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 INTRODUCTION 

 

 Soil aggregates are the arrangement of soil particles of different sizes joined by organic 

and inorganic materials (Amezketa, 1999) and their stability can be used as an index of 

soil structure (Bronick and Lal, 2005). Soil aggregates physically protect SOC from its 

degradation by soil microorganisms (Beare et al., 1994a; Tisdall and Oades, 1982) and 

it is evidenced by the flush of carbon dioxide observed upon soil aggregates disruption 

(Beare et al., 1994a).  

Soil structure and SOC are extremely sensitive to crop and soil management (Blanco-

Canqui and Lal, 2004). It is well established that NT adoption in a previously 

conventionally-tilled soil results in the physical stabilization of SOC within soil 

aggregates (e.g., Six et al., 1999; Álvaro-Fuentes et al., 2009). During the process of 

SOC stabilization within soil aggregates, plant roots and fungal-derived hyphae play an 

important role as initial binding agents (Jastrow, 1996). According to the conceptual 

scheme proposed by Six et al. (2000), macroaggregate turnover is greatly reduced under 

NT promoting the formation of C-enriched microaggregates within macroaggregates. 

Moreover, the SOC sequestered within these microaggregates remains protected from 

microbial attack resulting in longer residence time (Blanco-Canqui and Lal, 2004). 

Compared to macroaggregates, the biochemical structure of the SOC that stabilizes 

microaggregates tends to be highly processed and recalcitrant (Elliott, 1986). Also, soil 

biological activity under NT is increased (Madejon et al., 2009) promoting the 

production of organic binding by-products that stabilize soil aggregates.  

When NT is maintained over time, soil aggregate stability is enhanced (Beare et al., 

1994b) leading to the increase of total SOC (West and Post, 2002). In Florida, Ochoa et 

al., (2009) studied a NT chronosequence of 0, 6, 10 and 15 years under NT in 



 

commercial plots. They observed a relationship between the increase in surface soil 

water-stable macroaggregates and the hydrolysable organic carbon with longer years 

under NT. Thus, they concluded that continuous NT is beneficial for SOC buildup in 

soil macroaggregates. 

In the Mediterranean semiarid agroecosystems, intensive tillage practices have led to the 

loss of soil structure and soil degradation (Álvaro-Fuentes et al., 2007). Recently, 

conservation tillage systems (e.g., reduced tillage or NT) have been increasingly 

adopted in these areas due to its agricultural and environmental benefits (Kassam et al., 

2009). In these semiarid systems, several studies have investigated the impacts of 

adoption of continuous NT on soil aggregation and physical C stabilization (e.g., 

Álvaro-Fuentes et al., 2009; Plaza-Bonilla et al., 2010). Nevertheless, the vast majority 

of these studies have been based on time-point comparisons (Staley et al., 1988). As a 

result, there is a lack of information about the continuous maintenance of NT on soil 

aggregation and SOC protection. Consequently, the objective of this experiment was to 

study the temporal dynamics of soil aggregation and SOC protection after the 

conversion of CT to NT in a rainfed Mediterranean agroecosystem. In order to achieve 

this objective we established a NT chronosequence 20 years ago in a representative 

Mediterranean dryland agroecosystems located in northeast Spain. We hypothesized 

that the maintenance of NT results in greater SOC protection within C-enriched water-

stable macroaggregates. 

 

 

 



 

MATERIALS AND METHODS 

Experimental site  

A NT chronosequence experiment located in the semiarid Ebro river valley, NE Spain 

(41º48’ N, 1º07` E, 330 m), was established 20 years ago in a previously intensive-tilled 

field of 7500 m2. Mean annual precipitation, mean air temperature and mean annual 

evapotranspiration in the area are 430 mm, 13.8 ºC and 855 mm, respectively. The soil 

was classified as Typic Xerofluvent (Soil Survey Staff, 1994), with the following 

properties in the Ap horizon (0-28 cm) at the start of the experiment: pH (H2O, 1:2.5): 

8.5; electrical conductivity (1:5): 0.15 dS m-1; CaCO3 eq. (%): 40; Water retention (kg 

kg-1): 0.16 and 0.05 at -33 and -1500 kPa, respectively; sand (2000-50 µm), silt (50-2 

