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Abstract 

To transfer to the laboratory, the excellent efficiency shown by enzymes in Nature, biocatalysis, 

had to mimic several synthetic strategies used by living organisms. Biosynthetic pathways are 

examples of tandem catalysis and may be assimilated in the biocatalysis field for the use of 

isolated multienzyme systems in the homogeneous phase. The concurrent action of several 

enzymes that work sequentially presents extraordinary advantages from the synthetic point of 

view since it permits to become irreversible a reversible process, to shift the equilibrium 

reaction in such a way that enantiopure compounds can be obtained from prochiral or racemic 

substrates, reduce or eliminate problems due to product inhibition or prevent the shortage of 

substrates by dilution or degradation in the bulk media, etc. In this review we want to illustrate 

the developments of recent studies involving in vitro multi-enzyme reactions for the synthesis of 

different classes of organic compounds. 

1 Introduction 

Chemists have always been inspired by Nature, not only due to the vast diversity of compounds 

that living organisms are capable of creating, but also due to the extraordinary synthetic 

strategies deployed. Inside of a cell, thousands of different chemical reactions take place to 

support cellular growth and survival. Enzymes, the catalysts used by living organisms, have 

evolved to perform these diverse chemical transformations with high selectivity and specificity. 

This extraordinary synthetic effectiveness that enzymes display is due in part to their work in 

multi-step reactions, or cascade processes which give rise to the complex metabolic networks 

found in biological systems. This synthetic strategy allows building complex structures from 

simple elements, can make irreversible a reversible process, eliminates inhibition problems 

caused by product excess, or prevents the lack of substrate [1●●]. 

Biocatalysts have adopted Nature´s strategy to reproduce such tandem reactions and to apply 

them in organic synthesis as a powerful tool to efficiently produce structurally complex 

molecules. Two major approaches have been made: the use of whole microorganisms (in vivo) 
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or the use of isolated enzymes (in vitro) [2●●]. In vivo approaches exploit the metabolic 

pathways of the microbial hosts, which often have been engineered to produce the desired 

product, and to minimize the diversion of substrate for their normal metabolic requirements. 

The use of microorganisms has some advantages: i) there is no need for enzyme isolation or 

purification; ii) enzymes show a high stability due to the fact that they are surrounding of their 

natural environment and iii) cofactor regeneration is typically provided by the cell own 

metabolic machinery. Although the complexity of the cellular system provides all these 

benefits, has also some drawbacks: i) engineering microorganisms is labor-intensive and time 

consuming; ii) lower selectivities are achieved owing to the competition from other similar 

enzymes present in the cell; iii) a balance between the toxicity of the substance produced and 

the product yield is required and iv) control and maximization of the synthetic processes is 

difficult. In contrast, in vitro approaches are less complex and, therefore, reaction conditions are 

easier to control and can be optimized by, for example, varying the concentration of the enzyme 

or the substrate, adding co-solvents or with variation of pH or temperature. Also a higher purity 

product is usually obtained due to the absence of competing side reactions and metabolites 

which are present in in vivo systems. Despite these advantages there are some limitations: i) 

isolation, characterization and obtaining sufficient quantities of the enzymes for the reaction are 

required; ii) the enzymes have to be stable and functional under reaction conditions; iii) cofactor 

dependent enzyme reactions need a continuous cofactor regeneration system to avoid the use of 

stoichiometric amount of usually expensive co-factors. Alternatives to overcome these 

limitations included the use of recombinant DNA techniques to identify, produce and modified 

proteins; enzyme immobilization that can enhance their stability and allow the possibility to 

compartmentalize synthetic routes incompatible among them and the use of enzymatic cofactor 

regeneration systems. 

In this review we want to illustrate the developments of recent studies involving in vitro multi-

enzyme reactions for the synthesis of different compounds. 

2 Tandem reactions for the preparation of alcohols 

Alcohols are useful intermediates or building blocks for the synthesis of many pharmaceuticals 

and chemicals. These compounds are produce in Nature following several pathways and using 

different classes of enzymes like oxidoreductases, hydrolases and lyases.  

In general, the use of oxidoreductases (OR) allows the transfer of electrons from a reductant to 

an oxidant, catalyzing a redox process and producing alcohol through the reduction of a 

carbonyl compounds.  Ketoreductases (KREDs), provide alcohols via ketone reduction. Baeyer–

Villiger monooxygenases (BVMOs) are another type of redox enzymes which catalyze the 



oxidation of ketones, sulfides, and other heteroatoms by atmospheric oxygen. All these enzymes 

are ubiquitous in Nature and the number of new identified members of these families is 

continually increasing. The use of OR presents a main limitation since most of them are 

dependent on the nicotinamide cofactors β-1,4-nicotinamide adenindinucleotide (NADH), β-

1,4-nicotinamide adenine dinucleotide phosphate (NADPH) or rarely cofactors from the group 

of the flavines (FAD) or methoxatines. Thus, cofactor regeneration is needed attending to the 

expensive cost of these compounds. Effective cofactor regeneration methods as chemical, 

electrochemical, photochemical or enzymatic methods have been developed being the multi-

enzymatic systems for in situ co-factor regeneration approach the methodology most often 

exploited. Excellent literature revisions about this subject have been published [3, 4] thus, in 

this paper enzymatic strategies for cofactor regeneration will be not discussed. 

