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Does the nonlinear Schrodinger equation correctly
describe beam propagation?
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The parabolic equation (nonlinear Schrodinger equation) that appears in problems of stationary nonlinear beam
propagation (self-focusing) is reconsidered. It is shown that an additional term, which involves changes of the
propagation constant along the propagation direction, should be taken into account. The physical consequences
of this departure from the standard approximation, which uses the parabolic equation, are discussed. A
numerical simulation showing the difference between the new approach and the standard nonlinear Schr6dinger
equation is given as an example.

The effects of self-trapping and self-focusing of
light beams in nonlinear media were predicted
in the early 1960's.1-3 The evolution of light
beams in self-focusing media has been described by
the parabolic equation [the nonlinear Schr6dinger
equation (NLSE)] since the first studies devoted
to this question.4 5 This equation takes diffraction
and nonlinearity into account in a simple way and
describes the field evolution with high accuracy,
unless time dependence and dispersion are involved.6
Thus, the parabolic equation is a convenient ap-
proximation; it provides the possibility of using a
powerful tool such as the inverse-scattering method7

for its investigation. In fact, a variety of exact
solutions can be obtained for the one-dimensional
NLSE by using even simpler approaches.8 This
equation, with variable coefficients adjusted for a
layered medium, has been used widely for describing
nonlinear wave propagation in optical waveguides
and interfaces.9 "14 It is also important to note
that many fast and convenient calculation methods
have been developed15 for numerical simulations of
solutions of the parabolic equation.

Unfortunately, this equation has limitations that
have not been discussed before and that are
connected with the approximation of slowly varying
amplitude. As can be seen in what follows, some
physical implications of this equation can even be
misleading and turn out to be in contradiction
with the general theory of wave propagation. The
question arises: Is approximation by the parabolic
equation good enough to describe nonlinear guided-
wave phenomena in their full complexity?

In this Letter we show that the parabolic equation
is a good approximation, unless stationary (in the
longitudinal direction) solutions (like self-trapping2

and stationary nonlinear guided waves9 -'4 ) or so-
lutions close to them are considered. If the beam
has any longitudinal variation during propagation, as
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happens in most cases of interest, then the equation
should be completed by an additional term describing
longitudinal field oscillations. This additional term
allows us to present a clear physical interpretation of
the conserved quantities involved.

For simplicity we start from the scalar wave
equation for a three-dimensional field E(x,y,z) in a
medium":

E.d, + Eyy + Ezz - e(x, IEI) alE = o~~ ±E~~2 c2
t (1)

where E is a scalar (y-component) optical field
and e(x, IEI) is the intensity-dependent dielectric
permittivity:

e(x, IEI) = e,(x) + ci(x)1E12 .

Here e1(x) is the linear part of the transverse profile
of the dielectric permittivity of the layered medium
and a(x) is the transverse profile of the nonlinear
susceptibility. In order to include layered media in
this analysis we allow e and a to depend on x. This
is relevant to problems of nonlinear guided waves.9 -14

In the particular case of a homogeneous medium, they
are constants. The averaged dielectric permittivity
does not depend on time. The field is assumed to be
stationary (in time) and monochromatic:

E = 0(x,y,z)exp(-i&)t).

For convenience, we normalize the coordinates x, y,
and z by using the free-space wave number k = co/c:

(2)XI zz + VXx ++ el(X) /I + a(x)Iti2i = 0.

We seek a solution of Eq. (2) of the form

qi(x,z) = B(x,y,z)exp[i~p(z)].

We assume that the amplitude function B(x,y,z) is
slowly varying and that all fast oscillations are in-
cluded by means of the phase function sp(z). Usually,
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in the approximation of slowly varying amplitude, we
set p (z) = /3z + spo, with /3 = constant. In this case,
fast oscillations are still implicitly included in the
function B(x,y, z). However, the second derivative of
this function is then not small and cannot be dropped
completely.

There can be some degree of arbitrariness in sep-
arating the fast oscillatory part from the function
B(x,y,z) if the beam divides into two or more beams
during propagation. In this instance it is more con-
venient in numerical simulations to keep /3 constant,
as is usually done. The correction to the real value of
,/ (separate for each beam) can then be extracted from
the results by calculating the period of longitudinal
oscillations of B(x,y,z) at the center of each beam.
On the other hand, the correct initial separation
produces physically important consequences as well
as crucial differences in numerical results, as we
show below.

We assume that we have only one beam as a
solution of Eq. (1), so that the function IB(x,yz)I
has only one maximum at any fixed z and that it
approaches zero at x = o. Substituting Eq. (3) into
Eq. (2), we obtain

B,, + Bx + By + 2impB, + i~p22B

-q(Z2B + e,(x)B + a(x)IB12B = 0. (4)

The term B,, can be omitted from Eq. (4), as is
usual in the slowly varying amplitude approximation.
However, this can only be done if B(x,y,z) does not
include any fast field oscillations in the z direction.
With our definition, the rapidly oscillating part of the
solution is included by means of the function so(z) in
such a way that the function B(x,y, z) maintains con-
stant phase at the center of the beam where IB(x,y, z)I
has its maximum. If the beam center is located at
(x,y) = (0,0 ) then we can define the function so (z) in
such a way that

arg[B(x = O,y = 0,z)] = constant, (5)

where B(0,0,z) has been written as IB(0,0,z)l x
exp[i arg B(0, 0, z)]. This in turn means that the
ratio of the imaginary to the real part of B(0, 0,z),
i.e., Im[B(0, 0, z)]/Re[B(0, 0, z)], remains constant.
Equation (5) defines the functions o(z) and B(x,y,z)
uniquely.