µm) and clay (<2 µm) content: 475, 417 and 118 g kg-1, respectively. The 

edaphoclimatic conditions of the experiment could be considered as representative of 

the most part of cropping systems located in the dryland Mediterranean areas. In 1990, 

1999, 2006 and 2009 successive portions of 1500 m2 of the intensive-tilled field (i.e., 

7500 m2) were transformed to NT. Thus, in 2010, a surface of 1500 m2 remained under 

CT and 6000 m2 under NT with different years: 1 (NT-1), 4 (NT-4), 11 (NT-11) and 20 

(NT-20) years. In all five chronosequence phases the cropping system consisted in 

winter cereals rotation. Fertilization was based on pig slurry homogeneously applied for 

the whole experimental area in a dose of 50 kg N ha-1 yr-1 depending of the slurry 

composition. The CT treatment consisted of one pass of a moldboard plough to 25 cm 

depth immediately followed by one or two passes with a cultivator to 15 cm, both in 

September. The NT treatments consisted of a total herbicide application (1.5 L 36% 

glyphosate per hectare) for controlling weeds before sowing. Planting was performed 

with a direct drilling disk machine set to 2-4 cm in November. Prior to the set up of the 

experiment, the historical management of the field was based on conventional intensive 



 

tillage with moldboard ploughing and pig slurry additions, similar to the management 

applied to the CT phase of the chronosequence. Neither slope nor differences in soil 

characteristics in the whole experimental area were found; as a result the treatments 

were arranged in a randomized design. Three sampling locations within each 

chronosequence phase were used as pseudo-replicates.  

 

Soil sampling and analyses 

Soil sampling was performed in July 2010, right after crop harvest. Each phase of the 

chronosequence was divided in three areas. In each area, a composite sample was 

collected from three samples randomly selected. Soil samples were obtained using a flat 

spade in four soil layers from 0 to 30 cm depth (0-5, 5-10, 10-20 and 20-30 cm) and 

were stored in crush-resistant airtight containers. Once in the laboratory, soil was sieved 

with a 8 mm-sieve and air-dried at room temperature. For each sample, dry soil 

aggregate and water-stable aggregate distributions were obtained. Water-stable 

aggregate size separation was performed according to a modified wet sieving method 

adapted from (Elliott, 1986). The method is extensively described in a previous work 

(Plaza-Bonilla et al., 2010). Four water-stable aggregate fractions were obtained: (i) 

large macroaggregates (2 – 8 mm), (ii) small macroaggregates (0.250 – 2 mm), (iii) 

microaggregates (0.053 – 0.250 mm) and (iv) silt-plus clay-sized particles (< 0.053 

mm). All water-stable aggregate fractions were oven-dried at 50 ºC (48 h) in aluminum 

trays and weighed. Sand content of the aggregate classes (> 0.053 mm) was determined 

dispersing 5 g of a subsample in a sodium hexametaphosphate solution (5 g L-1) using a 

reciprocal shaker. Sand correction was performed in each aggregate-size class because 

sand was not considered part of those aggregates (Elliott et al., 1991). The dry aggregate 

size distribution was conducted placing 100 g of air-dried sub-sample (8 mm sieved) on 



 

an electromagnetic sieve apparatus (Filtra FTL-0200, Badalona, Spain) with the same 

sieves used for the water-stable aggregate size distribution. A sieving time of 1 min and 

the lowest power program of the machine were used.  

SOC concentrations from the bulk soil and from each water-stable aggregate size-class 

were determined using the wet oxidation of the Walkley-Black method described by 

Nelson and Sommers (1996). In some treatments the amount of large macroaggregates 

(2-8 mm) was not enough to determine SOC concentration. Consequently, large (2-8 

mm) and small (0.250-2 mm) macroaggregates were mixed and SOC determined as 

macroaggregate-C. The method was modified to increase the digestion of SOC. The 

modification consisted in extensive heating of the sample during the digestion, boiling 

the sample and the extraction solution at 150 ºC for 30 minutes (Mebius, 1960). 

In each chronosequence phase, the stratification ratio (SR) was calculated dividing the 

SOC concentration in the 0-5 cm soil depth by those in the 5-10 cm, 10-20 cm and 20-

30 cm soil layers (Franzluebbers, 2002). A regression analysis was performed between 

the SR of SOC and the number of years under NT to assess the changes of this ratio 

over time. 