There are several examples for the use of KREDS in literature. Wada et al. [5] obtained the 

enantiopure alcohol (4R, 6R)-actinol (4-hydroxy-2,2,6-trimethylcyclohexanone) from 

ketoisophorone [3,5,5-trimethyl-2- cyclohexene-1,4-dione] by a two-step enzymatic asymmetric 

reduction system which started with the asymmetric reduction of the C=C bond followed by the 

asymmetric reduction of (6R)-levodione to (4R, 6R)-actinol using the old yellow enzyme from 

Saccharomyces cerevisiae and the (6R)-levodione reductase of Corynebacterium aquaticum M-

13. Glucose dehydrogenase was also used for cofactor regeneration in both steps (Figure 1A). 

Ma et al. [6] synthesized the ethyl (R)-4-cyano-3-hydroxybutyrate, a key intermediate in the 

synthesis of the cholesterol-lowering drug atorvastatin (Lipitor). This compound can be 

prepared by KRED catalysed reduction of a β-keto ester coupled with a GDH catalysed 

conversion of glucose to gluconate for cofactor regeneration. A third enzyme, halohydrin 

dehalogenase (HHDH) is employed for the subsequent conversion of the chlorohydrin product 

to the corresponding cyano compound (Figure 1B). Also enantiomerically pure diols can be 

achieved combining the use of two different ketoreductases by two consecutive reduction 

reactions: a stereoselective diketone reduction and a hydroxy ketone reduction [7].  

One-pot deracemization of secondary alcohols can be performed by sequential ADHs oxidation 

and reduction processes. An artificial reaction pathway combining simultaneous concurrent 

tandem oxidation and reduction cycles with opposite cofactor and stereopreference in one-pot 

was designed by Voss et al. [8●●] for the resolution of alcohol racemates. Both enantipure (R) or 

(S)-alcohols were obtained combining different estereoseltive ADHs with an oxidase and a 

formate dehydrogenase for the cofactor regeneration. This approach can be extended to 

stereoinversion of enantioenriched sec-alcohols (Figure 1C). Another way for the 

deracemisation of secondary alcohols is the enantioselective oxidation of several sec-alcohols 

by an ADH combined with the stereoselective oxidation of different ketones or sulfides by a 

BVMO. Both reactions are productive and connected through internal cofactor recycling,  



 

Figure 1. Multi-enzyme syntheses of alcohols. A. Synthesis of (4R, 6R)-actinol from ketoisophorone. B. 

Synthesis of ethyl (R)-4-cyano-3-hydroxybutyrate. C. Sequential oxidation and reduction for 

deracemization of racemic alcohols. D. Synthesis of 12-ketoursodeoxycholic acid. Recycling of cofactors 

has been omitted for a major clarity of the scheme.  



allowing a parallel interconnected kinetic asymmetric transformation (PIKAT) and maximizing 

the redox efficiency. In this manner, it was possible to obtain simoultaneously up to three 

enantioenriched derivatives [9, 10●]. Other example of the utilization of these enzymes is the 

synthesis of 12-ketoursodeoxycholic acid that was achieved by alternating oxidative and 

reductive steps catalysed by hydroxysteroid dehydrogenases (HSDHs) with different cofactor 

specificity, using the regeneration systems as the driving force. The enzymes used in this 

synthesis were the NADH-dependent 12α-HSDH and 7α-HSDH in the oxidative step and a 

NADPH-dependent 7β-HSDH in the reductive one. Lactate dehydrogenase (LDH) from rabbit 

muscle and pyruvate were used for NAD+ regeneration and NADPH was recycled by the 

glucose/glucose dehydrogenase system from Thermoplasma acidophilum [11] (Figure 1D). An 

example of a multi-step oxidative cascade involving a cytochrome P450 monooxygenase 

(TamI) and an FAD-dependent oxidase (TamL) have described by Carlson et al [12]. These 

enzymes act co-dependently through repeated exchange of substrates for post-assembly line 

tailoring of tirandamycin antibiotics. 

Lyases and hydrolases can also be employed for the synthesis of alcohols. Lyases catalyze the 

C-C bond formation coupling a ketone and an aldehyde and forming a diol [13●●] or coupling a 

ketone with hydrogen cyanide giving an acid derivative [14], some examples will be explained 

subsequently. Hydrolases catalyze the hydrolytic cleavage of the carbon-oxygen single bonds 

by lipases or esterases in esters or analogous carboxylic derivatives to produce acids and 

alcohols (or rarely starting from sulphate or phosphate esters as a substrate for phosphatases or 

sulphatases, respectively) or by epoxide hydrolases which catalyze the opening of epoxides 

[15].  

3 Multi-enzyme synthesis of acids and acid derivatives 

Acids and their derivatives are very attractive for organic synthesis because of the easy 

transformation of the functional groups in these molecules. Two major approaches have been 

described in literature to prepare acids and derivatives: i) oxidation of an alcohol group and ii) 

hydrolysis of a cyano group catalysed by nitrilases or nitrile hydratases giving rise 

consecutively to carboxilic acids or amides. When amides are obtained they can be hydrolyzed 

to the corresponding acids by amidases. An example of the first has been reported by Di Genaro 

et al. [16]. These authors use sequentially an aldoketo reductase from E. coli JM109 (ECAKR), 

an alcohol dehydrogenase from Lactobacillus brevis (LBADH) and a dihydrodiol 

dehydrogenase from Pseudomonas fluorescens N3 (NDDH). The second procedure was used 

for the production of the α-hidroxyacid (S)-mandelic acid. Its synthesis began with the 

production of (S)-mandelonitrile catalysed by a cross-linked enzyme aggregate (CLEA) of 

hydroxynitrile lyase from Manihot esculenta coupled with its in situ hydrolysis catalysed by a 



selective nitrilase from Pseudomonas flurescens [14]. The addition of a third enzyme, penicillin 

amidase, which catalyzes the hydrolysis of the (S)-mandelamide increases (S)-mandelic acid 

yield from 40% up to 96% with an enantiomeric excess up to 99% [4]. In the same way, β-

hydroxy carboxylic acids can be obtained by the reduction of β-ketonitriles and the 

subsequently nitrilase-catalysed hydrolysis of the obtained optically β-hydroxy nitriles. Ankati 

et al. [17●] reported this reaction to afford optically active β-hydroxy carboxylic acids using a 

combination of a reductase from Candida magnoliae (CMCR) and a nitrilase from 

Cyanobacterium synechocystis sp. strain PCC 6803 (NIT6803) to obtain the (R)-enantiomer or a 

an alcohol dehydrogenase (Ymr226c) from Saccharomyces cerevisiae and a nitrilase from 

Bradyrhizobium japonicum strain USDA110 (bll6402) for the preparation of the (S)-enantiomer. 

