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POLYMORPHISMS AT THREE INTRONS IN THE MANILA CLAM (RUDITAPES

PHILIPPINARUM) AND THE GROOVED CARPET-SHELL CLAM (R. DECUSSATUS)

DAVID CORDERO, JUAN B. PEÑA AND CARLOS SAAVEDRA*

Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Cientı́ficas, Ribera de
Cabanes, 12595 Castellón, Spain

ABSTRACT We have designed a set of exon-primed intron-crossing (EPIC) PCR primers to amplify introns at the genes TBP

and SRP54 in theManila clam (Ruditapes philippinarum) and the grooved carpet-shell clam (R. decussatus), and also one intron at

a histone 3 homologous gene in theManila clam. The primers were developed by using ‘‘universal’’ EPIC primers available in the

literature and by searching for intron locations in cDNA sequences taken from public databases. The identity of the amplified

products was checked by sequencing. The three introns of the Manila clam, and one in the carpet shell clam (TBP), exhibited

length polymorphisms. The number of alleles was two at the TBP locus of the grooved carpet-shell clam, and ranged from three to

five in the three loci of theManila clam. The locus without length polymorphism in the carpet-shell clam exhibited polymorphism

when digested with the restriction enzyme EcoR I (4 haplotypes). The variability of the markers was examined in two population

samples in each species.
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INTRODUCTION

TheManila clam (Ruditapes philippinarumAdams &Reeve)
is a native species from the Indo-West Pacific coast. Currently,
this clam is the second most important bivalve species in world

aquaculture, with nearly 3 million Tm produced in year 2005
(http://www.fao.org/figis). The Manila clam was introduced in
the Pacific coast of North America in the decade of 1930, and

in Europe in the decade of 1980 (Flassch & Leborgne 1992,
Paesanti & Pellizzato 2000). It showed a high adaptability to
these new areas, including the ability to reproduce and give rise

to self-sustaining populations (Flassch & Leborgne 1992,
Pranovi et al. 2006, Jensen et al. 2004), which now form the
basis of a fishery. Aquaculture techniques have been developed
in the Manila clam (Helm & Pellizzato 1990, Jones et al. 1993),

and natural recruitment in natural beds is currently enhanced
with hatchery produced spat (Paesanti & Pellizzato 2000).

Other clam species are also important in Europe from a com-

mercial point of view, among which the grooved carpet-shell
clam (Ruditapes decussatus L.), that ranges from England to
Senegal in the NE Atlantic, and all along the Mediterranean

coasts, is the most valuable. The spread of R. philippinarum has
posed a problem toR. decussatus, because they occupy a similar
habitat. Populations of R. decussatus have been replaced by
R. philippinarum at some localities (Pranovi et al. 2006), and

coexist at others (our own observations). Studies of morpho-
logical, mitochondrial DNA and 5S nuclear DNA variation
have demonstrated hybridization between the two species in a

Spanish locality (Hurtado et al. 2006). Hatchery production of
grooved carpet-shell clams is now in a research and development
phase, with the aim of replenishing wild beds that have been de-

pleted by overharvesting and competition withR. philippinarum.
In spite of the aquaculture potential and management

problems raised by their culture and exploitation, genetic

studies on these clam species have been scarce. Until recently,
population genetic studies on Ruditapes clams had been based
on protein polymorphisms detected by starch gel electrophore-
sis, also known as ‘‘allozymes’’ (Borsa et al. 1994, and

references therein). Nuclear DNA markers were not available
until the very recent publication of nine microsatellite primers

in the Manila clam (Yasuda et al. 2007). The development of
additional DNA markers is desirable in the two species dealt
with here, for a number of applications, which include popula-

tion genetic studies, parentage analysis in hatcheries and genetic
mapping.

We report here on the development of a set of nuclear DNA
markers based on introns in theManila and the grooved carpet-

shell clams. Introns are the noncoding segments separating the
coding fragments in which most eukaryotic genes are divided.
Introns are a good source of genetic markers because they can

show different types of polymorphisms, such as intron length
polymorphisms (ILP) or restriction fragment length polymor-
phisms (RFLP). These two kinds of polymorphisms can be

easily detected at low cost in agarose or polyacrylamyde gels.
Additional polymorphism at the nucleotide level can be
detected by indirect methods such as SSCP or DGGE (Lessa

1992), or directly by sequencing (Villablanca et al. 1998). The
possibility to study the nucleotide sequence in combination with
size polymorphismmakes them, inmany situations, more useful
than other markers based in fragment-size differences, such as

microsatellites.
Introns show often moderate to high levels of length poly-

morphisms, and levels of nucleotide variability that are usually

higher than in exons, which are more constrained. In addition,
the more conserved sequences of the flanking exons can be
used to design PCR primers that amplify the intron (Lessa 1992,

