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Abstract 

The effect of annealing on directionally solidified Bi2Sr2Co1.8Ox ceramic rods has 

been studied for different times up to 1008 h. Microstructure has shown five 

different phases in the as-grown materials which have been reduced to two 

major ones after 1008 h thermal treatment, accompanied by an important grain 

growth. These microstructural changes are reflected on the mechanical 

properties which are higher than for the as-grown materials in all cases. 

Moreover, they also produce an important decrease on the resistivity and 

increase of thermopower, leading to a raise on the power factor on thermally 

treated samples, about two times, compared to the as-grown samples. 
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1. Introduction 

Thermoelectric (TE) materials with high energy conversion efficiency are 

strongly required for both electric power generation, in terms of waste heat 

recovery, and refrigeration. Thermoelectric energy conversion has been shown 

as an effective technology that can be used to transform thermal to electrical 

energy owing to the well-known Seebeck effect. This physical property allows 

producing electrical energy from a thermal gradient between the cold and the 

hot side of a thermoelectric system. The conversion efficiency of such materials 

is usually quantified by the dimensionless figure of merit, ZT, which is defined 

as TS2/ρκ, where S is the Seebeck coefficient (or thermopower), ρ the electrical 

resistivity, κ the thermal conductivity, and T is the absolute temperature [1]. As a 

consequence, a performant TE material involves high thermopower and low 

resistivity, with low thermal conductivity. 

From 1997, with the discovery of large thermoelectric properties in NaxCoO2 [2], 

great efforts have been performed to explore new CoO families with high 

thermoelectric performances. Following this intense research work, some 

layered cobaltites, such as [Ca2CoO3][CoO2]1.62 and [Bi0.87SrO2]2[CoO2]1.82 were 

also found to exhibit promising thermoelectric properties [3-6]. Moreover, these 

materials can operate at high temperatures in air without degradation, as 

compared to the intermetallic thermoelectric compounds, which is another way 

for improving the ZT values. 

The crystal structure of these CoO families is composed of two different layers, 

with an alternate stacking of a common conductive CdI2-type CoO2 layer with a 

two-dimensional triangular lattice and a block layer, composed of insulating 

rock-salt-type (RS) layers. The two sublattices (RS block and CdI2-type CoO2 



layer) possess common a- and c-axis lattice parameters and  angles but 

different b-axis length, causing a misfit along the b-direction [7-9]. 

As layered cobaltites are materials with a strong crystallographical anisotropy, 

the alignment of plate-like grains by mechanical and/or chemical processes is 

necessary to attain macroscopic properties comparable to those obtained on 

single crystals. Some techniques have been shown to be adequate to obtain a 

good grain orientation in several oxide ceramic systems, as Template Grain 

Growth (TTG) [9], sinter-forging [10], or directional growth from the melt [11]. 

In order to be adequate for practical applications, for example in power 

generation devices, these materials should not lose their high TE properties, as 

well as their mechanical ones, at high temperatures for long periods of time, 

usually under air. 

Taking into account the results obtained in previous works [12], where several 

phases were obtained in the LFZ as-grown materials, the aim of the present 

work is studying the modification of microstructure as well as mechanical and 

thermoelectric properties of Bi2Sr2Co1.8Ox directionally grown ceramics from the 

melt using the laser floating zone (LFZ) technique, when they are annealed 

under air, for different times up to 1008 h. 

 

2. Materials and methods 

The polycrystalline Bi2Sr2Co1.8Ox ceramics used for this study have been 

prepared by the classical solid state route from commercial Bi2O3 (Panreac, 98 

+ %), SrCO3 (Panreac, 98 + %), and Co2O3 (Aldrich, 98 + %) powders. They 

were weighed in the appropriate proportions, mixed and ball milled at 300 rpm 

for 30 minutes, in acetone media. The resulting suspension was placed into a 



glass container and dried using an IR evaporation system. The dry powder has 

then been thermally treated twice at 750 and 800 ºC for about 12 hours under 

air, with an intermediate manual milling, in order to assure the complete 

decomposition of the carbonates. This thermal treatment is necessary and it 

has been designed specifically to avoid the presence of carbonates in the 

following steps, as it would form CO2 bubbles in the molten zone produced in 

the LFZ process, producing the crystallization front destabilization. The resulting 