By analogy with the synthesis of α-hydroxy acids, a one-pot synthesis of α-hydroxy amides 

from aldehydes via hydrocyanation and in situ nitrile hydratase-catalysed hydrolysis to the 

amide can be envisioned. Recently Sheldon’s group [18] has design a bienzymatic cascade 

reaction catalysed by hidroxynitrile lyase (HnL) and a nitrile hydratase (NHase) for the 

production of α-hydroxycarboxylic amides. In this case the low selectivity of the NHase is no 

longer a drawback since either an (R)- or (S)-selective HnL will impart its enantioselectivity on 

the reaction. 

4 Multi-enzyme synthesis of amino acids and amines 

Amino acids and amines deserve a special attention as they are a highly attractive target from a 

biocatalyical point of view. Several multi-enzyme syntheses for the production of natural and 

unnatural amino acids and amines have been designed due to their demand for pharmaceutical 

industry to treat a range of different therapeutic conditions. In the same way that alcohol 

synthesis, the production of these compounds can be achieved through reductive amination or 

via deracemisation from a starting racemic mixture. A significant number of examples of these 

multi-enzyme biocatalytic processes have been compiled in several excellent reviews [19, 20]. 

In the present review we have chosen just a few recent examples.   

Three main in vitro multi-enzyme system strategies are known for amino acid synthesis:  

4.1 Multi-enzymatic synthesis of amino acids employing amino acid dehydrogenases 

(AADH). 

Amino acid dehydrogenases (AADHs) are NAD(P)+-dependent enzymes, which convert amino 

acids to the corresponding keto acids and ammonia. Luckily, they are also able to catalyze the 

reverse reaction leading to the asymmetric synthesis of amino acids via reductive amination. 

Enzymatic cofactor regeneration systems have been coupled to AADH to make economically 

viable the process.  



In a recent work published by Resch et al., [21●] a three-enzyme cascade reaction for the 

deracemisation of D,L-mandelic acid to yield enantiopure L-phenylglycine (>97% ee.) is 

described  in a novel type of “dynamic kinetic asymmetric transformation” (DYKAT) system. 

This multi-enzyme system employs mandelate racemase in combination with D-mandelate 

dehydrogenase (D-MDH) and different AADHs, being the D-MDH not only part of the NADH 

regeneration system but also providing phenyl glyoxylate, substrate of L-AADH, from D-

mandelic acid (Figure 2A) Nakajima et al. [22] described a cascade system for deracemization 

of D,L-alanine and D,L-leucine to the corresponding L-enantiomers with an enantiomeric excess 

of 99%. Deracemization can be afforded by combining D-amino acid oxidase (D-AAO) for 

enantioselective oxidation and the correspondent AADH for asymmetric reductive amination. 

Furthermore, a formate dehydrogenase for cofactor regeneration and a catalase for hydrogen 

peroxide degradation in order to prevent oxidative enzyme inactivation have been added to the 

system. This elegant four-enzyme cascade has also been applied in the conversion of D-

methionine to L-methionine by Findrik and Vasić-Rački [23] (Figure 2B).  

4.1 Multi-enzymatic synthesis of amines and amino acids employing amino transferases 

(ATs) 

Amino transferases are a very useful tool for biocatalytic synthesis because their capacity for 

introducing amino groups into ketones or keto acids giving rise to the corresponding amines and 

amino acids. According to their substrate scope, they can be classified in two groups: i) α-amino 

transferases, which act on the α-amino group in amino acids and ii) ω-amino transferases, which 

can convert amines that lack vicinal carboxylic acid functionality. Both classes require 

pyridoxal-5’-phosphate (PLP) as coenzyme and are able to catalyze the reverse amino group 

transfer, resulting in an incomplete conversion. Therefore, the development of tandem 

processes, which allow for shifting the equilibrium to the transfer product , are needed to 

overcome impediments such as serious substrate/product inhibition problems and/or equilibrium 

constraints.  

In the lasts years, ω-amino transferases have emerged as versatile and powerful biocatalysts for 

the obtention of a broad variety of amines. A simple method to avoid the inhibitory effect of the 

co-produced ketone consist on remove it using a secondary enzymatic reaction. Since alanine is 

usually employed as the amino donor, pyruvate removal is necessary. This can be accomplis, 

coupling the ω-AT reaction with different enzymes which can remove in situ the pyruvate 

formed like lactate dehydrogenase, pyruvate decarboxylase or acetolactate synthaseA similar 

strategy can be used reducing the ketone product to the corresponding alcohol in a reaction 

catalysed by alcohol dehydrogenase. Koszelewski et al. [24] coupled a (R)-selective ω-AT 

catalysed amine kinetic resolution with a stereoselective transamination catalysed by an (S)-



selective ω-AT. Pyruvate and alanine were included in the reaction and were recycled by the 

addition of amino acid oxidase (D-AAO) in the first step, according to procedure previously 

developed by Truppo et al. [25●] and by the use of amino acid dehydrogenase (AADH) in the 

second step (Figure 2C). In a recent work [26], the same group report the design of another 

system for amine racemisation containing just the (R)- and (S)-ω-ATs in the presence of 

symmetric ketone/amine co-substrates, which served as amino-group shuttles. Combination of 

ω-AT with an alanine amino trasferase (AlaAT) can be used for pyruvate recycling by 

transferring the amino group from the intermediate alanine to another keto-acid [27]. 

