
                             Elsevier Editorial System(tm) for Neuroscience 
                                  Manuscript Draft 
 
 
Manuscript Number: NSC-10-1511R2 
 
Title: DECREASED CCAAT/ENHANCER BINDING PROTEIN β EXPRESSION INHIBITS THE GROWTH OF 
GLIOBLASTOMA CELLS  
 
Article Type: Research Paper 
 
Section/Category: Cellular and Molecular Neuroscience 
 
Keywords: C/EBPβ, glioblastoma, invasion, proliferation, shRNA 
 
Corresponding Author: Professor Ana Perez-Castillo, Ph.D. 
 
Corresponding Author's Institution: Consejo Superior de Investigaciones Científicas 
 
First Author: Diana Aguilar-Morante, Ph.D. 
 
Order of Authors: Diana Aguilar-Morante, Ph.D.; Marta Cortes-Canteli; Marina Sanz-SanCristobal; Angel 
Santos, Ph.D.; Ana Perez-Castillo, Ph.D. 
 
Abstract: C/EBPβ is a leucine-zipper transcription factor implicated in the control of metabolism, 
development, cell differentiation, and proliferation. However, it remains unclear its role in tumor 
development. Here, we show that down regulation of C/EBPβ by RNA interference inhibits 
proliferation in the GL261 murine glioblastoma cell line, induces an arrest of the cell cycle at the G0/G1 
boundary, and diminishes their transformation capacity and migration. In addition, we show that 
C/EBPβ regulates the expression of several DNA damage response- and invasion-related genes. Lastly, 
C/EBPβ depletion significantly retards tumor onset and prolongs survival in a murine orthotopic brain 
tumor model. Immunohistochemical analysis revealed a significant diminution of PCNA labeling in 
tumors derived from C/EBPβ-depleted GL261 cells compared with that in controls. These results show, 
for the first time, the dependence of glioma cells on C/EBPβ and suggest a potential role of this 
transcription factor in glioma development. 
 
Response to Reviewers: Reviewer 1 
We thank the reviewer for his/her favorable comments. Regarding the inclusion of a Western blot 
showing the expression levels of other C/EBP family members, as we suggested in our former answers, 
we are now including these data in Figure 1D, showing the protein levels of two members of the C/EBP 
family, C/EBPalpha and C/EBP delta, in GL261 and LN18 cells. These two proteins are the ones, which 
have been more implicated in tumorigenesis. Accordingly, this is now commented in the text (In order 
to confirm the specificity of the shRNA used and to demonstrate that does not interfere or modulate by 
compensatory effect the expression of other members of the C/EBP family, we performed Western Blot 
analysis to measure the protein levels of C/EBPα and C/EBPδ, the other two members of the family 
which have been implicated in tumorigenesis. As can be observed in Figure 1D, neither of them were 
detected in GL261 cells. LN18 cells presented some expression of C/EBPα and very little of C/EBPδ, 
though their expression was similar in the control and interfered pools”) (page 10, lines 17-24 of the 
revised manuscript) 
 
Reviewer 2 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/36115073?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


We certainly don’t agree with the reviewer on the point that we have left the manuscript unchanged in 
all major points. We have answered all of the specific points of reviewer 1 and also addressed reviewer 
2 main concerns. However, and following the suggestion of the editor (and now of reviewer 1 too), we 
have not included new experiments using a set of new cell lines. Regarding the comment on 
angiogenesis, we have now included in the new revised manuscript the information contained in our 
previous “point to point” answers relative to the genes down-regulated by C/EBP beta. In table I we 
have now included integrin beta 3 and vascular endothelial growth factor C, the two other genes 
regulated by C/EBP beta and involved in angiogenesis. To further reinforce this point in our revised 
manuscript we have also added the phrases “Interestingly we also found four genes, Mcam1, Plaur, 
integrin beta 3 and vascular endothelial growth factor C, which have been implicated in promoting 
angiogenesis” (page 12, lines 14-16) and “The reduced vascularisation observed in those mice 
implanted with C/EBPβ knockdown cells, could be due, al least in part, to the down-regulation by this 
transcription factor of several genes involved in the promotion of angiogenesis” (page 16, lines 10-13) 
 



Dear Editor, 

First of all thank you for giving us the opportunity to resubmit our manuscript and 
for your positive comments. 

However, we respectfully disagree with the comment that we chose not to follow 
the reviewer’s advice. We carefully re-read the editorial letter and our point by 
point replies to the reviewers and we do believe we have followed their 
suggestions and revised the manuscript accordingly. 

We are somewhat at a loss with the statement of reviewer 2 that “the authors 
decided to leave the manuscript in all major points unchanged to the original 
version”.  In fact, we have modified ALL the major points as suggested by the 
reviewers. The only suggestion, which we have not followed is the one raised by 
reviewer 2 asking for the inclusion of new experiments with a different set of new 
cell lines.  In this point we have followed the editorial suggestion that: “we do not 
agree with the request to carry out similar analyses on a set of new cell lines”. Also, 
in the answer to our revised manuscript, reviewer 1 agrees with the editor as 
he/she states: “I do not see good reason to reproduce those studies on more cell lines 
than presented, including primary glioma cell lines which for most researchers are 
hardly accessible”. 