The data were analyzed using the SAS statistical software (SAS institute, 1990). To 

compare the effects of tillage treatments and soil depths, analysis of variance (ANOVA) 

for a randomized design was performed using the procedure general linear model. When 

significant, differences among treatments and depths were identified at the 0.05 

probability level of significance using Duncan’s test. 

 

RESULTS  

No-tillage maintenance effects on soil organic carbon concentration 



 

In the 0-5 cm soil depth, total SOC concentration was significantly greater in the NT-11 

and NT-20 phases compared with the NT-4, NT-1 and CT phases. Furthermore, SOC 

concentration in the NT-4 phase was significantly greater than in the NT-1 and CT 

phases. However, below 5 cm soil depth no significant differences were found among 

treatments (Table 1).  

The stratification of SOC on soil surface increased with the time under NT (Table 1 and 

Fig. 1). In the 0-5 and 20-30 cm soil layers, SOC concentration values ranged between 

8.6 and 10.5, 8.5 and 20.0, 7.1 and 24.0 and 6.5 and 24.0 g C kg-1 dry soil in the NT-1, 

NT-4, NT-11 and NT-20 phases, respectively (Table 1). In the NT-11 and NT-20 

phases, SOC concentration among soil depths was significantly different in the next 

order: 0-5 > 5-10 > 10-20 and 20-30 cm depth. However, in the NT-4 phase differences 

were only found between 0-5 cm and the rest of the analyzed depths. Moreover, in the 

NT-1 phase, total SOC concentration did not show any stratification trend with depth 

(Table 1). The regressions between SOC stratification ratios and the number of years 

under NT showed significant logarithmic relationships (Fig. 1). The SR for 0-5:20-30 

cm varied between 1.2 and 4.1 for the NT-1 and NT-20 treatments, respectively. When 

the number of years under NT increased, changes in the SR for the 0-5:5-10 and the 0-

5:10-20 depths were minimal. However, for the 0-5:20-30 depth, the regression showed 

an increase in the SR over the 20-yr period (Fig. 1).  

 

No-tillage maintenance effects on dry and water-stable aggregate-size classes 

Differences between treatments on dry macroaggregates were only found in the 10-20 

and 20-30 cm soil depths (Fig. 2). In the 10-20 cm depth, the NT-4, NT-11 and NT-20 

chronosequence phases showed greater proportion of large dry-sieved macroaggregates 

when compared with the NT-1 and CT phases, but this fact was compensated with a 



 

lower proportion of small dry-sieved macroaggregates (Fig. 2). In the 20-30 cm depth, 

greater large dry-sieved macroaggregates were found when NT was maintained over 

time (Fig. 2). Interestingly, between depths, greater dry-sieved small macroaggregates 

content was found in the 10-20 and 20-30 cm than in the 0-5 and 5-10 cm soil depths in 

the CT and NT-1 phases (Fig. 2).  

In the 0-5 cm soil depth, water-stable macroaggregates ranged between 0.01 and 0.32 g 

aggregate g-1 dry soil (Fig. 3). Differences in water-stable aggregates between 

treatments were only found in the 0-5 and 5-10 cm depths (Fig. 3). In the 0-5 cm soil 

depth, greater amount of large water-stable macroaggregates was found in the NT-11 

and NT-20 phases compared with the other three phases (i.e., CT, NT-1 and NT-4). A 

similar trend was observed in the small macroaggregates, with greater amount in the 

NT-4, NT-11 and NT-20 phases compared with the NT-1 and CT phases. In the 0-5 cm 

soil depth, a significant decrease in the proportion of water-stable microaggregates was 

observed when increasing the number of years under NT with the greatest amount of 

water-stable microaggregates in the CT treatment (Fig. 3). In the 5-10 cm soil depth, 

significant differences in large water-stable macroaggregates were found between the 

NT-20 phase and the NT-1 and CT phases. Furthermore, for this soil depth, the 

proportion of water-stable microaggregates also significantly differed between the CT 

phase and the NT-11 and NT-20 phases.  

