4. Application to a CLC system design 4 

The more relevant parameters to take into account in the design of a CLC system are the 5 

solid inventory in the FR and the AR, and the solids circulation rate between both 6 

reactors. The solid circulation rate must be high enough to transfer the oxygen necessary 7 

for the fuel combustion and to supply the heat to maintain the heat balance, especially 8 

when CH4 is used as fuel with Ni-based oxygen carriers, because the reduction reaction 9 

is endothermic. Abad et al. [11] defined the solids circulation rate, OCm


, expressed as 10 

mass flow of fully oxidized oxygen carrier, through Equation 12 11 
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The solid inventories can be determined from a mass balance of solids and gases in both 13 

reactors of the CLC system. Assuming perfect mixing of the solids and gas plug flow, 14 

with no resistance to the gas exchange between bubble and emulsion phases in the 15 

fluidized bed, the solids inventory in the FR per MW of fuel, mOC, will be given by [11] 16 
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dXs represents the average reactivity of the oxygen carrier in the fuel reactor. It is 18 

desirable to minimize the amount of material in the system because this will reduce the 19 

size and investment cost necessary, but this must be enough to supply the required 20 

amount of oxygen for the total conversion of the fuel. So a highly reactive oxygen 21 

carrier would be suitable for CLC. 22 
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The results shown in this work will have important consequences for the CLC design as 1 

will be explained below. Thermodynamic calculations show that NiAl2O4 has low 2 

selectivity towards CO2 and H2O, with CO and H2 concentrations in the equilibrium of 3 

9.0 and 13.2%, respectively, against 0.32 and 0.44% when CH4 reacts with NiO.[35] 4 

Despite its low reactivity, the results obtained in TGA, batch fluidized bed reactor and 5 

continuous pilot plant indicates that NiAl2O4 must also react to fulfil mass balances. 6 

Indeed, if a fraction of reduced Ni is oxidized to NiAl2O4 in the air reactor, this fraction 7 

should be reduced again to Ni in the fuel reactor. Nevertheless, the need of NiAl2O4 8 

reduction does not mean that fuel conversion is reduced, as was proven in a previous 9 

work [44] where Ni18-Al oxygen carrier was used in a continuous unit. The reason for 10 

this is the presence of the highly reactive NiO compound. Here it is necessary to point 11 

out that, in a fuel reactor, where it can be assumed that there is perfect mixing for solids, 12 

NiO is not exhausted before NiAl2O4 is reduced, but NiO and NiAl2O4 are being 13 

reduced at the same time and some of the unreacted NiO remains always in the FR. 14 

Thus, the presence of NiO permits a high conversion of the fuel gas into CO2 and H2O. 15 

Taking into account the above considerations, all Ni present in the oxygen carrier was 16 

considered active for the oxygen transference. The oxygen transport capacity was the 17 

corresponding to 18% Ni, which has relevance on the solid circulation rate between the 18 

fuel and air reactor as it was indicated by Equation 12. The minimum solids circulation 19 

rate for Ni18-Al, calculated when Xs = 1, is 2 kg OC s-1 MWf
-1. 20 

Calculations of reactivity with NiO/NiAl2O4 oxygen carriers are usually made 21 

considering that all reactive Ni is in the form of free NiO [10-11, 23, 26-27, 29-32, 41, 22 

43, 53]. This can be right when the reactivity of NiAl2O4 is low, as seems to be the case 23 

for particles prepared by freeze granulation, mechanical mixing or spray dried methods. 24 

Nevertheless, for the impregnated particles used in this work, both NiO and NiAl2O4 are 25 
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present in the oxygen carrier and both of them react with the fuel. Therefore, both 1 

compounds must be considered in design calculations To calculate the average 2 

reactivity in this case, it was assumed that a fraction of Ni is entering to the fuel reactor 3 

as NiO and another fraction as NiAl2O4. The average reactivity can be obtained as 4 
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where fNiO is the fraction of the reduced nickel that it is oxidized into free NiO in the 6 