powders were then cold isostatically pressed into latex tubes at ~200 MPa for 

around 2 minutes to obtain green ceramic cylinders which were subsequently 

used as feed in a LFZ device equipped with a continuous power Nd:YAG laser 

( = 1.06 µm) and described elsewhere [13]. The processing of the different 

samples has been performed in the same conditions; they were directionally 

grown downwards from the melt at 30 mm/h with a seed rotation of 3 rpm. 

Moreover, in order to assure compositional homogeneity of the molten zone, an 

opposite feed rotation of 15 rpm has also been performed. Finally, after the 

texturing process, long (more than 15 cm) and geometrically homogeneous (2 

mm diameter) textured cylindrical rods have been produced. These bars were 

cut into pieces with the adequate dimensions for the thermoelectric and 

mechanical measurements (~ 15 mm long) and subsequently introduced in an 

electric furnace at 850 ºC for different time lengths (up to 1008 h). 

The identification of the main phases in all the as-grown and annealed samples 

was carried out using powder XRD in a Rigaku D/max-B X-ray powder 

diffractometer (CuK radiation), between 10 and 70 degrees. Microstructure 

evolution has been observed using a scanning electron microscope (JEOL 

6000) equipped with an energy dispersive X-ray spectroscopy (EDS) device, 



used to determine the elemental composition of the different phases. 

Longitudinal polished sections of the as-grown and annealed samples have 

been observed to analyze the different phases, their distribution and relative 

alignment. Image analysis has been performed on several micrographs in order 

to estimate the volume fraction of each phase. Mechanical characterization has 

been performed by flexural strength, using the three-point bending test in an 

Instron 5565 machine with a 10 mm loading span fixture and a punch 

displacement speed of 30 m/min, as described elsewhere [14]. Electrical 

resistivity and thermopower were simultaneously determined by the standard dc 

four-probe technique in a LSR3 measurement system (Linseis GmbH), in the 

steady state mode, at temperatures ranging from 50 to 650 ºC. With the 

electrical resistivity and thermopower data, the power factor (PF = S2/) has 

been calculated in order to determine the samples performances. 

 

3. Results and discussion 

Powder XRD patterns for the as-grown and several annealed Bi2Sr2Co1.8Ox 

textured samples (from 10 to 40 degrees, for clarity), are displayed in Fig. 1. 

From these data, it is clear that all the samples have very similar diffraction 

patterns and show a relatively low amount of secondary phases. In all the 

samples, the highest peaks belong to the misfit cobaltite phase and are in 

agreement with previously reported data [15,16]. Weak diffraction peaks 

indicated by ● correspond to the Bi0.75Sr0.25Oz secondary phase [17] and those 

marked with a ♦ have been related to the Sr6Co5O14.3 phase [18]. As it can be 

clearly observed in Fig. 1, there is no appreciable modification of the misfit 

cobaltite peaks while there is a slight reduction on the secondary phases peaks 



when the annealing time is increased. This decrease on the secondary phases 

starts from the 72 h annealing time (Figure 1b) and continue until the maximum 

reduction is achieved at 1008 h (Figure 1d). This change is due to the reaction 

between Bi0.75Sr0.25Oz and Sr6Co5O14.3 phases, increasing the amount of the 

thermoelectric one. 