Regarding the comment of reviewer 2 concerning the possible down-regulation 
by C/EBP beta of some angiogenic factors, we again have to somewhat disagree 
with the reviewer. In our previous response to this point we commented the fact 
that in Table I there were two genes: Mcam1 and Plaur, which transcript levels are 
decreased in C/EBP beta-depleted cells and that are clearly involved in promoting 
angiogenesis: 

 (Melnikova VO et al, Bioimmunotherapy for melanoma using fully human antibodies 

targeting MCAM/MUC18 and IL-8. Pigment Cell Res. 2006, 19:395; Gondi CS. et al, 
Intraperitoneal injection of a hairpin RNA-expressing plasmid targeting urokinase-type 

plasminogen activator (uPA) receptor and uPA retards angiogenesis and inhibits 

intracranial tumor growth in nude mice.  Clin Cancer Res, 2007, 13: 4051. Kunigal S. 
et al, RNAi-mediated downregulation of urokinase plasminogen activator receptor and 

matrix metalloprotease-9 in human breast cancer cells results in decreased tumor 

invasion, angiogenesis and growth. Int J Cancer, 2007, 121:2307; Mazar AP et al, 

Urokinase plasminogen activator receptor choreographs multiple ligand interactions: 

implications for tumor progression and therapy, Clin Cancer Res, 2008, 14:5649;  Liu 

Y et al, The inhibitory effect of HKa in endothelial cell tube formation is mediated by 

disrupting the uPA-uPAR complex and inhibiting its signaling and internalization. Am J 

Physiol Cell Physiol, 2008, 295:C257;  Dass K et al, Evolving role of uPA/uPAR system 

in human cancer. Cancer Treat Rev, 2008, 34:122).).  

Besides, in our PCR-arrays we also found other genes involved in angiogenesis, 
such as integrin beta 3 and vascular endothelial growth factor C (this was also 
commented in our answers) (Hayashi H et al, The Foxc2 transcription factor 
regulates angiogenesis via induction of integrin beta3 expression. J. Biol. Chem. 200, 
283:23791; Su JL et al, The VEGF-C/Flt-4 axis promotes invasion and metastasis of 
cancer cells. Cancer Cell. 2006, 9:209). Nevertheless, to address the remark on the 
regulation by C/EBP beta of some genes involved in angiogenesis, we have also 
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included these later two genes in Table I. Accordingly, in our new revised version 
of the manuscript and in order to further comment this point, we have added the 
phrases “Interestingly we also found four genes, Mcam1, Plaur, integrin beta 3 and 
vascular endothelial growth factor C, which have been implicated in promoting 
angiogenesis” (page 12, lines 14-16 of the revised manuscript) and “The reduced 
vascularisation observed in those mice implanted with C/EBP knockdown cells, 
could be due, al least in part, to the down-regulation by this transcription factor of 
several genes involved in the promotion of angiogenesis” (page 16, lines 10-13) 

Regarding the request from reviewer 1 to include a Western blot showing 
expression levels of other C/EBP proteins, in the new revised version of the 
manuscript this WB has been included (Figure 1D), and accordingly we have added 
the statement “In order to confirm the specificity of the shRNA used and to 
demonstrate that does not interfere or modulate by compensatory effect the 
expression of other members of the C/EBP family, we performed Western Blot 
analysis to measure the protein levels of C/EBP and C/EBP, the other two 
members of the family which have been implicated in tumorigenesis. As can be 
observed in Figure 1D, neither of them were detected in GL261 cells. LN18 cells 
presented some expression of C/EBP and very little of C/EBP, though their 
expression was similar in the control and interfered pools”, to highlight this point 
(page 10, lines 17-24 of the revised manuscript) 

After taken into account all the points described above, and the fact that reviewer 
1 thought that this paper merits publication in Neuroscience, we hope you will 
find this new revised version of our manuscript suitable for publication. 

 

Yours sincerely 

Prof. Ana Perez-Castillo 

Corresponding author 



Reviewer 1 

We thank the reviewer for his/her favorable comments. Regarding the inclusion of 
a Western blot showing the expression levels of other C/EBP family members, as 
we suggested in our former answers, we are now including these data in Figure 1D, 
showing the protein levels of two members of the C/EBP family, C/EBPalpha and 
C/EBP delta, in GL261 and LN18 cells. These two proteins are the ones, which have 
been more implicated in tumorigenesis. Accordingly, this is now commented in the 
text (In order to confirm the specificity of the shRNA used and to demonstrate that 
does not interfere or modulate by compensatory effect the expression of other 
members of the C/EBP family, we performed Western Blot analysis to measure the 
protein levels of C/EBP and C/EBP, the other two members of the family which 
have been implicated in tumorigenesis. As can be observed in Figure 1D, neither of 
them were detected in GL261 cells. LN18 cells presented some expression of 
C/EBP and very little of C/EBP, though their expression was similar in the 
control and interfered pools”) (page 10, lines 17-24 of the revised manuscript) 

 

Reviewer 2 

We certainly don’t agree with the reviewer on the point that we have left the 
manuscript unchanged in all major points. We have answered all of the specific 
points of reviewer 1 and also addressed reviewer 2 main concerns. However, and 
following the suggestion of the editor (and now of reviewer 1 too), we have not 
included new experiments using a set of new cell lines. Regarding the comment on 
angiogenesis, we have now included in the new revised manuscript the 
information contained in our previous “point to point” answers relative to the 
genes down-regulated by C/EBP beta. In table I we have now included integrin 
beta 3 and vascular endothelial growth factor C, the two other genes regulated by 
C/EBP beta and involved in angiogenesis. To further reinforce this point in our 
revised manuscript we have also added the phrases “Interestingly we also found 
four genes, Mcam1, Plaur, integrin beta 3 and vascular endothelial growth factor C, 
which have been implicated in promoting angiogenesis” (page 12, lines 14-16) and 
“The reduced vascularisation observed in those mice implanted with C/EBP 
knockdown cells, could be due, al least in part, to the down-regulation by this 
transcription factor of several genes involved in the promotion of angiogenesis” 
(page 16, lines 10-13) 

 

 

 

*Response to Reviews



Highlights: 

 

1. New and important role of C/EBP in glioblastoma cell growth 

2.   Inhibition by C/EBP of glioblastoma cell invasiveness and transformation 

capacity. 