 

No-tillage maintenance effects on C concentration in the water-stable aggregate 

fractions 

In the 0-5 cm soil layer, no sand-corrected C concentration of the water-stable 

macroaggregates was similar among chronosequence phases with values ranging from 

18.6 to 30.7 g kg-1 (Table 2). However, in the 10-20 and the 20-30 cm soil layers, 



 

significant differences were found between phases with the greatest C concentration in 

the CT and NT-1 phases. Likewise, no-sand corrected C concentration in 

microaggregates (0.053-0.250 mm) and silt-plus clay-sized particles (< 0.053 mm) was 

significantly greater in the NT-4, NT-11 and NT-20 phases compared with the CT and 

NT-1 phases in the 0-5 cm soil layer (Table 2). Differences in no-sand corrected 

macroaggregate-C between soil depths were found in all NT chronosequence phases. 

However, for the no-sand corrected microaggregate-C and the C associated to the silt-

plus clay-sized particles, differences between soil depths were only found in some 

phases (i.e., the NT-4, NT-11 and NT-20 phases for microaggregates and the NT-11 and 

NT-20 phases for the silt-plus clay-sized particles). In both cases, the no-sand corrected 

C concentration decreased with increasing soil depths (Table 2).  

In the 0-5, 10-20 and 20-30 cm soil layers, the sand-corrected C concentration of soil 

macroaggregates was significantly different between chronosequence phases with the 

greatest macroaggregate-C concentration in the CT phase (Table 3). On the contrary, in 

the 0-5 and 5-10 cm soil layers, greater sand-free C concentration of microaggregates, 

was observed in the NT-11 and NT-20 phases compared to the NT-4, NT-1 and CT 

phases (Table 3). Differences in sand-free C concentration between depths were found 

in the three aggregate-size classes and in some chronosequence phases (Table 3).  For 

instance, for the macroaggregates differences between soil layers were found in the NT-

1, NT-4, NT-11 and NT-20 phases. In general, the sand-free C concentration decreased 

with increasing soil depth (Table 3).  

 



 

DISCUSSION 

The maintenance of no-tillage (NT) over time increased total SOC concentration. 

However, differences between chronosequence phases were only observed in soil 

surface. Those differences were related to the proportion of water-stable 

macroaggregates in the 0-5 and 5-10 cm depths. Thus, for example, in the 0-5 cm depth 

the maintenance of NT during 4 and 11 years (i.e., NT-4 and NT-11 phases) promoted 

6-fold and 17-fold increase of water-stable large macroaggregates, respectively, 

compared to the NT-1 phase.  

After NT adoption, several authors have reported increases in the proportion of soil 

water-stable macroaggregates together with gains in SOC concentration (Álvaro-

Fuentes et al., 2008; Beare et al., 1994a). In an experiment with contrasting tillage 

systems and different number of years since the implementation of NT, Plaza-Bonilla et 

al., (2010) found greater differences in SOC levels and water-stable macroaggregates 

between CT and NT treatments when NT was maintained longer time. Adoption of NT 

promotes soil microbial activity in soil surface (Madejon et al., 2009; Staley et al., 

1988) leading to greater production of organic binding by-products when decomposing 

fresh organic inputs (Abiven et al., 2009; Golchin et al., 1995; Golchin et al., 1994). 

These organic by-products play an important role in macroaggregate formation and 

stability, according to the hierarchy concept proposed by Tisdall and Oades, (1982). 

However, in our experiment, despite water-stable macroaggregates in soil surface (0-10 

cm) increased significantly with the number of years under NT, differences in 

aggregate-C were only found in the microaggregate fraction. Under NT, the reduction in 

soil disturbance leads to the protection of SOC within macroaggregates. In particular, C 

within macroaggregates is stabilized in the form of microaggregate-sized particulate 

organic matter, enhancing the formation of C-enriched microaggregates (Denef et al., 



 

2001). In the same area of this study, Álvaro-Fuentes et al., (2009) found greater 

microaggregate-C within macroaggregates in NT when compared to CT in three tillage 

experiments. Six et al., (2000) stated that slower macroaggregate turnover and 

subsequent formation and liberation of C-enriched microaggregates occluded within 

macroaggregates could explain the greater SOC stocks usually found under NT. Our 

results corroborate this theory, with increasing proportions of stable macroaggregates 

and greater C concentration within microaggregates when the number of years under 

NT increased.  

SOC stratification with depth increased with the number of years under NT. 