Furthermore, AspATs have been coupled to branched chain amino transferase (BCATs) for 

recycling the amino donor L-glutamate [28].  

α-AT have been applied in kinetic resolution of racemic substrates or in asymmetric synthesis of 

chiral compounds, depending  if the catalysed reaction runs forward or reverse. They have been 

coupled with amino acid dehydrogenases (AADHs) to achieve the asymmetric synthesis of D-

amino acids from keto acids obtaining good yields and high enantiomeric excess values. In a 

first step, an amino acid dehydrogenase forms an L-amino acid which is stereoinverted by a 

suitable amino acid racemase to give the D-enantiomer, which serves as amino donor for the 

reaction catalysed by a D-amino acid aminotransferase in the transformation of a keto acid to a 

D-amino acid. Cofactor regeneration for the AADH is supplied by formate dehydrogenase [29] 

(Figure 2D). An analogous methodology has been developed, omitting the amino acid racemase, 

for the preparation of L-amino acids which could not be produced by direct enzymatic reductive 

amination as β- and γ-branched glutamic acid derivatives [30]. Furthermore, α-AT and AADH 

have also been coupled in an amino acid deracemization system by Caligiuri et al. [31]. In this 

process a D-amino acid oxidase from Rhodotorula gracilis and L-aspartate transaminase from E. 

coli were used. Irreversibility of the reaction was assured through the spontaneous 

decomposition of the β-keto sulphinic acid by-product produced by the cysteinesulphinic amino 

donor (Figure 2D). 

4.3 Multi-enzyme systems of ammonia lyases and aminomutases for the synthesis of amino 

acids . 

Multi-enzyme systems using ammonia lyases and aminomutases as biocatalysts have also been 

developed [32].  Enantiopure L-arylalanines (e.e.>98%) can be prepared with good yields 

coupling the enzymes phenylalanine ammonia lyase (PAL) and porcine liver esterase (PLE) in a 

one-pot multi-enzyme system [33] (Figure 2F). Also a biocatalytic resolution of racemic α-

arylalanines to enantiopure β-arylalanines has been described using a combination of 

phenylalanine aminomutase (PAM) and a promiscuous alanine racemase from Pseudomonas 

putida [34]. Finally, Wu et al. [35] have coupled both PAM and PAL for the kinetic  



 

Figure 2. Tandem ezymatic reactions for the synthesis of amines and aminoacids. A. Deracemistaion of 

mandelic acid to yield L-phenylgycine. B. Complete conversion of D-methionine into L-methionine in a 

four enzymes cascade reaction.C. Deracemisation of racemic mexilene using (R)- and (S)-selective ω-

transaminases. D. Synthesis of a D-amino acid from a α-ketoacid using a D-selective AAO and a L-

selective α-AT. E. Deracemization of α-amino acids. F. Synthesis of α-arylalanines using porcine liver 

esterase and phenylananine ammonia lyase. 



resolution of aromatic β-amino acids. Initially, PAM catalyzes the enantioselective 

isomerisation of (R)-β-phenylalanines to (S)-α-phenylalanines and PAL catalyzes the 

deamination of the α-amino acid formed to the corresponding cinamic acid. In the process 

described a wide range of β-amino acids were obtained in high enantiomeric excess (99%). 

5. Tandem reactions for C-C bond formation 

One of the most important reactions in organic synthesis is the formation of carbon-carbon (C-

C) bonds. Aldolases and hydroxynitrile lyases are the most used enzymes for C-C bond 

formation in biotransformations, taking part of great number of cascade processes. Previously 

we have described the use of hydroxynitrile lyases for acid and acid derivative synthesis, 

therefore, in this section we will summarize recent progress in C-C bond formation cascade 

reaction mediated by aldolases.  

Aldolases constitute a family of lyases, which catalyze reversibly and stereoselectively an aldol 

addition reaction between a donor compound (nucleophile) and an acceptor compound 

(electrophile) leading to the formation of one or two new stereogenic centers. Usually these 

enzymes show high specificity towards the donor substrate but tolerate a broad range of 

acceptor substrates, making of them an attractive tool in the asymmetric construction of several 

compounds as carbohydrates, amino acids, and their analogues. According to their donor 

specificity aldolases can be classified into (i) pyruvate/oxaloacetate/2-oxobutyrate-dependent, 

(ii) dihydroxyacetone phosphate (DHAP)-dependent, (iii) dihydroxy- acetone (DHA)-dependent 

and other unphosphorylated analogues, (iv) threonine-dependent and (v) acetaldehyde-

dependent aldolases [13●●]. 

5.1 Tandem reactions employing pyruvate or phosphoenol pyruvate dependent aldolases. 

Pyruvate-dependent or phosphoenol pyruvate-dependent aldolases, reversibly catalyze the aldol 

addition of pyruvate or phosphoenol pyruvate to a variety of polyhydroxylated aldehydes. N-

Acetylneuraminic acid aldolases (NeuAc aldolases) use pyruvate as the donor substrate and 

catalyze the aldol reaction between pyruvate and mannose or mannose derivatives. They have 

been extensively studied owing their capacity to produce sialic acids derivatives used in cancer 

therapy and as anti-infectives. In spite of the fact that the substrate for NeuAc aldolases, N-

acetylmannosamine, is expensive and difficult to synthesize, there are a possibility to overcome 

this problem by in situ formation of N-acetylmannosamine from N-acetylglucosamine by an N-

acetylglucosamine 2-epimerase and the subsequently coupling of this reaction with the 

production of N-acetylneuraminic acid by NeuAc aldolase [36]. The ability of the NeuAc 

aldolase to accept a broad range of substrates has been further exploited for the one-pot three 

enzyme synthesis of sialosides. In this system 2-mannose derivatives are obtained as acceptor 



substrates by chemical or enzymatic modification and coupled with pyruvate to form sialic acid 

derivatives by a sialic acid aldolase-catalysed reaction. The one-pot process included cytidine 