3. Significant effect of C/EBP in growth tumor in vivo 

4. Identification of several genes involved in C/EBP effects 
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ABSTRACT 

 

C/EBP is a leucine-zipper transcription factor implicated in the control of metabolism, 

development, cell differentiation, and proliferation. However, it remains unclear its role 

in tumor development. Here, we show that down regulation of C/EBP by RNA 

interference inhibits proliferation in the GL261 murine glioblastoma cell line, induces 

an arrest of the cell cycle at the G0/G1 boundary, and diminishes their transformation 

capacity and migration. In addition, we show that C/EBPβ regulates the expression of 

several DNA damage response- and invasion-related genes. Lastly, C/EBP depletion 

significantly retards tumor onset and prolongs survival in a murine orthotopic brain 

tumor model. Immunohistochemical analysis revealed a significant diminution of 

PCNA labeling in tumors derived from C/EBP-depleted GL261 cells compared with 

that in controls. These results show, for the first time, the dependence of glioma cells on 

C/EBP and suggest a potential role of this transcription factor in glioma development. 

 

 

Keywords: C/EBP, glioblastoma, invasion, proliferation, shRNA. 
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INTRODUCTION 

 

The CCAAT/Enhancer binding protein  (C/EBP) is a basic leucine zipper 

transcription factor (Vinson et al., 1989) involved in different cell processes including 

metabolism, hematopoiesis, adipogenesis, the immune response, and morphogenesis 

(Poli, 1998, Ramji and Foka, 2002). C/EBP is also expressed in the central nervous 

system (Sterneck and Johnson, 1998, Nadeau et al., 2005) where it plays an important 

role in the consolidation of long-term memory (Alberini et al., 1994, Taubenfeld et al., 

2001), and cortical neuronal maturation (Menard et al., 2002). We have demonstrated 

that C/EBP is an important factor in neuronal differentiation (Cortes-Canteli et al., 

2002) and regulates the expression of several genes involved in inflammatory processes, 

cancer, and brain injury (Cortes-Canteli et al., 2004). More importantly, mice lacking 

C/EBP show a reduced inflammatory response after an excitotoxic insult and are less 

susceptible to neuronal cell loss (Cortes-Canteli et al., 2008). 

 

Regarding its implication in proliferation and differentiation processes, different roles 

have been proposed for C/EBP. An antiproliferative function has been suggested in 

HepG2 hepatocarcinoma cells (Buck et al., 1994), epidermal keratinocytes (Zhu et al., 

1999) and primary fibroblasts (Sebastian et al., 2005). Moreover, C/EBP-knockout 

mice display a lymphoproliferative disorder, suggesting that C/EBP inhibits expansion 

of the lymphoid cell compartment (Screpanti et al., 1995). However, growth arrest 

induced by C/EBP appears to be highly context specific, because in several cases 

C/EBP displays potent growth-promoting activity. C/EBP is highly expressed in 

colorectal tumors (Rask et al., 2000) and is associated with ovarian tumor progression 

(Sundfeldt et al., 1999). Ectopic expression of C/EBP induces proliferation in human 

mammary epithelial cells (Bundy and Sealy, 2003) and macrophage tumor cells 

(Wessells et al., 2004). Also, C/EBP
-/-

 mice show impaired mammary ductal 

morphogenesis due to a proliferation defect (Robinson et al., 1998, Seagroves et al., 

1998) and are totally resistant to carcinogen-induced skin tumor development (Zhu et 

al., 2002). 

 

High-grade gliomas, which include glioblastoma (GBM) and anaplastic astrocytoma, 

are among the most common intrinsic brain tumors in adults and are nearly uniformly 
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fatal (DeAngelis, 2001). Despite significant improvements in the early detection of 

malignant gliomas, the median survival of patients remains less than 12 months from 

the time of diagnosis (Benedetti et al., 2000, DeAngelis, 2001). Advances in glioma 

modeling in the mouse have made the disease amenable to in vivo functional and 

molecular studies (Fomchenko and Holland, 2006). However, the mechanisms 

underlying GBM pathogenesis and poor response to conventional therapy are yet 

unclear. Interestingly, it has been recently demonstrated that C/EBP expression is 

markedly increased in high-grade glioma compared with low-grade glioma, and low 

expression in tumor tissue correlates with longer patient survival (Homma et al., 2006). 

 

All these data has prompted us to investigate whether C/EBP is involved in 

glioblastoma development. Here, we present evidence that C/EBP is strongly 

expressed in glioma cells. Furthermore, reduction of C/EBP levels inhibits 

glioblastoma cell growth in vitro and in vivo. The demonstration that C/EBP is a 

critical positive regulator of glioma growth will provide new targets for the 

development of future brain tumor treatments 
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MATERIALS AND METHODS 

 

Construction of small interfering RNAs and Stable transfection 

GL261 murine glioblastoma cells were obtained from the NCI-Frederick Cancer 

Research Tumor Repository (Frederick, MD) and propagated in RPMI medium with 10 

% fetal bovine serum as described (El Andaloussi et al., 2006). To knockdown C/EBP 

expression, siRNA against two different target sites of mouse C/EBP and a non-

targeting siRNA control were obtained from Dharmacon (Thermo Scientific, Waltham, 

MA). The interfering selected sequences were 5‟-GAG CGA CGA GTA CAA GAT G-

3‟ (pool I4) and 5‟ –CCT TTA GAC CCA TGG AAG TTT- 3‟ (pool I5). The 

oligonucleotides were annealed and the double-stranded oligonucleotides were cloned 

into pSilencer 4.1 vector (Ambion, Austin, TX), in which shRNAs were expressed 

under the control of the CMV promoter. The plasmids were transfected into GL261 

glioblastoma cells by using Lipofectamin 2000 (Invitrogen, CA) and stable transfectans 

were selected using 400 g/ml of G418 and maintained in this selection medium. Pools 

C1 (expressing a non-targeting shRNA control) and I4 (expressing a shRNA against 

C/EBP) were used throughout the study. LN18 human glioblastoma cells were 

obtained from Dr. Peinado (Department of Cell and Developmental Biology, Cornell 

University) and maintained in DMEM medium with 10% fetal bovine serum, 2mM 

Glutamine, 100µg/ml penicillin and 100µg/ml streptomycin. Human C/EBP 

expression was silenced in LN18 cells using the FUGW lentiviral vector. The 

interfering selected sequence was: 5′- GAA GAC CGT GGA CAA GCA C -3′ (pool 

FC1). A non-targeting sequence (5′- GCC GCT TTG TAG GAT AGA G -3′, pool FS) 

was also used. These lentiviral vectors were obtained from Dr. Quintanilla-Martinez. 