Franzluebbers, (2002) suggested that the stratification ratio (i.e. the proportion of SOC 

at the soil surface in relation to the SOC in deeper soil layers) could be a better indicator 

of soil quality than total SOC alone. In Mediterranean conditions, higher SR’s under NT 

than under CT have been reported (López-Fando et al. 2007; Lopez-Garrido et al., 

2011). In similar Central Spanish conditions, Hernanz et al. (2009) reported an increase 

in the SR over time in a NT system throughout a 20-year experiment. In our study, the 

SR in the 0-5:20-30 depths increased according to the years under NT with starting 

values of 1.2 in NT-1 up to 4.1 in the NT-20 phase. In a subtropical climate, Sa and Lal, 

(2009) also observed an increase in the stratification ratio of SOC when increasing the 

number of years under NT. Under NT crop residues are placed on the top of soil surface 

where their decomposition is reduced (Paustian et al., 1997). The stratification of SOC 

was closely related with the decrease with depth in the proportion of water-stable 

macroaggregates in the phases with more years under NT (i.e. NT-11, NT-20). 

Significant differences were found between depths in the sand-free C concentration in 

the macroaggregates of the NT-4, NT-11 and NT-20 cases. In the microaggregate 

fraction, differences in C concentration between soil depths were only found in the NT-



 

4, NT-11 and NT-20 phases. Similarly, in the silt-plus clay-sized fraction, these 

differences were only found in the NT-11 and NT-20 phases. According to the data 

obtained, it could be hypothesized that the stratification of C concentration under NT is 

dependant on the size of soil aggregates. Consequently, C concentration in the greatest 

fractions (i.e. macroaggregates) showed faster stratification compared with the finest 

fractions (i.e. silt-plus clay-sized particles). In soil surface in the CT and NT-1 phases, 

the differences between the proportions of the water-stable and the dry-sieved 

macroaggregates were greater than in the NT-11 and NT-20 phases. On the contrary, in 

deeper soil, differences in the proportions of dry-sieved and water-stable 

macroaggregates were significant for all the chronosequence phases. Thus, it could be 

assumed that in soil surface macroaggregates were more stable when the number of 

years under NT increased. The small amount of water-stable macroaggregates located at 

deeper soil layers (i.e. 10-20 and 20-30 cm) in the CT and NT-1 phases, could be an 

explanation to the absence of differences in SOC concentration between 

chronosequence phases.  

Different results were obtained in C concentration of the different aggregate fractions 

when this C concentration within aggregates was not corrected for sand content. Similar 

trend was observed by Plaza-Bonilla et al., (2010) who hypothesized that the 

redistribution of sand particles and/or the erosion of the silt and clay particles under 

inversion CT could explain the greater C concentration in soil macroaggregates under 

CT or the NT phase with only one year since the implementation (i.e. NT-1) when 

corrected for sand content. 

 

 

 



 

CONCLUSIONS 

Our results show that the maintenance of NT over time enhanced SOC concentration in 

soil surface reaching its maximum value after 11 years. Both the proportion of water-

stable macroaggregates and the C concentration of microaggregates in soil surface 

increased according to the increase of the years under NT. Thus, the greater proportion 

of water-stable macroaggregates and the greater C-concentration within 

microaggregates were the main mechanisms of SOC protection in the NT 

chronosequence. A significant logarithmic stratification with depth over the NT 

chronosequence was observed in SOC concentration, which was related with the 

stratification of water-stable macroaggregates in soil depth. In these Mediterranean 

semiarid agroecosystems, the increase in the proportion of stable macroaggregates and 

the enrichment of C concentration of microaggregates are the main mechanisms of SOC 

protection when NT is maintained over time. 
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FIGURE CAPTIONS 

 

Figure 1 Regression analysis between soil organic carbon (SOC) stratification ratio and the 

number of years under no-tillage (NT) for three ratio depths (0-5:5-10 cm; 0-5: 10-20 cm; 0-

5:20-30 cm) 

* Regression significant at P<0.05; **Regression significant at P<0.01. 

 

Figure 2 Dry aggregate size distribution at the 0-5, 5-10, 10-20 and 20-30 cm soil depths in a 

no-tillage (NT) chronosequence with the following phases: conventional tillage (CT) and NT 

under 1 (NT-1), 4 (NT-4), 11 (NT-11) and 20 (NT-20) years under NT.  

Error bars represent standard errors. Within the same soil depth and aggregate fraction, different 

lowercase letters indicate significant differences between years under no-tillage at P<0.05. For 

the same year treatment and aggregate fraction, different uppercase letters indicate significant 

differences between depths at P<0.05 

 

Figure 3 Water-stable aggregate size distribution at the 0-5, 5-10, 10-20 and 20-30 cm soil 

depths in a no-tillage (NT) chronosequence with the following phases: conventional tillage (CT) 

and NT under 1 (NT-1), 4 (NT-4), 11 (NT-11) and 20 (NT-20) years under NT.  