5’-monophosphosialic acid synthetase (CMP-sialic acid synthetase) to activate the sialic acid 

derivative and a sialyltransferase for the formation of sialosides. It is interesting to mention that 

three different CMP-sialic acid synthetases were tested (Figure 3A). The use of these 

compounds as acceptors for the α2-8-sialyltransferase from Campylobacter jejuni results in 

GD3 ganglioside oligosaccharides and other disialyl glycans containing different natural and 

non-natural sialic acids [37]. In a similar approach, Cao et al. [38] used C-5-hydroxy-substituted 

mannose derivatives to produce a variety of C-5-substituted sialosides. 

5.2 Tandem reactions employing DHAP-dependent aldolases. 

DHAP-dependent aldolases catalyze the reversible aldol addition between DHAP and a large 

variety of aldehyde acceptors. The configuration of the two new stereocenters formed can be 

controlled by choosing one out of four stereocomplementary DHAP aldolases. One of the main 

drawbacks of DHAP-aldolases is their selectivity towards DHAP, which is chemically unstable 

and expensive. In this sense our research group has developed a straightforward multi-enzyme 

system for one-pot C-C bond formation catalysed by DHAP-dependent aldolases that allows the 

use of DHA as initial donor [39]. This system is based on the use of the recombinant ATP-

dependent DHAK from C. freundii CECT 4626 for the in situ phosphorylation of DHA [40]. 

The multi-enzyme system was completed with the regeneration of ATP catalysed by acetate 

kinase. This multi-enzyme system is robust enough to be used with the three synthetically useful 

DHAP-dependent aldolases and with aldehydes with great structural diversity [41]. The 

possibility to apply one-step or two-steps strategies, make the system sufficiently flexible to be 

able to work under different reaction conditions such as the presence of co-solvents [42●]. 

Another method for the DHAP generation is based on the use of the acid phosphatase from 

Shigella flexneri (PhoN-Sf) using pyrophosphate (PPi) as phosphate donor. This enzyme firstly 

phosphorylates DHA and secondly, after the aldolase condensation, dephosphorylates the aldol 

adduct which leads to phosphate cycling while preventing the retroaldol reaction and shifting 

the equilibrium to completion [43] (Figure 3B).  

One of the main applications of DHAP-dependent aldolases has been the synthesis of imino- 

and aminocyclitols, which are, in general, inhibitors of glycosidases and glycosyltransferases. A 

quite interesting methodology to access to nitro- and aminocyclitols has been described by 

Lemaire and coworkers [44●]. The key step in this cascade reaction is the aldol reaction between 

dihydroxyacetone phosphate (DHAP) and an aldehyde catalysed by DHAP-dependent 

aldolases. A highly stereoselective intramolecular cyclization (Henry reaction) take place during 

the aldolase catalysed condensation and is followed by a phytase-catalysed phosphate 



hydrolysis step, obtaining enantiomerically pure compounds with four new stereocenters for 

each aldehyde tested. 

5.3 Tandem reactions employing dihydroxyacetone (DHA)-dependent aldolases. 

Fructose-6-phosphate aldolase (FSA) was described for the first time by Schürmann and 

Sprenger [45]. This enzyme is a class I aldolase and catalyze the reversible aldol addition of its 

natural donor, dihydroxyacetone (DHA), on an aldehyde producing 3S,4R diols. Besides, FSA 

has attracted considerable attention on account of its unique utilization not only of DHA, but 

also of glycolaldehyde (GA), hydroxyacetone (HA) and hydroxybutanone (HB) as donor 

compounds.  Garrabou et al. [46●] have reported that FSA is able to catalyze direct 

stereoselective self-aldol addition of GA furnishing D-(—)-threose. Taken advantage of the 

flexibility shown by FSA with respect to the donor substrate, the same authors described the 

synthesis of 1-deoxy-D-ido-hept-2-ulose in a multi-substrate cascade reaction of two 

consecutive aldol additions FSA-catalysed with two different donors. Recently Sánchez-Moreno 

et al. [47] have designed two straightforward strategies for the synthesis of several sugars 

monophosphates. These strategies are based on the use of FSA with the four known donors as 

the key step of a three or four enzyme-catalysed cascade reaction.  In both approaches the FSA 

acceptor substrate, D-glyceraldehyde-3-phosphate (D-G3P), is obtained by isomerization of 

DHAP using a triosephosphate isomerase. In the first method DHAP was achieved by 

enzymatic phosphorilation of DHA and the reaction system was completed with a pyruvate 

kinase for cofactor regeneration. In the second methodology D-G3P was generated from the split 

of D-fructose-1,6-bisphosphate (FBP) catalysed by a FBP-aldolase (Figure 3C). 

5.4 Tandem reactions employing threonine-dependent aldolases. 

Threonine aldolases catalyze the reversible cleavage of L-threonine to glycine and acetaldehyde 

and require pyridoxal 5’-phosphate (PLP) as cofactor. These aldolases have been extensively 

used for the preparation of β-hydroxy-α-amino acids that are medicines by themselves or can be 

used as chiral building blocks for the production of drugs [48]. Recently, the Griengl’s group 

has developed bienzymatic one-pot synthesis of β-amino alcohols with high enantiomeric 

excess by means of a combination of a threonine aldolase-catalysed aldol reaction and a 

subsequent decarboxylation step tyrosine decarboxylase-catalysed (Figure 3D). In this way, the 

equilibrium of the aldol reaction is shifted to the side of the aldol product [49]. 