For lentiviral infections of LN18 cells, 293T cells were transiently transfected with the 

appropriate lentiviral expression vector and the vectors pMD2-G, pMDLg/pRRE, and 

pRSV-Rev, which encode lentiviral proteins. The medium containing lentiviruses was 

recovered, filtered through a 0.45-μm filter and added to the recipient cells. The same 

procedure was repeated 8 h and 24 h later. Pools FS (expressing a non targeting 

shRNA) and FC1 (expressing a shRNA against C/EBPβ) were used in this study. 
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Immunoblot analysis 

Cultured cells were harvested and lysed in ice-cold RIPA buffer and equal quantities of 

total protein were separated by 12 % SDS-PAGE. After electrophoresis, proteins were 

transferred to nitrocellulose membranes (Protran, Whatman, Dassel, Germany) and blots 

were probed with the indicated primary antibodies, as previously described (Cortes-

Canteli et al., 2004). The antibodies used were the following: goat polyclonal C/EBP, 

rabbit polyclonal anti-C/EBP, rabbit polyclonal anti-C/EBP rabbit polyclonal anti-

Brca1, rabbit polyclonal anti-p27 (Santa Cruz Biotechnology, CA, U.S.A.), mouse 

monoclonal anti--tubulin (Sigma), mouse monoclonal anti-ATM (Novus Biologicals, 

Littleton, CO, U.S.A.) and mouse monoclonal anti-Chk2 (Millipore, Billerica, MA, 

U.S.A.) antibodies. Secondary peroxidase-conjugated donkey anti-rabbit and rabbit 

anti-mouse antibodies were from Amersham Biosciences (GE Healthcare, 

Buckinghamshire, England) and Jackson Immunoresearch, respectively.  

 

Proliferation assays and cell cycle studies 

 The effect of C/EBP expression on cell proliferation was determined using the non-

radioactive BrdU-based cell proliferation assay (Roche) according to the manufacturer‟s 

protocol. Cells were seeded in triplicate onto 96-well plates at a density of 2,000 

cells/well. After 24 h of growth, 10 M BrdU was added and cells were cultured for 

another 16 h. BrdU incorporation into the DNA was determined by measuring the 

absorbance at both 450 and 690 nm on an ELISA plate reader. BrdU incorporation was 

also analyzed by immunofluorescence analysis, and the number of stained cells was 

counted using the Image J program. 

Cell viability was measured using the MTT assay (Roche Diagnostic, GmbH), based on 

the ability of viable cells to reduce yellow MTT to blue formazan. Briefly, cells were 

cultured in 96-well microtitre plates for various periods of time, then cells were 

incubated with MTT (0.5 mg/ml, 4h) and subsequently solubilized in 10 % SDS/0.01 M 

HCl for 12 h in the dark. The extent of reduction of MTT was quantified by absorbance 

measurement at 550 nm according to the manufacturer‟s protocol. 

For analysis of progression through the cell cycle cells were fixed in 70% ethanol/PBS, 

pelleted and resuspended in buffer containing 10 g/ml RNAse and 0.003 % propidium 

iodide, as previously described (Pignatelli et al., 2001). Cell cycle distribution was 

determined by flow cytometric analysis utilizing a Cyan MLE-R Cytometer (DAKO-
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Cytomation, Glastrup, Denmark). Data analysis was performed using the Summit 

Software (DAKO). 

 

Soft agar colony formation assay 

To perform anchorage-independent growth assays, 50,000 cells were resuspended in 1 

ml of 0.7% agar in tissue culture medium containing 10% serum in 60 mm plates over a 

bottom layer of 1 % agar in medium. The cells were allowed to grow for 21 days with 

weekly refeeding. Colonies were stained with p-iodotetrazolium violet and 20 randomly 

selected fields were photographed under a phase-contrast microscope (10x 

magnification). Colonies were then counted, and the mean number of colonies per plate 

was calculated. All experiments were done in triplicate. 

 

Cell invasion, migration and wound healing assay 

 Tumor cell invasion assays were performed using Transwell chambers with 12-m 

pores (Costar) coated with a layer of Matrigel free of growth factors (Collaborative 

Biomedical). Medium with 20 % fetal bovine serum was added to the lower chambers 

of the Transwells. I4 or C1 cells (50,000) were seeded on top of the Transwell in 

triplicate in medium without serum and incubated at 37º for 48 h. The bottom filters 

were fixed and stained with DAPI at the end of the experiments. Cells in the top 

chambers were removed by wiping with cotton swabs, and the stained cells that had 

migrated through the Matrigel were counted under a microscope. Ten randomly selected 

20x microscopic fields were counted. Wound healing assay was used to detect the 

alteration of cell motility. I4, C1, FS and FC1 cells were seeded onto 60-mm plates and, 

after overnight incubation, an artificial wound was created using P200 pipette tip to 

scratch on the confluent cell monolayer. Photomicrograph was taken immediately (time 

0 h), so that the migrating cells and closing of scratch wound could be observed. 

Microphotograhs were also taken at 24 and 48 h post wounding. Within each assay the 

experiments were performed in triplicates. 