Representative general SEM micrographs, performed on transversal polished 

samples, are shown in Fig. 2. In these micrographs it can be easily seen the 

microstructural evolution with the annealing time, from the as-grown sample 

(Fig. 2a) to the 408 h treated sample (Fig. 2b) and the 1008 h one (Fig. 2c). It 

can be easily observed a reduction on the secondary phases amount, mainly on 

the dark grey contrast and an increase on the thermoelectric one (grey contrast) 

which is in agreement with the XRD data discussed previously. In order to 

determine qualitatively the different phases and their amount in the samples, 

higher magnification micrographs have been recorded. In Fig. 3 it is 

represented the close view of representative as-grown and 1008 h thermally 

treated samples. In this figure it is evident the change produced in the samples 

microstructure with the thermal treatment. As-grown samples show five different 

phases, each one identified by EDS analysis and corresponding to a different 

contrast (numbered in Fig. 3a for clarity). When comparing as-grown samples 

with 1008 h annealed ones, it can be seen an important reduction of secondary 

phases: CoO (black contrast, #1, ~0.5 vol.%), Sr2Co1.8Oa phase (dark grey 

contrast, #2, ~1.0 vol.%), and Bi2Sr0.91Ob one (white contrast, #3, ~11.0 vol.%), 

to amounts lower than 0.2, 0.1, and 1.0 vol.%, respectively, for the annealed 

ones. On the other hand, Bi2.0Sr1.8Co1.0Oz (light grey contrast, #4, ~38.0 vol.%) 

slightly decrease to around 30.0 vol.%, while the thermoelectric Bi2Sr2Co2Oy 



phase (grey contrast, #5, ~50.0 vol.%) increases in an important manner to 

about 70.0 vol.% after annealing process. These results indicate that the as-

grown materials microstructure is a non-equilibrium one and that the annealing 

processes slowly allow reaching the stable equilibrium state for this 

composition. 

In order to evaluate the mechanical behaviour evolution with the thermal 

treatment, flexural strength tests were made on as-grown and different time-

lengths thermally treated samples. At least four samples for each annealing 

time were used to get more representative values. The mean maximum 

mechanical stress, together with its relative error, is represented in Fig. 4 for the 

different samples. At first sight, it is clear that short thermal treatments 

significantly increase mechanical strength, compared with the as-grown 

samples. It is increasing from the as-grown samples (0 h) until 96 h, with a raise 

of about 25 % due to the reduction on the secondary phases content. Further 

annealing times lead to a nearly exponentially decrease, probably due to the 

grain sizes increase, as observed for other similar layered ceramics [19]. 

Moreover, these features are also reflected on the results dispersion, which is 

increased for high annealing times. 

The effect of the annealing time on the thermoelectric properties of these 

ceramics has been determined by electrical resistivity and thermopower 

measurements. The temperature dependence of the electrical resistivity, as a 

function of the thermal treatment lengths, has been measured and represented 

in Fig. 5. As it can be easily seen, as-grown samples (0 h in Fig. 5) show a 

semiconducting-like behaviour (d/dT < 0) in all the measured temperature 

range. This behaviour changes for the annealed samples to a metallic-like one 



(d/dT > 0). The differences between both groups can be explained by the 

microstructural features described above. For the as-grown samples, the 

Bi2Sr2Co2Oy phase is only about 50 vol.% (grey contrast in Fig. 3) accompanied 

by several secondary phases which can avoid a good electrical connectivity 

between adjacent Bi2Sr2Co2Oy phase grains. When these samples are 

thermally treated, not only the secondary phases content is decreased but also 

grain sizes and content of the thermoelectric ones are increased, leading to a 

reduction on the grain boundaries number and, as a consequence, to better 

electrical connection than for the as-grown materials. On the other hand, it is 

found that for longer thermal treatments than 408 h, resistivity values are nearly 

unchanged due to the very large grain sizes achieved. The minimum resistivity 

value (~ 22 m.cm) at about 300K is obtained for samples thermally treated for 

times higher than 408 h, and it is around the best reported values for this type of 

materials [20]. 

Fig. 6 displays the thermopower variation with temperature, as a function of the 

annealing time. It is evident that the sign of the thermopower is positive for the 

entire measured temperature range for all the samples which confirms a 

conduction mechanism mainly governed by holes. Following the same trends 

observed in the electrical resistivity measurements, the graph shows a different 

behaviour for as-grown and the thermally treated samples, confirming the 

microstructural changes effect on the thermoelectric properties. In the case of 

as-grown samples, it is observed a slight increase of thermopower from room 

temperature to around 275 ºC, followed by a small decrease until about 500 ºC, 

and remaining practically constant at higher temperatures. The thermally 

treated samples show a nearly linear increase on the thermopower values in the 



whole measured temperature range, with a change in the sharpness at about 

275 ºC, reaching a maximum value of about 220 V/K at 650 ºC for annealing 

times higher than 408 h. In all cases, the measured thermopower values at 

room temperature are higher than those reported in the literature for textured 

materials [9]. 