5.5 Tandem reactions employing acetaldehyde-dependent aldolases. 

An acetaldehyde-dependent aldolase from Arthrobacter simplex AKU 626 that catalyzes the 

aldol condensation of acetaldehyde and α-ketobutyrate has been used in combination with an 

aminotransferase for the two-step enzymatic synthesis of 4-hydroxy-L-isoleucine (HIL). In the  



 

Figure 3. C-C bond formation using aldolases. A. One-pot three-enzyme approach for the synthesis of 

sialosides using a pyruvate-dependent aldolase. B. Multi-enzyme system to obtain unphosphorilated 

aldols by DHAP-dependent aldolases using DHA as initial donor. C. Synthesis of monophosphorilated 

sugars employing a DHA-dependent-aldolase. D. Bienzymatic synthesis of aromatic β-amino alcohols 

threonine-dependent aldolase-catalysed. E. Two-step enzymatic synthesis of 4-hydroxy-L-isoleucine 

utilizing an acetaldehyde-dependent aldolase (AcH-Aldolase). 

 



first step, 4-hydroxy-3-methyl-2-keto-pentanoate aldolase (HPAL) catalysed the aldol reaction 

between acetaldehyde and α-ketobutyrate. In the second step, amination of 4-hydroxy-3-methyl-

2-keto-pentanoate (HMKP) by the branched-chain amino acid aminotransferase leads to 

synthesis of HIL [50] (Figure 3E). 

6. Multi-enzyme synthesis of nucleosides, nucleotides and derivatives. 

Natural nucleosides, nucleotides and their modified derivatives, play a variety of roles in 

biochemistry, biology, and medicine. They are commonly used for the synthesis of antiviral and 

antitumor agents as well as for the synthesis of oligonucleotides and glycoconjugates. Multiple 

enzymatic processes have been developed to produce various sugar-nucleotides from cheap and 

easily available substrates. Here we report just a few examples: 

A recent approach for the synthesis of nucleotide analogues has been reported by Scism and 

Bachmann [51]. They have developed a covalently linked enzyme aggregate (CLEA). In this 

pathway ribokinase phosphorylates D-ribose obtaining D-ribose-5-phosphate, which is 

subsequently pyrophosphorylated by phosphoribosyl pyrophosphate synthetase generating 

phosphorybosil pyrophosphate (PRPP). Then, the transferase 8B3PRT catalyzes the addition of 

purine nucleobases to the activated sugar. ATP is regenereted by including adenylate kinase and 

pyruvate kinase, which uses phosphoenol pyruvate (PEP) as a source of activated phosphate. 

This method can potentially provide a great variety of nucleotide analogues.  

Regeneration of the sugar nucleotide has been carried out to improve enzymatic methods 

involving glycosyltransferases. Uridine diphosphoglucose (UDP-Glc) is the most commonly 

encountered sugar nucleotide in biological systems. Starting from raw materials Dong et al. [52] 

designed a new multi-enzyme system for in vitro synthesis of this compound.  Maltodextrin is 

phosphorylated to glucose monophosphate by maltodextrin phosphorylase. The latter is then 

converted to UDP-Glc by glucose-1-phosphate thymidylytransferase, generating pyrophosphate 

(PPi) as a byproduct which is further hydrolyzed to phosphoric acid (Pi) by an inorganic 

pyrophosphatase. The last step serves to drive the reaction in the UDP-Glc direction and, also, 

to regenerate one starting product for the maltodextrin phosphorylase reaction. Enzymes were 

immobilized into amino-functionalized magnetic nanoparticles to facilitate the isolation of the 

biocatalyst from the reaction media and to improve their stability and reusability. 

Specific isotope labelling has many applications in biochemical and biophysical studies of 

nucleic acid structure and function. Williamson and co-workers [53●●] used a total of 28 

enzymes in a single-pot reaction for the synthesis of isotopically labelled nucleotides. This 

methodology couples de novo purine biosynthesis with phosphoribosyl-pyrophosphate synthesis 

to achieve a total enzymatic synthesis of the purine nucleotides. The driving force of the 



designed biosynthetic pathway were the regeneration systems for NTP, NAD(P)H and the 

newly implemented recycling schemes for folate, fumarate, and glutamine cofactor pools. 

7. Multi-ezyme systems for the synthesis of oligosacharides and 

glycoconjugates 

Oligosaccharides and glyconjugates have numerous biological roles in physiological responses 

like cell recognition, signalling, infection, adhesion, inflammation, and normal and abnormal 

cellular developments. Thus, is important to access to defined oligosaccharides to determine the 

exact biological roles and to exploit their potential use for medical-therapeutical purposes. 

Access to these molecules has been complicated by a lack of general methods for the routine 

preparation of this important class of compounds. However, enzyme-based methodologies have 

greatly simplified synthetic strategies: glycosyltransferases (GTs), Glycoside hydrolases (GHs) 

and, recently, glycosynthases (GSs) have become valuable catalysts for constructing stereo- and 

regiospecific glycosidic linkages in oligosaccharide structures [54]. Moreover, enzymes such as 

sulfotransferases, proteases, lipases, and aldolases can be used as “tailoring enzymes” for the 

functionalization of the oligosaccharide scaffold. 

Glycosyltransferases catalyze the formation of glycosidic linkages by the transfer of a 

saccharide from a donor substrate to an acceptor substrate. These enzymes use either sugar 

nucleotides or glycosyl phosphates as their activated sugar donors. Acceptors can be other 

saccharides, proteins, lipids, nucleic acids, natural products and unnatural products. Although 

they have high stereospecificity and regiospecificity GTs suffer from two major drawbacks: 

first, activated donors of the most common monosaccharides are commercially available but are 

expensive and, furthermore, the nucleoside diphosphates generated during the reaction are 

potent glycosyltransferase inhibitors. Hence, several recycling systems have been developed. 