 

PCR-Array  

Total RNA was extracted from C1 and I4 pools by using TRIzol (Invitrogen, Carlsbad, 

CA). Genomic DNA contamination was eliminated by Dnase treatment and C/EBP 

expression was tested by PCR before starting PCR-Array procedure. Mouse Cancer and 

Cell Cycle RT Profiler PCR Arrays were purchased from SuperArray Bioscience 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

                                                                                

 

 

8 

Corporation (Frederick, MD). PCR was performed on ABI Prism 7700 Sequence 

Detector (Applied Biosystems). Data were analyzed using the DDCt method and the 

housekeeping genes HPRT1, GAPDH, and -actin for normalization. For each gene 

fold-changes were calculated as difference in gene expression between C1 and I4 pools. 

 

Animal Experiments 

Adult male C57BL/6 mice (n ≥ 7 per group) were anaesthetized by intraperitoneal 

injection of ketamine (60 mg/Kg) and medetomidine (0.125 mg/Kg) and positioned in a 

stereotaxic apparatus (Kopf Instruments, CA). To establish intracranial tumors I4 or C1 

cells (100,000 cells) were implanted unilaterally into the left hemisphere using the 

following coordinates from Bregma: posterior -1.06 mm; lateral -3 mm and a depth of 3 

mm, according to the atlas of Paxinos and Franklin (Paxinos and Franklin, 2001). The 

mice were then housed individually to recover. All procedures with animals were 

carried out in accordance with the protocols issued by the „Ethics Committee for 

Animal Experimentation‟ of the Instituto de Investigacones Biomédicas (CSIC-UAM), 

which followed National (normative 1201/2005) and International recommendations 

(normative 86/609 from the European Communities Council). Special care was taken to 

minimize animal suffering. 

 

Magnetic Resonance Imaging 

Magnetic Resonance Imaging (MRI) was performed using an MRI scanner (Bruker 

PharmaScan 7.0T, 16 cm; Bruker Medical Gmbh, Ettlingen, Germany). Mice brain MRI 

was performed with a 90 mm gradient insert and a concentrical 38 mm birdcage 

resonator, using Paravision v4.0 software (Bruker Medical Gmbh, Ettlingen, Germany) 

as implemented in a Hewlett-Packard console, operating on a Linux platform. MRI 

examinations used adult male C57BL/6 mice (n ≥ 7 per group) anaesthetized through a 

plastic mask with 2% isofluorane in 99.9% O2. Animals were allowed to breath 

spontaneously during the experiment and were placed in a heated cradle to maintain the 

core body temperature at approx. 37 ºC. The physiological state of the animal was 

monitored throughout MRI acquisition through the respiratory rate using a Biotrig 

physiological monitor (Brucker). Gadolinium-DTPA-enhanced T1-weighted spin-echo 

images were acquired at 11, 15, and 18 days after injection with a Rapid Acquisition 

with Relaxation Enhancement (RARE) (Hennig et al., 1986) sequence in axial 

orientations (TR: 350 ms, TE: 10.6 ms, averages: 4, FOV: 2.30 cm, acquisition matrix: 
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256×256, slice thickness: 1.00 mm, number of slices: 16). The in vivo spectroscopy 

protocol acquired two 3x3x3 mm voxels in the striatal area, using a Point-Resolved 

Spatially Spectroscopy (PRESS)
 
(Bottomley, 1987) protocol, combined with VAPOR 

water suppression, (Tkac et al., 1999)(TR: 3000 ms, TE: 35 ms, averages: 128). The 

tumor area was calculated from T1-weighted images using image J analysis software. 

Tumor volume was estimated from the summation of tumor areas on each slice, 

multiplied by slice thickness.  

 

Histology and Immunohistochemistry 

Formalin-fixed, paraffin-embedded sections (4 m) from tumors were deparaffinized in 

xylene, rehydrated in a graded series of alcohols, and rinsed in distilled water. All 

immunohistochemistry analysis were performed as previously described (Luna-Medina 

et al., 2007). The proliferative activity of the tumor was assessed with anti-PCNA 

antibody.  

 

Statistics 

 Other than the survival experiments, Student‟s test was used to analyze statistical 

differences between the different groups. Survival curves were plotted with Kaplan-

Meier method and survival for the two groups of animals was studied using log-rank 

test. Differences were considered statistically significant at p < 0.05. 
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RESULTS 

 

Effect of C/EBPdepletion on GL261 cell proliferation and viability.  

We first analyzed the basal level of expression of C/EBP in murine GL261 

glioblastoma cells. Our results showed increased C/EBP expression in contrast to 

primary astrocytes, and these levels were very similar to those present in 

lipopolisaccharide-activated astrocytes (Fig. 1A). To investigate the cellular action of 

the C/EBP protein in GL261 cells, we stably introduced a pSilencer vector encoding 

shRNA for C/EBP or non-targeting shRNA (see “Materials and Methods”), and 

different geneticin-resistant pools were tested for C/EBP expression using an antibody 

specific for C/EBP. We evaluated the efficacy of shRNA transfection in the silencing 

of gene expression of C/EBP by using Western blot analysis. The immunoblot in 

Figure 1B shows that in two of these interfered pools, I4 and I5, the content of C/EBP 

protein decreased approximately 75%, as compared to control C1 and C2 pools. For this 

reason we selected the I4 and C1 pools for subsequent studies. Figure 1C shows a 

dramatic decrease in the protein levels of C/EBP in the human LN18 cells expressing 

the shRNA for this mRNA (FC1) compared to control cells expressing a non-target 

sequence (FS). In order to confirm the specificity of the shRNA used and to 

demonstrate that does not interfere or modulate by compensatory effect the expression 

of other members of the C/EBP family, we performed Western Blot analysis to measure 

the protein levels of C/EBP and C/EBP, the other two members of the family which 

have been implicated in tumorigenesis. As can be observed in Figure 1D, neither of 

them were detected in GL261 cells. LN18 cells presented some expression of C/EBP 

and very little of C/EBP, though their expression was similar in the control and 

interfered pools. 

 

We next investigated whether glioma cell proliferation is directly affected by C/EBP. 

Although downregulation of C/EBP in glioma cells did not alter cell morphology (data 

not shown), proliferation, as measured by BrdU incorporation and subsequent ELISA 

analysis (Fig. 2A) was decreased to 50% in the I4 pool compared with control cells.  