In order to evaluate the thermoelectric performances of these materials, PF has 

been calculated from the resistivity and thermopower values and plotted in Fig. 

7. When considering PF values at about 50 ºC (room temperature), it can be 

clearly seen that as-grown samples show the lowest values (around 0.045 

mW/K2m), followed by an important increase (around 50%) for the 192 h treated 

samples, reaching 0.065 mW/K2m, which is even higher (about 100%) for 

samples treated for longer times (about 0.080 mW/K2m). The maximum 

measured value at 275 ºC (~ 0.125 mW/K2m) is higher than the best obtained 

for single phase textured materials reported in the literature (~ 0.100 mW/K2m) 

[9]. 

 

4. Conclusions 

This paper demonstrates the improvement of mechanical and thermoelectric 

properties of Bi2Sr2Co1.8Ox directionally grown ceramic materials when they are 

annealed at the adequate temperatures. The microstructural evolution has 

shown a reduction on the number and amount of secondary phases as well as 

an important grain growth with the thermal treatment. These microstructural 

changes are reflected on the mechanical properties which are increased until 

they reach a maximum after 96 h annealing, and decreasing nearly 

exponentially for higher times. In the case of the thermoelectric properties, they 



increase with time until they reach a maximum improvement after 408 h thermal 

treatment and remain practically constant for higher times. Maximum PF values 

at 275 ºC (about 0.125 mW/K2m) are higher than the best reported in the 

literature for single phase textured materials. All these results show that 

Bi2Sr2Co1.8Ox directionally grown ceramics are promising materials for practical 

applications, as their TE and mechanical properties are not only decreasing but 

they are improved with time when they are subjected to working conditions. 
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Figure captions 

 

Figure 1. XRD plots of the annealed specimens at 850 ºC for a) 0 ; b) 72; c) 

504, and d) 1008 h. Crystallographic planes have been indicated on the peaks 

corresponding to the Bi2Sr2Co2Oy thermoelectric phase. Different symbols 

indicate secondary phases: ● Bi0.75Sr0.25Oz, and ♦ Sr6Co5O14.3. 

 

Figure 2. Representative SEM micrographs of general longitudinal polished 

samples thermally treated at 850 ºC during a) 0; b) 408; and c) 1008 h. 

 

Figure 3. Representative close view SEM micrographs of longitudinal polished 

samples thermally treated at 850 ºC during a) 0; and b) 1008 h. The different 

contrasts are indicated by numbers: 1. CoO (black contrast); 2. Sr2Co1.8Oa (dark 

grey contrast); 3. Bi2Sr0.91Ob (white contrast); 4. Bi2.0Sr1.8Co1.0Oz phase (light 

grey contrast); and 5. thermoelectric Bi2Sr2Co2Oy phase (grey contrast). 

 

Figure 4. Bi2Sr2Co1.8Ox textured materials mechanical performance (three point 

bending), together with their standard error, as a function of the thermal 

treatment length. 

 

Figure 5. Temperature dependence of the electrical resistivity of Bi2Sr2Co1.8Ox 

textured samples, as a function of time at 850 ºC.  0;  192;  408; and ▲ 

1008 h. 

 



Figure 6. Temperature dependence of the thermopower, of Bi2Sr2Co1.8Ox 

textured samples, as a function of time at 850 ºC.  0;  192;  408; and ▲ 

1008 h. 

 

Figure 7. Temperature dependence of the power factor, of Bi2Sr2Co1.8Ox 

textured samples, as a function of time at 850 ºC.  0;  192;  408; and ▲ 

1008 h. 
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