Let us now define the function /3 as

fi(z) = d, (6)
dz

This is the instantaneous propagation constant at a
given cross section z. This function is also defined in
a unique way. Now we can write Eq. (4) in the form

2ifiBz + ifizB + Bc, + B - f_ 32B
+ el(x)B + a(x)IB 12B = 0. (7)

In the case of constant 1i, this equation obviously
coincides with the standard parabolic equation for
studying the propagation of nonlinear guided waves.
The second term in Eq. (7), which can be of the same

order as the first one, makes it different from the
usual parabolic equation.

Now let us turn to physical differences that ap-
pear when we take this term into account. Consider,
for example, the invariants of Eq. (7). By multiply-
ing Eq. (7) by B*, taking the complex conjugate of
this expression, and subtracting and integrating, we
obtain

d (/) = 0, (8)

where I is the energy invariant for the standard
parabolic equation [i.e., Eq. (7) without the second
term]:

I= EIB(x,y,z)I 2dxdy. (9)

We can see now that the product HI, rather than
just I, is the conserved quantity during propagation:

/8(z)I(z) = constant. (10)

This product Sz = jIi is proportional to the integrated
energy flow'6 in the z direction, i.e., to the z compo-
nent of Poynting vector S = E X H integrated over
the cross section. It can also be called power1 or
power flow'8 crossing a given surface z = constant.
This is the result that we would expect physically, be-
cause in the general theory of wave propagation, the
energy flow is the quantity that has to be conserved
in media without gain or loss. However, in the stan-
dard approximation by the parabolic equation, this
conservation law is incomplete, and only the energy
integral I is conserved, as rapid oscillations are ne-
glected when the term B,, is dropped. Of course, in
the case of constant /3, the energy invariant I itself
is conserved. This can happen only for stationary
solutions of Eq. (2). But in that case it is a trivial
result, as the function B(x,y) itself then does not
depend on z, and so neither will any integral of it.
For any other solutions, we have to take into account
rapid field oscillations along the z axis.

Let us now consider the second quantity conserved
for the parabolic equation, namely the Hamiltonian.
For simplicity we restrict ourselves to the case of a
two-dimensional field B(x, z). It is now proportional
to the y component of the electric field. By multiply-
ing Eq. (7) by dB*/dz, taking the complex conjugate
of this expression, and adding and integrating over
x, we obtain

if dx/(z(BzB*-Bz*B) - 2f dx if/iIB12

d 12 + (,B2 2= .dJ LIRI2 -,E,)1B1 - B 0.IB4
(11)

The sum of integrals in Eq. (11) is proportional to
the energy density of the optical field integrated over
x per unit z. The first two integrals are the part of
the energy density connected with the x component of
the magnetic field (HX2). These two integrals become
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Fig. 1. On-axis intensity versus normalized axial dis-
tance z for the Gaussian initial condition (z = 0) of
Eq. (12) found by using the standard NLSE (dashed
curve) and by using Eq. (7) (solid curve). Parameters
chosen for these simulations are e1 = 24.50015104,
,/(0) = 5.0, and a = 1.0.

zero when ,3 is constant in the standard parabolic
approximation. Then the third integral is conserved
along z. It still can be considered as the energy
density per unit z. So, in the absence of currents,
the integrated energy density is conserved along z.
If /z is nonzero, then the whole Eq. (11) cannot
be represented in the form of a conservation law.
The consequence is that the Hamiltonian [the third
integral in Eq. (11)] is no longer conserved.

In order to show that the new equation gives re-
sults that are different from the standard NLSE
but are consistent with the solutions of the wave
equation, we present here one example of a nu-
merical simulation to compare the two approaches.
For this short communication we choose the most
striking example where the standard NLSE fails to
give a correct result,'9 namely catastrophic beam
collapse in the two-transverse-dimensional NLSE.
We have developed a modification of the Crank-
Nicholson scheme that maintains a constant phase
of B(x,y, z) at (x,y) = (0,0) to simulate the solutions
of Eq. (7). We have verified during simulations that
the invariant given by Eq. (10) is conserved to high
accuracy for a variety of initial conditions. Figure 1
shows the on-axis intensity of the cylindrically sym-
metric beam that initially (z = 0) has a Gaussian
shape:

B(x,y,z = 0) = exp( 8 ) (12)

This initial condition has a power flow that is above
the critical value and thus results in collapse when
the standard NLSE is used. The parameters of the
simulation are given in the figure caption. It is seen
from this figure that the standard NLSE leads to
collapse and that the on-axis field goes to infinity
at finite z (-62.5). The solution of Eq. (7) deviates
from it for on-axis intensities IB(0, 0, z)12, which are
between approximately 5 and 10, and then returns
to a more smooth beam propagation beyond the point
of collapse. This result is in qualitative agreement
with the numerical results of Refs. 19 and 20, where
the authors use nonparaxial algorithms for simula-
tion of the solution of the wave Eq. (2) to describe

beam self-focusing. Thus the NLSE leads to an er-
roneous physical conclusion.

In summary, we have shown that the standard
approximation, which uses the parabolic equation
and which is employed widely in the analysis of
nonlinear self-focusing and self-guiding, should be
completed with an additional term that takes into
account the variation of the propagation constant
along the propagation direction.
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