These results were similar to those obtained with the I5 pool. This growth inhibitory 

effect was further confirmed by BrdU immunocytochemical analysis (Fig. 2B). 

Additionally, cell viability, measured by the MTT assay, was significantly diminished 
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in the I4 pool, compared to its C1 control pool (Fig. 2C). This decrease in cell viability 

was also observed in the interfered human FC1 glioblastoma cells, compared to control 

FS cells. These data show that C/EBP plays a vital role in maintaining glioblastoma 

cell proliferation. To better understand the nature of the growth retardation associated 

with decreased expression of C/EBP, we next performed cell cycle analysis. The 

proportion of cells at specific stages of the cell cycle was determined by flow 

cytometry. It was observed (Fig. 2D) that the cell cycle profiles of I4 cells were 

significantly altered, with a block at the G0/G1 boundary, less cells progressing through 

the S-phase than the control C1 cells and a concomitant decline in the number of cells in 

G2/M phase. We also observed an increased in the sub-G0/G1 subpopulation suggesting 

an increase in the number of apoptotic cells in the pool I4 with lower expression of 

C/EBP. The ability of cancer cells to grow without adhering to extracellular matrix 

proteins (anchorage-independent growth) correlates closely with their ability to form 

malignant tumors. Anchorage-independent growth presumably allows the cells to 

invade and metastasize, characteristics that distinguish malignant from benign tumors. 

Thus, to assess the effect of C/EBP expression on anchorage-independent growth of 

GL261 cells, we seeded C1 and I4 cells in medium containing 0.7 % agar, and counted 

colonies 21 days later. As shown in Figure 2E, we observed a significant reduction in 

the number of the colonies of C/EBP knock down cells compared with control-

transfected cells (45±7 and 120±9 colonies/plate, respectively; ***p0.001). Hence, 

depletion of C/EBP expression partially inhibited the anchorage-independent growth 

of GL261   cells.  

 

C/EBP depletion inhibits glioblastoma motility and invasion.  

The ability of glioblastoma cells to invade into normal surrounding tissue is influenced 

by their motility as well as ability to penetrate through tissue barriers such as 

extracellular matrix. To assess the role of C/EBP in glioblastoma cell motility, we used 

“scratch-wound” assays. These assays showed that both murine GL261 cells and human 

LN18 cells depleted of C/EBP did not fill in a scratch as rapidly as cells treated with a 

control RNA duplex, suggesting decreased cell motility (Fig. 3A). To further 

substantiate these findings, we also assessed glioblastoma cell motility using Transwell 

chambers. In these assays, control cells and cells depleted of C/EBP are replated into 

Transwell chamber membranes coated with Matrigel at the same density and 48 h later 
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the numbers of cells that have crossed the chamber membrane are counted. Depletion of 

C/EBP in GL261 cells  (I4 and I5 pools) resulted in a significant decrease in the 

number of cells that crossed the Matrigel-coated membranes, indicating a true decrease 

in motility and invasive ability (Fig. 3B).  

 

To further analyze the mechanism involved in the stimulatory effect of C/EBP on 

GL261 glioblastoma cells, we studied the expression of genes implicated in these 

processes. To this end we screened two arrays of cell cycle and cancer-related genes. As 

shown in Table I, among other, we found a number of genes involved in the DNA 

damage response, such as ATM, Brca1, Brca2, Chk1, Chk2, and p27, that were 

significantly up-regulated in the I4 C/EBP-deficient cells (Table I). In contrast, we 

found that the expression of a substantial number of genes involved in adhesion 

invasion, and metastasis, including integrin 3, melanoma cell adhesion molecule, 

plasminogen activation urokinase receptor, and S100 calcium binding protein A4, was 

down-regulated in I4 cells. Interestingly we also found four genes, Mcam1, Plaur, 

integrin beta 3 and vascular endothelial growth factor C, which have been implicated in 

promoting angiogenesis. We next assessed these C/EBP-induced changes of the 

expression of the genes involved in the DNA damage response at the protein level. We 

found that, according with the PCR-array data, the abundance of all of them was 

significantly increased in the interfered lines (Fig. 4), suggesting that the observed 

effects of C/EBP interference could be mediated by it effects upon the G0/G1 

checkpoint, and an impairment in the progression through the cell cycle with a 

concomitant inhibition of glioblastoma progression. 

 

Knockdown of C/EBP inhibits the growth of GL261 glioma cells in vivo. Based on 

the above in vitro findings, C/EBP appears to be important in the growth of 

glioblastoma cells. To investigate whether the effects of C/EBP knockdown on 

glioblastoma growth inhibition are sustained in vivo, we next orthotopically implanted 

GL261 glioma cells into mice brains to generate tumors. The murine glioma GL261 

model has been the most common used syngeneic transplant model for both 

subcutaneous and intracranial experimental glioma tumors (Miyatake et al., 1997, 

Kjaergaard et al., 2000, Edwards et al., 2002). This particular intracranial animal model 

recapitulates many of the histopathological and biological features of human glioma 
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including both necrosis with pseudopalisading and invasion of the brain adjacent to 

tumor as isolated single cells and as group of cells around vascular channels (Zagzag et 

al., 2003). To control for equal tumor loading, we monitored tumor growth in vivo by 

magnetic resonance imaging (MRI) at different times after implantation. Mice injected 

with C/EBP-deficient cells also showed a delayed onset and progression of tumors 

compared to C1 controls and tumor volume, as assessed by T1-weighed images after 

gadolinium contrast administration, revealed a significant reduction in tumor volume in 

mice implanted with C/EBP-deficient I4 cells (Fig. 5A, B). About 85% reduction in 

tumor volume was observed in I4-derived tumors at 15 days post-injection. This strong 

reduction in the tumor growth potential induced by C/EBP interference was 

maintained over time. Both the log-rank test and Kaplan-Meier analysis of the survival 

data demonstrated a significant survival advantage for the C/EBP low expression 

glioma-bearing mice when compared to their matched C/EBP high expression parental 

glioma-bearing animals (Fig. 5C). Log-rank analysis of the data yielded a p value of 

0.0012. Mice injected with I4 cells presented a significant increase in the mean survival 

(41 versus 26.5 days).  