Error bars represent standard errors. Within the same soil depth and aggregate fraction, different 

lowercase letters indicate significant differences between years under no-tillage at P<0.05. For 

the same year treatment and aggregate fraction, different uppercase letters indicate significant 

differences between depths at P<0.05 



 

Table 1 Total soil organic carbon (SOC) concentration in the 0-30 cm soil depth in a no-tillage 

(NT) chronosequence with the following phases: conventional tillage (CT) and NT under 1 

(NT-1), 4 (NT-4), 11 (NT-11) and 20 (NT-20) years. 

Soil depth  
(cm) 

SOC (g kg-1) 
CT  NT-1 NT-4 NT-11  NT-20 

0 – 5 11.9 (0.3)‡ cA*¶  10.5 (0.5) cAB 17.3 (1.7) bA 24.0 (1.2) aA  24.0 (0.6) aA 
5 – 10 11.7 (0.4) AB  12.1 (2.1) A 13.0 (1.2) B 15.0 (3.5) B  14.1 (1.6) B 

10 – 20 10.3 (1.9) AB  11.0 (1.1) AB 9.3 (0.9) B 8.8 (0.8) C  9.0 (1.3) C 
20 – 30 9.9 (0.4) B  8.6 (1.7) B 8.5 (2.1) B 7.1 (0.9) C  6.5 (2.3) C 

 

* Within each depth values are significantly different between chronosequence phases at P<0.05 

¶ Within each chronosequence phase, different letters indicate significant differences between depths at 

P<0.05. 

‡ Values in parenthesis are the standard errors of the mean. 



 

Table 2 Linear relationship between soil organic carbon (SOC) concentration and the 

proportion of water-stable large macroaggregates (2 – 8 mm), small macroaggregates (0.250 – 2 

mm), microaggregates (0.053 – 0.250 mm) and silt-plus clay-sized particles (< 0.053 mm) for 

the following phases: conventional tillage (CT) and NT under 1 (NT-1), 4 (NT-4), 11 (NT-11) 

and 20 (NT-20) years. 

Water-stable 
aggregate 

fraction (mm) 
CT  NT-1 NT-4 NT-11 NT-20 

2-8 0.33*  n.s. 0.67** 0.92*** 0.83*** 
0.250-2 n.s.  n.s. 0.79*** 0.91*** 0.90*** 

0.050-0.250 0.46*  0.49* n.s. n.s. -0.35* 
<0.050 -0.55**  -0.49* -0.75*** -0.90*** -0.96*** 

 

n.s.: no significant; *P<0.05; **P<0.01; *** P<0.001 



 

Table 3 Soil organic carbon (SOC) concentration in different water-stable aggregate classes in 

the 0-30 cm soil depth in a no-tillage (NT) chronosequence with the following phases: 

conventional tillage (CT) and NT under 1 (NT-1), 4 (NT-4), 11 (NT-11) and 20 (NT-20) years.  

 

* For a given depth and water-stable aggregate fraction, different lowercase letters indicate significant 

differences between chronosequence phases at P<0.05 

¶ For a given chronosequence phase and water-stable aggregate fraction, different uppercase letters 

indicate significant differences between depths at P<0.05. 

‡ Values in parenthesis are the standard errors of the mean.  

Soil 
depth 
(cm) 

Water-stable  
Aggregate 

classes 
(mm) 

SOC (g kg-1) 

CT NT-1 NT-4 NT-11 NT-20 

0-5 0.250 – > 2 24.9 (1.4)‡ A¶ 18.6 (5.3) 25.8 (9.3) A 29.5 (2.0) A 30.7 (1.7) A 

0.053 – 0.250 10.2 (1.4) b* 10.1 (2.3) b 16.4 (5.6) aA 18.1 (2.0) aA 19.5 (0.8) aA 

< 0.053 10.3 (2.3) b 8.8b (4.5) 19.5 (7.5) a 19.9 (2.7) aA 13.4 (1.7) abA 

       