The second issue is the availability of glycosyltransferases because every glycosidic linkage 

needs its own enzyme. In spite of these disadvantages, GTs have been widely used in the 

synthesis of oligosaccharides and glyconjugates [55].  

The use of bacterial GTs to synthesize mammalian structures is exemplified in a three-step 

synthesis to produce Forssman antigen pentasaccharide from lactose-pNP using novel α1,4-

GalT and β1,3-GalNAcT from Campylobacteri jejuni and a novel α1,3-GalNAcT from 

Pasteurella multocida. UDP-GalNAc epimerase was employed in this synthesis to allow the use 

of less costly UDP-GlcNAc donor [56]. Even more complex oligosaccharides can be obtained: 

libraries of heparin sulfates from heptasaccharides to dodecasaccharides were produced by the 

use of two glycosyltransferases for the linear backbone followed by selective enzymatic O-

sulfation and N-sulfation and C-5-epimerization [57●●]. The production of 24 different blood 



group and tumor associated antigens has been achieved using and six different GTs enzymes, 

starting GlcNAc chemically synthesized. The monosaccharide was elaborated to LacNAc 

disaccharide with a recombinant Neisseria meningitidis β1,4-GalT fused with a UDPGal 

epimerase enzyme, which allows the use of less expensive UDP-Glc as donor. The product was 

converted to poly-N-acetyllactosamine repeating units by the action of β1,3-GlcNAcT and β1,4-

GalT and then all the LacNAc-terminating compounds were converted to either α2,3-sialylated, 

α2,6-sialylated, α1,2-fucosylated or α1,3-fucosylated with fucosyltransferases and 

sialyltransferases [58]. In an elegant way to obtain glycopeptides, Huang et al. [59] have 

successfully demonstrated a multi-enzyme one-pot glycosylation strategy for the synthesis of 

sLex-containing truncated PSGL-1 glycopeptides, with or without sulfation.  In the first 

enzymatic step glycopeptide was treated with β-1,4-galactosyltransferase and α-2,3-

sialyltransferase in the presence of donor substrates UDP-Gal and CMP-NeuAc. Subsequently, 

the resultant product was incubated with α-1,3- fucosyltransferase and GDP-Fuculose. Alkaline 

phosphatase was added to all the reactions to reduce the product inhibition caused by the 

pyrophosphate group. 

Recently, Serna et al. [60] have reported an effective chemoenzymatic strategy for the 

construction of glycans microarrays. Firstly, a variety of N-glycan core structures have been 

chemically synthesized and covalently immobilized on a glass surface. Then, glycans were 

enzymatically decorated in reactions carried out in nanodroplets using three different 

glycosyltransferases. By using this methodology a great diversity of synthetic oligosaccharides 

were prepared. 

Glycosidases are the second large class of carbohydrate processing enzymes, catalyzing the 

hydrolysis of glycosidic linkages in vivo. Nevertheless, under controlled conditions, 

glycosidases have been used in vitro to synthesize glycosidic bonds. In comparison with 

glycosyltransferase-catalysed reaction they have several advantages, including a broad substrate 

range, the use of readily available donor substrates and the fact that they are generally more 

robust and accessible. Despite these advantages the use of glycosidases in synthesis is subject to 

three major limitations: the low regiospecificity that may result in the formation of multiple 

products, the low transglycosylation yield and the product hydrolysis. A strategy to avoid the 

hydrolysis of the product formed is its entrapment by glycosylation with a glycosyltransferase, 

producing a saccharide that is no longer hydrolyzed by the glycosidase. This system was 

optimized by Hoh et al. [61] using a genetic algorithm to generate the core 2-benzyl 

trisaccharide using a β-galactosidase and a β-GlcNAc-transferase as a multienzyme system with 

90% yield. 



Glycosynthases are artificial mutant glycosidases hydrolytically inactive but that can readily 

form glycosidic linkages transfering an activated sugar donor, such as a glycosyl fluoride, to a 

suitable acceptor substrate [62]. The utilization of these mutants results in high yields 

transglycosilation and address the lack of glycosyltransferases availability. In a recent example 

Spadiut et al. [63] have developed a new “xyloglucan glycosynthase”, which catalyzes the 

synthesis of high molar mass polysaccharides, with complex side-chain structures, from suitable 

glycosyl fluoride donor substrates. The combination of this new glycosynthase with an 

Arabidopsis thaliana α1,2-fucosyltransferase leads to a toolkit for the controlled enzymatic 

synthesis of xyloglucans.  

8. Energy production 

7.2 Tandem reactions for the production of biofuels. 

Production of renewable energy, replacing the use of non-renewable fossil fuels, represents a 

major challenge in global efforts to afford a sustainable development of humankind. Biomass is 

the most abundant renewable bioresource and can be used for the production of large amounts 

of biofuels and renewable materials at affordable costs. Starting from biomass sugars, numerous 

biocatalytic approaches have been proposed and investigated for the production of biofuels. 

High-yield ethanol production was produced by a reconstituted yeast glycolytic enzyme system 

containing ATPase, which facilitates complete conversion of glucose to ethanol. Alternatively, 

substitution of arsenate for inorganic phosphate can constrain ATP synthesis and prevent ATP 

accumulation in this reaction. In the same way, butanol can also be produced mimicking butanol 

fermentation pathway. Both approaches are achieved by using cell-free synthetic pathway 

biotransformation [64]. 

7.3 Multi-enzyme production of hydrogen. 

Hydrogen is a promising future clean energy carrier with high-energy utilization efficiency. 