Corte-Real et al. 1994, Ohresser et al. 1997). This approach
has been termed ‘‘exon-primed intron-crossing (EPIC) PCR’’
(Palumbi & Baker 1994). Exon conservation facilitates intron
study in a given species or even across a group of taxa (from

congeneric species to different phyla, depending on the level of
conservation of the exon). This approach has been used to
design EPIC primers that amplify introns in several zoological

groups (Hassan et al. 2002, Touriya et al. 2003, Corte-Real et al.
1994, Jarman et al. 2002).

We have used primer sets reported in the literature to

develop specific EPIC markers for each clam species. We have*Corresponding author. E-mail: saavedra@iats.csic.es
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also mined public DNA databases to obtain clam coding se-
quences and searched for intron positions by comparing these

sequences with those of their putatively orthologous genes in
model organisms. Finally, we have checked the level of poly-
morphism of the developed markers in population samples.

MATERIALS AND METHODS

DNA Extraction

Clam individuals of the two species were obtained in the
local market and DNA was extracted from adductor muscle,

using the DNAeasy Tissue Kit (QIAGEN). DNA was eluted
with 100 ml of buffer AE (provided with the kit) and stored
at –80�C.

Intron Marker Development

We used two different approaches to obtain intron markers

in clams. In one approach, primers that are reported to amplify
introns in a wide range of species were taken from the literature,
and were tested on clam DNA (Palumbi 1996, Jarman et al.

2002). We selected the primer pairs that gave PCR products
consisting in clear one or two-banded phenotypes in agarose
gels, with band sizes larger than the expected size if there

were no intron (usually less than 250 bp). Primer pairs giving
multibanded products, or simply no product at all, were
discarded from further studies. PCR products from selected
primer pairs were extracted from the gel, resuspended in TE,

and reamplified with the same primers and PCR conditions.
Reamplified PCR products from three individuals were then
ligated into pGEM T-Easy (Promega) according to manufac-

turer instructions. Ligated plasmids were used to transform
competent Escherischia coli DH5a cells, which were plated on
LB medium with ampicillin added (LB + Amp). The X-gal plus

IPTG method was used to distinguish colonies that contained
inserts from those that did not (Sambrook & Russell 2001). Six
colonies from each plate were picked and grown overnight in
3 ml of LB + Amp. Plasmids were recovered with the Quiagen

Plasmid Spin kit. The inserts were sequenced with primers T7
and SP6 in an ABI 3700 automated sequencer at the DNA
Sequencing Service of the University of Valencia (Spain). The

insert sequence ends were aligned on the homologous exon
regions of the same genes in model species Drosophila mela-
nogaster and Caenorhabditis elegans to check their identity.

Then, new clam species-specific primers were designed for each
intron by using the program PRIMER 3 (Rozen & Skaletsky
2000).

In a second approach, wemined the public genetic data bases
for clam coding genomic or cDNA sequences. We selected five
accessions containing partial sequences of clam nuclear genes
from cDNAs. We used these sequences to search for their

closest orthologous genes in four model organisms (the mouse
Mus musculus, the fruit fly Drosophila melanogaster, the worm
Caenorhabditis elegans and the sea urchin Strongylocentrotus

purpuratus) by using TBLASTX (McGinnis & Madden 2004).
Themouse, fly, and worm sequences with the highest E-val were
retrieved from the GenBank database by following the links to

the Entrez Gene web pages that appeared in the TBLASTX
screen output. The model organisms’ sequences were translated
into amino acid sequences using Bioedit (Hall 1999) and then

aligned with CLUSTAL W (Thompson et al. 1994), as imple-
mented in BioEdit. Intron positions in each model species were

established from the corresponding GenBank accessions.
Finally, clam cDNAs were also translated into amino acid se-
quences and aligned to the model organisms’ sequences. Clam
introns were inferred to occur in those positions where an intron

was conserved in at least two of the model organisms examined.
Primers around these positions were designed from the clam
cDNA sequence with PRIMER 3.

When an intron length polymorphism was observed, intron
allele designations were done by assigning to each allele the
length obtained from its sequence.

Intron PCR

PCR reactions with universal primers were carried out for
35 cycles of 30 sec denaturation at 94�C, 30 sec hybridiza-

tion at 45�C and 60 sec elongation at 72�C, preceded of an
initial denaturation step of 2 min at 94�C, and followed by a
final elongation step at 72�C for 3 min. For species-specific

primers, PCR conditions were the same, except that the elonga-
tion time was increased to 90 sec and annealing temperature
was 58�C.