 

Because the C/EBP-deficient tumors arose at a later time point, we anticipated that 

they would differ histologically and possibly also in terms of malignancy. Here, a 

difference between C1- and I4-derived tumors became apparent. Although both I4 and 

C1 pools gave rise to gliomas, which according to pathologists could be classified as 

grade IV glioblastoma, C/EBP-deficient tumors did not show blood vessels formation 

or multinucleated giant cells, typical features of aggressive grade IV glioblastomas (Fig. 

5D). Also, we did not detect necrosis areas in tumors derived from I4 cells, in 

comparison with C1-derived tumors, 18 days after injection. In addition, the PCNA 

labeling, a measure of proliferation, of I4-derived tumors, was significantly less than 

that of the C1 tumors (Fig. 5E), again suggesting a growth-suppressing action of 

C/EBP on tumor cells in vivo.  
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DISCUSSION 

 

Glioblastoma multiforme is the most common form of brain tumor occurring in adults. 

This devastating disease is usually incurable and patients have a mean survival time of 

approximately 1 year after diagnosis (Benedetti et al., 2000, DeAngelis, 2001). Here, we 

show that C/EBP has a role in promoting glioblastoma growth in vitro and in vivo. The 

C/EBP gene has been shown to promote both growth arrest and increased proliferation 

in a context-specific manner. How it stimulates mitotic growth and why it elicits 

completely opposite effects on proliferation in different cellular contexts remains to be 

ascertained. In this study, we show for the first time that depletion of C/EBP 

expression suppresses glioma cell growth in vitro and glioma tumor growth in vivo. 

This was accompanied by a regulation of the expression of different genes involved in 

DNA damage response and in invasion and metastasis. Collectively, our findings 

suggest that C/EBP might play an important role as a growth regulator in high-grade 

gliomas opening out a new role for C/EBP in the pathogenesis of central nervous 

system tumors.   

 

We have focused our work on the study of the oncogenic role of C/EBP in glioma. We 

have found that a high C/EBP level is a poor prognosis marker, supporting that 

C/EBP is acting as an oncogenic factor in glioblastomas and has an important role in 

their progression. Although C/EBP, another member of the C/EBP family, has 

emerged as a clear negative regulator of cell proliferation in many cellular contexts 

raising the possibility that could function as a tumor suppressor (Schuster and Porse, 

2006), the function of C/EBP upon proliferation, in situations where the function of 

C/EBP is straightforward, is more complex. Several data suggested that C/EBP might 

work as an anti-proliferative agent. C/EBP, similarly to C/EBP, is able to suppress 

cell proliferation through repression of E2F target-genes in a manner dependent on 

members of the retinoblastoma protein family (Sebastian et al., 2005). Also, C/EBP 

expression has been associated with growth arrest of keratinocytes (Zhu et al., 1999) 

and induction of cell cycle exit induced by Ras
V12

 in primary cells (Hanlon and Sealy, 

1999, Shuman et al., 2004). However, and in agreement with our results, other studies 

have suggested a growth-promoting activity for C/EBP. Zhu et al (Zhu et al., 2002) 

have shown that C/EBP
-/-

 mice are completely refractory to skin tumorigenesis 
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induced by the carcinogen 7,12-dimethyl-benz[a]anthracene, that produce oncogenic ras 

mutations in epidermal keratinocytes, suggesting an important role for C/EBP in 

keratinocytes survival in response to oncogenic ras and in skin tumorigenesis (Sterneck 

et al., 2006). C/EBP also functions as a survival factor in myc/ras transformed 

macrophages in vitro (Wessells et al., 2004) and in Wilms tumor cells (Li et al., 2005) 

and has been associated with ovarian tumor progression (Sundfeldt et al., 1999).  

 

Here, we show that C/EBP exerted a stimulatory effect on murine and human 

glioblastoma cell proliferation and viability in vitro. Inhibition of C/EBP expression 

leads to G1 arrest and reduced S phase in GL261 cells. These effects are accompanied 

by an increase in the expression of several genes involved in the DNA damage 

response, such as ATM, Brca1, Brca2, Chk1, Chk2, and p27, thereby ensuring a non-

proliferative outcome. These results provide support for the possibility that depletion of 

C/EBP inhibits cell proliferation and survival in glioblastoma cells by directly 

affecting the expression of these genes resulting in an activation of the G0/G1 

checkpoint, and impairment in the progression through the cell cycle and consequently 

an inhibition of glioblastoma progression in vivo. Consistent with this proposal, the 

regulatory regions of all these genes present consensus binding sites for C/EBP, 

suggesting that this protein can indeed directly regulate their expression. Also, and in 

agreement with our results, it has been shown that overexpression of C/EBP in a 

human mammary epithelial cell line leads to anchorage independent growth and 

invasive properties (Bundy and Sealy, 2003). We show here that a decrease in C/EBP 

expression leads to an inhibition of colony growth in soft agar, suggesting that C/EBP 

plays a role in the oncogenic process of anchorage-independence and is critical for 

tumor growth in glioblastoma. In this regard, results from the PCR array analysis also 

show that C/EBPdepletion decreases the mRNA levels of different genes involved in 

invasiveness and metastasis, including integrin 3, melanoma cell adhesion molecule, 

plasminogen activation urokinase receptor, and S100 calcium binding protein A4, 

suggesting that the induction of these genes by C/EBP could mediate its effects on 

these processes.  

 

Notably, it has recently been demonstrated that expression of C/EBP is markedly 

increased in high-grade glioma compared with low-grade glioma, and patients whose 
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expression of C/EBP in tumor tissue was lower survived longer than those whose 

expression was higher (Homma et al., 2006). These results are consistent with our data 

showing that C/EBP knockdown inhibited glioblastoma tumor growth in vivo. 