Hydrogen production from renewable energy sources, like biomass sugars, is highly demanded 

and a shortcut for producing low-cost hydrogen without net carbon emissions. The feasibility of 

producing high-yield hydrogen from starch has been demonstrated by Zhang and coworkers 

[65] using a 13 enzymes cocktail. However, this technology suffers from low hydrogen yield 

due to incomplete reaction. To overcome the task of producing high-yield hydrogen, a new 

multi-enzyme system was designed by this group. This system contains five sub-modules: (i) 

conversion of cellobiose into glucose-1-phosphate (G-1P) catalysed by cellobiose 

phosphorylase, (ii) generation of glucose-6-phosphate (G-6P) from G-1P catalysed by 

phosphoglucomutase, (iii) production of NADPH catalysed by two dehydrogenases of the 

oxidative phase of the pentose phosphate pathway (PPP), (iv) regeneration of G-6P  from 



ribulose-5-phosphate catalysed by the eight enzymes of the nonoxidative phase of PPP, and (v) 

generation of hydrogen from NADPH catalysed by hydrogenase. This multi-enzyme system 

generates nearly 12 moles of hydrogen per mole of glucose unit of starch or cellulosic materials 

and represent about a 10-fold enhancement in hydrogen production rate with respect to the first 

multi-enzyme system [66●●] (Figure 4). 

 

Figure 4. Multi-enzyme production of hydrogen starting from cellobiose and water. The enzymes used 

were: 1) CBP = cellobiose phosphorylase; 2)  GM = phosphoglucomutase; 3) G6PDH = glucose-6-

phosphate dehydrogenase; 4) 6PGDH = 6-phosphogluconate dehydrogenase; 5) R5PI = phosphoribose 

isomerase; 6) Ru5PE =  ribulose 5-phosphate epimerase; 7) TKL = transketolase; 8) TAL = transaldolase; 

9) TPI = triose phosphate isomerase; 10) ALD = aldolase; 11) FBPH= fructose-1,6-bisphosphatase; 12) 

PGI = phosphoglucose isomerase; and 13) H2ase = hydrogenase. This pathway is divided in five sub-

modules: (i) conversion of cellobiose into glucose-1P (dark red-colored); (ii) generation of glucose-6-

phosphate (black-colored); (iii) production of NADPH (green-colored); (iv) regeneration of glucose-6P 

(blue-colored) and (v) generation of hydrogen from NADPH catalysed by hydrogenase (violet-colored). 

Products obtained are colored in red. 

8.3 Multi-enzyme biofuel cells. 

Enzymatic biofuel cells are a type of fuel cell where chemical energy is converted to electrical 

energy by employing enzymes as the electrocatalysts. These biofuel cells offer significant 
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potential advantages to traditional fuel cells: (i) the nanoscale of enzymes greatly improves the 

volumetric catalytic activity in comparison to microorganisms, (ii) impurities in the fuel 

typically do not interfere with the enzymes allowing a wide variety of fuels to be utilized 

without the need for expensive and time consuming purification, (iii) a simultaneous use of a 

bio-cathode and a bio-anode can be implemented due to the selectivity of the enzymes. 

However, these systems have some limitations including incomplete oxidation of fuels, short 

lifetimes, and reduced performance due to slow direct electron transfer kinetics or problems 

associated with the stability or thermodynamics of redox mediators [67]. One possibility to 

overcome those drawbacks is the use of immobilized multi-enzyme systems, enhancing the 

stability of the enzymes, favoring the completely oxidation of the fuel and increasing the 

energetic reaction yield. 

The first biofuel-based multistep oxidation of alcohols was reported by Palmore et al. [68] 

showing that a three-enzyme cascade consisting on alcohol dehydrogenase, formaldehyde 

dehydrogenase and formate dehydrogenase could be used for complete oxidation of methanol to 

carbon dioxide. Besides, a fourth enzyme, diaphorase, was added to allow the regeneration of 

NAD+ from NADH by reducing the mediator, benzyl viologen. In another approach, the 

complete oxidation of glycerol was achieved by Arechederra and Minteer [69] through the 

sequential action of alcohol dehydrogenase, aldehyde dehydrogenase and oxalate oxidase. 

Recently, Xu and Minteer [70●] have design an artificial metabolic pathway but avoiding almost 

all the enzyme-catalysed steps that do not result in electricity generation. Thus, the six enzyme 

cascade —consists on a pyrroloquinoline quinine (PQQ)-dependent glucose dehydrogenase, a 

PQQ-dependent 2-gluconolactone dehydrogenase, an aldolase, an alcohol dehydrogenase, an 

aldehyde dehydrogenase and a oxalate oxidase—, allows the complete oxidation of glucose. 

9. Conclusions 

Multi-enzyme in vitro cascade reactions have risen as an important area in the field of 

biocatalysis. This is due to the extraordinary level of control and surprising diversity of 

approaches available for building biosynthetic systems without constraints that limit cellular 

engineering. In vitro reactions with isolated biocatalysts have been successfully used for the 

synthesis of complex molecules that frequently are not readily accessible by organic chemical 

synthesis. Novel products can be generated by different enzymes combinations, which are often 

from different organisms and by using natural and unnatural starting substrates expanding the 

range of biosynthetic compounds obtained. In the future the coupling of enzymes in multi-

enzyme cascade processes will become much more common due to: (i) the ability to mimic the 

new metabolic pathways found in living organisms, (ii) the increased number of new enzymes 

that can be obtaining, characterized and potentially used as biocatalysts in synthesis, (iii) the 



improvement of the overexpression, isolation, stabilization and compartmentalization 

techniques, (iv) the use of protein engineering techniques to extend its operating window  and 

(v) the optimization of the reaction conditions. All these approaches will result in biocatalytic 

cascade processes of unprecedented complexity, increasing reaction rates and efficiency and 

being an important step for a “greener” chemical future. 
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