ILP and RFLP Scoring

The existence of length polymorphisms in the amplified
introns was checked by running PCR products in 1.5% agarose

gels, with tris-borate-EDTA (TBE) buffer and ethidium bro-
mide staining. The existence of restriction fragment length
polymorphisms was checked in those introns that showed no

ILP. A set of eight restriction enzymes was used, which included
two six-cutter (BamH I and EcoR I) and six four-cutter (Dde I,
Dra I, Hae III, Hinf I, Msp I, Rsa I). Ten microliters of PCR

product were digested with 0.1 U of enzyme in 20-mL reactions,
with the buffer supplied by the enzyme manufacturer. Frag-
ments were scored in 2% agarose/TBE gels. Gels were stained

with 0.05% ethidium bromide, DNA fragments visualized on a
UV screen and images captured with an Alpha-Innotech Image
Analyser. Haplotypes defined by multiple enzymes were
checked by sequencing.

Allele Sequencing

To obtain the sequence of the intron length variants, the

intron bands of heterozygous individuals were extracted from
the gel and reamplified with the original primers and PCR
conditions. Reamplified PCR products were cleaned with the

Ultra Clean PCR clean-up DNA purification kit (MOBIO) and
sequenced at the DNA Sequencing Service of the University of
Valencia using an ABI 3700 automated sequencer. For RFLP
variants, PCRproducts from selected individuals were cloned in

pGEM T-Easy and six clones from each individual were se-
quenced with primers T7 and SP6.

Intron Polymorphism in Populations

A preliminary study of the population polymorphisms of
the introns amplified with the developed primers was carried

out in two Manila and two carpet-shell clam populations.
Samples of Manila clam were taken from the Aichi prefecture
(Japan), in their native range, and sent to our laboratory as
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ethanol-preserved tissue. A second sample, composed of clams

from the Italian region of Veneto was studied. These clams
were brought alive in the laboratory, then dissected and tissues
stored frozen (–80�C) until further processing. In the case of
R. decussatus, we examined samples from an Atlantic popula-

tion (Mugardos, NW Spain) and from a Mediterranean pop-
ulation (Venice, Italy). Animals from the Atlantic were brought
alive in the laboratory, and those from the Mediterranean were

sent to us as tissue preserved in ethanol.
Individual genotype data were stored in an open access

database, and translated into adequate format for genetic

population analysis software. Genotype and gene frequencies
were calculated. Deviations from Hardy-Weinberg equilibrium
(HWE) were tested by means of an exact test (Rousset &

Raymond 1995). The magnitude of the deviations from HWE
was estimated with the statistics FIS according to Weir and
Cockerham (1984). Genetic differentiation among populations
was tested by an exact test (Raymond & Rousset 1995a), and

its magnitude was estimated with the statistics FST as in Weir
and Cockerham (1984). The computer program Genepop
(Raymond & Rousset 1995b) was used to perform all these

calculations.

RESULTS AND DISCUSSION

Intron Markers and Polymorphism

We tested 3 primer pairs (arginine kinase, elongation factor

1a, proto-oncogen int) from those designed by Palumbi and
Baker (1994) and the 7 primer pairs developed by Jarman et al.
(2002). Only the primer pairs for the introns of the genes coding

for the TATA box binding protein / transcription factor IID
(TBP) and for the signal recognition particle 54-kDa subunit
(SRP54), designed by Jarman et al. (2002), produced relatively

clear one or two-banded PCRproducts. Bands from1–3 individ-
uals per species and locus were cloned and sequenced. Species-
specific primers designed from these sequences (Table 1) produced
clear one and two-banded phenotypes in agarose gels, indicat-

ing the existence of ILPs in the two genes in the case of the
Manila clam (Fig. 1 A and B), and in TBP, but not in SRP54, in
the case of the grooved carpet-shell clam (Fig. 2 A). The analysis

of the sequences of the amplified fragments confirmed the
existence of insertion-deletion events (indels) causing the ILPs.
After alignment of all allele sequences the most relevant vari-

ations that characterized the TBP locus of theManila clamwere
indels at positions 326 (382 bp and 111 bp long), 518 (81 bp), 655

(22 bp), 683 (24 bp), and 687(20 bp). In the case of SRP54,

among-allele variation was caused by indels at alignment posi-
tions 61 (180 bp), 149 (263 bp), 454 (65 bp), and 523 (169 bp).
Finally, indels at positions 280 (10 bp) and 274 (22 bp)
differentiated the three alleles at TBP in the grooved carpet-

shell clam. Basic analysis of indels with Repeatmasker (Smit
et al. 1996–2004) revealed no especial repeat structure. Only in
the case of SRP54 the presence of a 68 bp fragment homologous

to leucine transfer RNA (tRNA-Leu-TTA) was detected when

TABLE 1.