Consequently, tumor development was significantly delayed in mice injected with I4 

cells. Our data clearly show that those mice bearing GL261 cells with high C/EBP 

expression had poorer survival than mice bearing C/EBP-deficient tumors (p = 

0.0012). Moreover, C/EBP-silenced glioblastoma lacked the aggressiveness of control 

tumors, including enhanced blood vessel formation and abundance of giant cells, 

suggesting that in addition to proliferation, C/EBP signaling is also an effective 

regulator of malignant transformation in glioblastoma cells in vivo. The reduced 

vascularisation observed in those mice implanted with C/EBP knockdown cells, could 

be due, al least in part, to the down-regulation by this transcription factor of several 

genes involved in the promotion of angiogenesis.  This lends support to the view that 

dysregulated C/EBP expression could influence glioblastoma development. Our results 

are supported by a recent paper demonstrating that expression of C/EBP is linked to 

the mesenchymal state of primary glioblastoma and provide an excellent prognostic 

biomarker for tumor aggressiveness (Carro et al.). 

 

In conclusion, our study demonstrates that C/EBP is a crucial regulator of 

glioblastoma cell growth and transformation and that several genes involved in DNA 

repair, invasion and metastasis may be important downstream effectors of C/EBP-

mediated oncogenic properties. These findings are clinically relevant because advanced-

stage glioblastomas are refractory to current treatments; thus, understanding C/EBP 

regulation of tumor growth potential, could provide a novel therapeutic adjunct for 

aggressive glioblastomas.  
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FIGURE LEGENDS 

 

Figure 1. Expression of C/EBP. (A) Western blot showing C/EBP expression in the 

glioblastoma murine cell line GL261 and in primary cultures of astrocytes in basal 

conditions and after 24 h of lipopolysaccharide (LPS) stimulation. Mouse primary 

astrocytes, were harvested and cultured as previously described (Luna-Medina et al., 

2007). Cultures were stimulated with lipopolysaccharide (10 g/ml, LPS) and cells were 

harvested 24 h later. (B) Expression of C/EBP in control (C1, C2) and C/EBP-

depleted (I4, I5) GL261 pools, as assessed by Western blot analysis. The Westerns 

shown are representative of three different experiments. (C) Expression of C/EBP in 

control (FS) and C/EBP-depleted (FC1) human LN18 cells. (D) Representative 

Western blot showing expression of C/EBPα and C/EBPδ in GL261 (C1 and I4) and 

LN18 (FS and FC1) cells. 

 

Figure 2. Effect of C/EBP depletion on cell viability, proliferation, and 

clonogenicity. (A) C1, I4 and I5 pools were seeded into individual wells of a 96-well 

plate and cultivated for 24 h after which BrdU was added to the culture medium. Cells 

were harvested 16 h after BrdU addition. (B) Cells were grown on glass cover slips for 

24 h and BrdU incorporation was analyzed 16 h after by immunofluorescence using a 

specific anti-BrdU antibody. Bar scale, 50 m. Quantification of the results is shown in 

the right panel. Indicated is the percentage of BrdU
+
 cells. (C) Murine C1 and I4 and 

human FS and FC1 cells were seeded in a 96-well plate and at different times after 

plating cell viability was determined by the MTT assay. (D) Progression through the 

cell cycle was analyzed by PI staining and FACS analysis. Curves modeling the G0/G1, 

S, and G2/M compartment, derived by using the Summit program, are shown. Data are 

representative of three independent experiments. (E) Three weeks after seeding the cells 

in soft agar, 10 randomly selected microscopic fields were counted. Shown are 

representative microphotographs (bar scale 250 m) and quantification. Values in 

panels A, B, C and E represent the means  S.D. of at least three different experiments.  

 

Figure 3. Effects of C/EBP on cell motility and invasion. (A) Murine C1 and I4 and 

human FS and FC1 cells were grown to confluence into a monolayer and a linear 

scratch wound was performed with a plastic pipette tip. Images were taken with a phase 
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contrast microscope at different times after wounding. Representative phase-contrast 

images of the in vitro wound-healing assay are shown. Bar scale, 100 m (B) Cell 

invasion was measured on transwell coated with Matrigel as described in Materials and 

Methods. Values are represented as means  S.D. of three different experiments.  

 

Figure 4. Western blot analysis. Protein lysates from C1, I4, and I5 pools were used 

for western blot analysis using specific antibodies against ATM, chk2, Brca1, and p27, 

as indicated in Materials and Methods. 

 

Figure 5. Effects of C/EBP expression on tumor growth in vivo. Histological and 

immunostaining analysis of tumors induced by GL261-derived pools. (A) T1 magnetic 

resonance imaging (MRI) pictures obtained from mice injected with the GL261-derived 

clones. T1-weighted imaging was performed at 7 Tesla as described in Materials and 

Methods at different times after injection. Cortical images showing the brains of 

representative mice, obtained at 11, 15, and 18 days post-injection are presented. (B) 

Quantitative analysis of total tumor volumes. Values represent the mean  S.D. from 

five different animals. (C) Kaplan-Meier plots and log-rank statistics analysis of overall 

survival reveal that downregulation of C/EBP expression in I4 tumors significantly 

improves survival of tumor-bearing mice compared with their C1 controls (log-rank test 

p = 0.0012). (D) Representative hematoxylin and eosin staining images of the C1- and 

I4-derived tumors. Middle and right panels show higher magnifications of the images 

shown in the two left panels. C1 tumors showed clear blood vessels (arrows) and 

multinuclear giant cells (arrowheads). Scale bars, 100 m (E) Immunocytochemistry 

analysis of tumor sections for PCNA detection. Scale bar, 25 m. 

 

Table I. Effect of C/EBPβ on cancer regulatory gene expression. 
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