AR. From the results obtained in this work, fNiO for Ni18-Al oxygen carrier is 0.8. The 7 

product fNiO·Xs is the fraction of NiO in the oxygen carrier after oxidation whereas 1-8 

fNiO·Xs is the fraction of NiAl2O4. 9 

The conversion curves from the TGA in Figure 7 can be divided into two sections: the 10 

fast reduction of free NiO initially and, after that, a stage with lower reactivity 11 

corresponding to NiAl2O4 reaction with the fuel. The reduction of NiO was considered 12 

to be separated from this of NiAl2O4 and each reaction period was transformed to have a 13 

conversion between 0 and 1, corresponding to the evolution of the reaction of NiO and 14 

NiAl2O4 with time. Figure 10 shows the conversion curves for NiO and NiAl2O4. In 15 

both cases the reactivity curves are overlapped, indicating that the reactivity of NiO and 16 

NiAl2O4 does not depend on the fraction of each phase in the oxygen carrier. The 17 

average reactivity, 
dt

dXs , for both nickel compounds was obtained as the slope of the 18 

curve at Xs=0. The values were 0.15 and 4.2 x 10-3 s-1 for NiO and NiAl2O4, 19 

respectively. NiO average reactivity was higher than for NiAl2O4 as expected.  20 

Figure 11 shows the average reactivity of Ni18-Al oxygen carrier for the reduction 21 

reaction calculated using Equation 14 as a function of the variation of solid conversion 22 

in the fuel reactor. The average reactivity increased with Xs due to the increase in the 23 
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amount of the highly reactive NiO in the oxygen carrier with an increasing solid 1 

conversion. When only NiO is initially present in the oxygen carrier, and after its 2 

reduction, it is reoxidized completely to NiO (fNiO = 1), the average reactivity is the one 3 

that corresponds to NiO. This NiO average reactivity has been also depicted as a 4 

reference in Figure 11 in the form of a straight line. If fNiO was 1 instead 0.8, i.e. all 5 

reduced Ni was oxidized to NiO, the average reactivity of NiO-NiAl2O4 at Xs = 1 6 

would coincide with NiO reactivity. As fNiO = 0.8, a lower value was obtained.7 

In a CLC plant, each particle of oxygen carrier has a different residence time in the fuel 8 

reactor so this fact must be considered in the design. Taking into account that the solids 9 

in the fuel reactor are in perfect mixing and a shrinking core model for the gas-solid 10 

reaction, the average reactivities for NiO and NiAl2O4 can be obtained similarly to the 11 

method described by Abad et al [11] 12 
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(16) 15 

To obtain these equations, it was considered that the residence time distributions (RTD) 16 

of both NiO and NiAl2O4 in the fuel reactor were the same. Indeed, NiO and NiAl2O4 17 

are mixed in the same particle. Rm is defined by Equation 14. Xin, FR is the solid 18 
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conversion at the inlet of the fuel reactor and Xs is the variation of solid conversion in 1 

the reactor.2 

The values for NiO and NiAl2O4 should be obtained at an average gas concentration in 3 

the bed, after the determination of the kinetic parameters using shrinking core model. 4 

Equation 17 shows the relation between the values of i and
dt

dXs  at Xs = 0 as 5 


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i  (17) 6 

NiO and 
42ONiAl were 20 and 718 s, respectively. 7 

Figure 11 also shows the average reactivity when the residence time distribution (RTD) 8 

in the fuel reactor is considered with only NiO in the oxygen carrier, and this is oxidized 9 

again to NiO after its reaction with the fuel. Initially, when Xs  0, the average 10 

reactivity coincides with NiO reactivity without perfect mixing of the oxygen carrier in 11 

the FR (0.15 s-1). However, the average reactivity decreases with an increasing Xs, 12 

because the residence time in FR to achieve full conversion of the fuel should be higher.  13 

The reactivity curve when NiO and NiAl2O4 are present in the oxygen carrier shows a 14 

maximum due to the combined effect of the variation of reactivity with the fraction of 15 

NiO and NiAl2O4 and RTD as a function of Xs. When Xs was low, the increase in the 16 

relative amount of NiO had a dominant effect and the average reactivity increased as 17 