5-10 0.250 –  > 2 23.5 (1.3) AB 22.1 (4.6) 19.5 (6.7) AB 22.7 (7.4) B 27.0 (9.5) A 

0.053 – 0.250 10.2 (0.9) 10.9 (2.7) 11.4 (2.8) AB 12.3 (2.2) B 13.1 (0.7) B 

< 0.053 10.0 (1.1) 9.3 (4.1) 11.9 (3.9) 11.8 (1.5) B 9.0 (3.3) B 

       

10-20 0.250 –  > 2 24.7 (2.2) aA 21.2 (6.6) ab 13.1 (6.7) bcB 10.4 (2.1) cC 14.7 (2.2) bcB 

0.053 – 0.250 10.7 (1.3) 10.1 (2.3) 8.2 (1.6) B 8.1 (1.7) C 8.8 (0.9) C 

< 0.053 6.0 (2.8) 8.3 (1.1) 9.7 (3.6) 8.9 (2.7) BC 7.4 (1.2) B 

       

20-30 0.250 – > 2 18.6 (5.5) aB 13.8 (5.7) ab 8.8 (4.5) bB 6.8 (1.3) bC 10.1 (0.2) bBC 

0.053 – 0.250 9.9 (0.5) 9.2 (1.9) 7.5 (2.5) B 6.7 (0.6) C 6.9 (1.3) D 

< 0.053 7.9 (1.3) 6.5 (2.2) 9.9 (2.6) 7.7 (2.3) BC 7.5 (0.9) B 



 

Table 4 Sand-free soil organic carbon (SOC sand-free) concentration in different water-stable 

aggregate classes in the 0-30 cm soil depth in a no-tillage (NT) chronosequence with the 

following phases: conventional tillage (CT) and NT under 1 (NT-1), 4 (NT-4), 11 (NT-11) and 

20 (NT-20) years. 

 

* For a given depth and water-stable aggregate fraction, different lowercase letters indicate significant 

differences between chronosequence phases at P<0.05 

¶ For a given chronosequence phase and water-stable aggregate fraction, different uppercase letters 

indicate significant differences between depths at P<0.05. 

‡ Values in parenthesis are the standard errors of the mean  

 

Soil 
depth 
(cm) 

Water-stable  
Aggregate 

classes 
(mm) 

SOC ( g kg-1) sand-free 

CT NT-1 NT-4 NT-11 NT-20 

0-5 0.250 – > 2 64.3 (7.3)‡ a* 54.8 (6.8) abA¶ 46.0 (8.5) bA 49.5 (4.0) bA 50.9 (3.9) bA 

0.053 – 0.250 16.2 (2.2) c 18.3 (0.4) c 26.2 (4.8) bA 33.9 (4.5) aA 36.7 (2.6) aA 

< 0.053 10.3 (2.3) b 8.8 (4.5) b 19.5 (7.5) a 19.9 (2.7) aA 13.4 (1.7) abA 

       

5-10 0.250 –  > 2 62.9 (10.2) 52.7 (9.4) A 37.9 (5.6) AB 42.9 (11.0) A 49.2 (14.7) A 

0.053 – 0.250 17.7 (2.1) b 19.3 (1.8) b 19.2 (2.2) bB 24.7 (4.9) abB 28.0 (5.5) aB 

< 0.053 10.0 (1.1) 9.3 (4.1) 11.9 (3.9) 11.8 (1.5) B 9.0 (3.3) B 

       

10-20 0.250 –  > 2 63.5 (10.5) a 49.6 (5.7) bAB 33.7 (9.5) cAB 29.6 (0.7) cB 36.7 (6.1) bcAB

0.053 – 0.250 19.0 (1.7) 18.1 (2.5) 14.0 (1.8) C 17.6 (3.4) C 16.0 (1.0) C 

< 0.053 6.0 (2.8) 8.3 (1.1) 9.7 (3.6) 8.9 (2.7) BC 7.4 (1.2) B 

       

20-30 0.250 – > 2 51.2 (16.9) a 37 (9.1) abB 26.3 (6.3) bB 23.5 (4.7) bB 26.5 (3.8) bB 

0.053 – 0.250 17.6 (0.5) a 17.7 (1.9) a 12.3 (2.4) bC 12.3 (0.6) bC 13.9 (3.9) abC 

< 0.053 7.9 (1.3) 6.5 (2.2) 9.9 (2.6) 7.7 (2.3) BC 7.5 (0.9) B 
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