Xs increased. When Xs increased, with more NiO in the solid, the importance of the 18 

residence time became more significant, and average reactivity decreased. 19 

Additionally, it can be seen in Figure 11 that the reactivity of the Ni18-Al oxygen 20 

carrier was about one order of magnitude lower than if all Ni was as free NiO, 21 

indicating the negative effect of the formation of NiAl2O4. The decrease in the reactivity 22 

will also affect the solid inventory needed in the system, which should be about 10 23 
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times higher than the expected if the formation of NiAl2O4 was avoided. Nevertheless, 1 

and despite the presence of nickel aluminate, the use of the Ni18-Al oxygen carrier has 2 

been successfully demonstrated in previous works [44, 47-49] reaching high 3 

combustion efficiencies without carbon formation or agglomeration problems in a CLC 4 

continuous pilot plant. 5 

6 

5. Conclusions 7 

The reactivity of a Ni-based oxygen carrier prepared by hot incipient wetness 8 

impregnation method and containing 18 wt% NiO was analyzed by means of pulse 9 

experiments in a batch fluidized bed reactor and TGA.  10 

With the pulse experiments, CH4 conversion, secondary reactions and NiO/NiAl2O4 11 

distribution in the Ni18-Al oxygen carrier were analyzed. Together with the direct 12 

reaction of CH4 with the oxygen carrier, it was found that CH4 steam reforming was a 13 

significant reaction, catalyzed by reduced Ni in the oxygen carrier and with CO and H2 14 

as intermediate products. Carbon formation did not take place in the system. 15 

Different reactivities of the oxygen carrier were observed depending on the conversion 16 

reached during the reduction stage. These differences were attributed to different free 17 

NiO and NiAl2O4 contents in the samples. From the experiments in the batch fluidized 18 

bed reactor and additional test in TGA, it was determined that, regardless Xs, 80% of 19 

Ni reduced in the FR was oxidized to free NiO while the remaining Ni was oxidized 20 

into NiAl2O4.  21 

The presence of NiAl2O4 affects the reactivity of the oxygen carrier with the fuel, so it 22 

needs to be considered in the design of a CLC system. The lower reactivity of NiAl2O4 23 

with respect to free NiO causes a decrease in the average reactivity in the fuel reactor, 24 

but, despite this, high conversion of fuel gas can be reached in a CLC system. The 25 
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average reactivity of the oxygen carrier vs. Xs curve shows a maximum value due to 1 

the combined effect on the reactivity of the residence time in the reactor and the relative 2 

amount of NiO.  3 

 4 

Notation 5 

d = stoichiometric factor in the combustion reaction of the fuel with oxygen (mol O2 per 6 

mol of fuel) 7 

Hc
o = standard heat of combustion of the fuel gas (kJ mol-1) 8 

fNiO = fraction of the reduced Ni which is oxydized into NiO in the AR9 

MO = molecular weight of oxygen (16 g mol-1) 10 

m = actual mass of the oxygen carrier (kg) 11 

mox = mass of the fully oxidized oxygen carrier (kg) 12 

mred = mass of the fully reduced oxygen carrier (kg) 13 

mOC = solid inventory, as fully oxidized oxygen carrier, in the FR (kg OC MWf
-1) 14 

OCm


 = circulation rate of the fully oxidized oxygen carrier (kg OC s-1MWf
-1) 15 

ni = number of moles of gas i measured during the reduction time of a redox cycle (mol) 16 

nO = number of oxygen moles available for the reduction reaction in the oxygen carrier 17 

(mol) 18 

Pi, out = partial pressure of gas i in the outlet stream of the batch fluidized bed reactor 19 

Rm = Average reactivity (s-1) 20 

ROC = Oxygen transport capacity of the oxygen carrier (kg O kg OC-1) 21 

Xin, FR = solid conversion at the inlet of the FR 22 

Xs = solid conversion in reduction reaction 23 

Xg = variation of the gas conversion 24 

Xs = variation of the solid conversion25 

 26 

Greek letters 27 

i = normalized concentration of gas i 28 

i = time for complete solid conversion for the reaction i (s)29 

 30 
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Table 1. Properties of the oxygen carrier Ni18-Al as prepared (fresh) and used for 100 1 

hours in a 500 Wth continuous pilot plant with CH4 as fuel. 2 

 3 

 fresh used 

NiO content (wt%) 18 18 

Oxygen transport capacity, ROC 0.0386 0.0386 

Particle size (m) 0.1-0.3 0.1-0.3 

Porosity (%) 0.4 0.42 

Solid density (kg m-3) 4290 4250 

Specific surface area BET (m2 g-1) 7.0 6.8 

Crushing strength (N) 4.1 3.7 

XRD phases -Al2O3, NiO, NiAl2O4 -Al2O3, NiO, NiAl2O4

% Ni as NiO (%)  
 4 

5 
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Table 2. Reaction times in the reduction stage used during the 10-redox-cycle 1 

experiments in the TGA. 2 

 3 

Test No. cycles Reduction time (s) Oxidation time (s) Xs 

A 10 6 180 28 

B 10 12 180 32 

C 10 20 180 35 

D 10 30 180 52 

E 10 60 180 68 

F 4 Time to full conversion 180 96 

 4 

 5 

 6 

7 
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Figure 1. Solid conversion and gas concentrations during the reduction period of a 1 

pulse experiment with 12 pulses of 4 s (dry basis). 2 
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Figure 2. Concentration profiles from a redox cycle with 10 CH4 pulses of 4 s during 1 

the reduction period. Pulse 1 ( ), 4 ( ), 6 ( ), 8 ( ) and 10 ( ). 2 
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Figure 3. CO2 and CO normalized concentrations in (a) 4 pulse and (b) 10 pulse 1 

experiments during cycles 1( ), 2 ( ), 4 ( ), 6 ( ), 8 ( ) and 10 ( ) as a 2 

function of the solid conversion reached. 3 
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Figure 4. Solid conversion to reach a CO2 normalized concentration in the outlet gases 1 

of the batch fluidized bed reactor of 90 % with the number of cycles for experiments 2 

with 2 ( ), 4 ( ), 6 ( ), 8 ( ), 10 ( ) and 12 ( ) pulses during the reduction time. 3 
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Figure 5. Solid conversion vs. time for the reference cycle after experiments with 2(1 

), 4 ( ), 6 ( ), 8 ( ), 10 ( ) and 12 ( ) pulses during the reduction period 2 

and reference cycle ( ) with the initial sample. 3 
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Figure 6. Fraction of Ni as free NiO in the oxygen carrier as a function of the solid 1 

conversion reached during the pulse experiments.  corresponds to the NiO fraction of 2 

the initial sample with the conversion reached in the tests in the 500 Wth pilot plant.  3 

represents the amount of free NiO in the oxygen carrier when NiAl2O4 is not present in 4 

the sample. 5 
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Figure 7. TGA reactivity data for the reduction during the reference tests after 1 

experiments A ( ), B ( ), C ( ), D ( ), E ( ) and F ( ) from Table 2. T 2 

= 1223 K. 5 vol.% H2; 21% O2. 3 
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Figure 8. (a) TPR of the samples after TGA experiments in Table 2 (b) Solid 1 

conversion during TPR after TGA experiments from Table 2. A ( ), B ( ), C (2 

), D ( ), E ( ) and F ( ). 3 
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Figure 9. Fraction of Ni as NiO in the oxygen carrier as a function of the solid 1 

conversion reached in the TGA experiments.  2 
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Figure 10. TGA reactivity for NiO and NiAl2O4 for experiments from Table 2. A ( ), 1 

B ( ), C ( ), D ( ), E ( ) and F ( ).5 vol.% H2; T = 1223 K. 2 

 3 

Time (s)

0 5 10 15 20 25 30

S
ol

id
 C

on
ve

rs
io

n

0.0

0.2

0.4

0.6

0.8

1.0
NiO

0 100 200 300 400 500

NiAl2O4

 4 

 5 

6 



 48

Figure 11. Average reactivity of the Ni18-Al oxygen carrier when only NiO or both 1 

NiO and NiAl2O4 present in the solid react with the fuel. ( ) Reactivity of NiO at Xs 2 

= 0; ( ) Reactivity of NiO + NiAl2O4 at Xs = 0; ( ) Reactivity of NiO considering 3 

the RTD of the solids; ( ) Reactivity of NiO + NiAl2O4 considering the RTD of the 4 

solids. 5 
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