Clam species-specific EPIC primers designed for Ruditapes philippinarum and R. decussatus.

Locus Species Forward Primer Reverse Primer

TBP

R. decussatus TBP-Td-2F 5#-tgtgtacaggtgctaaaagg-3# TBP-Td-2R 5#-ttcaaataaggtgatctatcca-3#
R. philippinarum TBP-Tp-2F 5#-atccgggaaccaagaactac-3# TBP-Tp-2R 5#-attttcttgcagccagctt-3#

SRP54

R. decussatus SRP54-Td-3F 5#-ttaatgaagaaaatcaaacaagg-3# SRP54-Td-3R 5#-tgtctcgcagtgtgaagtgt-3#
R. philippinarum SRP54-Tp-2F 5#-tgatgaagaaaatcaaacaagg-3# SRP54-Tp-3R 5#-tccctcaatgtgaaatgacc-3#

H3

R.philippinarum H3iA-Tp-F 5#-taacccgctagttttgagca-3# H3iA-Tp-R 5#-cttggtggccaactgtttac-3#

Figure 1. Examples of agarose gels showing ILP polymorphisms detected

at the three loci scored in R. philippinarum. (A) SRP54 intron: lanes 1, 2,

3, 4, 6, 7, and 8; genotype 578/578; lanes 5,10,11, and 12; genotype 578/

402; lane 9, genotype 402/402; lane 13, genotype 578/308. (B) TBP intron:

lane 1, genotype 648/648; lanes 2 and 4, genotype 648/542; lanes 3 and 8,

genotype 648/853; lanes 5 and 7, genotype 731/583; lane 6, genotype

731/853. (C)H3-iA intron: lanes 1, 2, 3, 4, 5, 6, 7, 10, 12, and 13, genotype

755/755; lanes 8, 9, and 11, genotype 856/755.

EPIC MARKERS IN RUDITAPES CLAMS 303

JOBNAME: jsr 27#2 2008 PAGE: 3 OUTPUT: Thursday March 6 07:46:28 2008

tsp/jsr/160470/27-2-28



using human and mouse data bases for masking. This fragment
was located at position 607 of the alignment.

Database mining provided 5 cDNA sequences that were
long enough for intron search but only two showed the
potential presence of introns after alignment with orthologous

genes in model organisms. They were a R. philippinarum cDNA
homologous to the histone 3.3A gene of mouse (GenBank
accession AY916801), and another corresponding to a Cu/Zn

superoxide dismutase (SOD) (AY377969) from R. decussatus.
Specific primers for 4 predicted introns were designed, but
only those specific for histone 3 intron A (H3-iA) produced
clear one or two-banded phenotypes, and only in the Manila

clam (Fig. 1 C).
One copy of each allele from each locus and species was

sequenced (GenBank accessions AM410712 to AM410723),

and used to check for correct gene identity by comparing the
exonic ends with orthologous GenBank accessions.

Population Variability in the Manila Clam

This species showed a multiallelic ILP at both SRP54 and

TBP, and a two-allele ILP in H3-iA. Polymorphisms were
observed in the two populations studied, and the common
alleles were the same in Japan and Italy. Intron length variants
were at similar frequencies in the two populations (Table 2),

resulting in significant FST only at the locus SRP54 (FST ¼
0.053, P ¼ 0.005 by the exact test). Deviations from HWE were

nonsignificant in all cases (Table 2). The similarity of the two
Manila clam populations both in heterozygosity and allelic
frequencies is remarkable in spite of the distance between them.
However, we should consider that the Italian population was

founded with a subsample of the Asian populations (Flassch &
Leborgne, 1992). A second potential consequence of the
introduction of Asian Manila clam in Europe could be loss of

genetic variability caused by a founder effect. AlI alleles
detected in the Japanese sample were present in the Italian
sample, with the exception of allele 799 at SRP54. This allele

was at low frequency (1.8%) in the Japanese sample. Therefore,
it could have been missed in the Italian sample caused by
sampling error. Heterozygosity at two loci (SRP54 and H3-iA),

out of three scored, is lower in the Japanese population than in
the Italian, suggesting the signature of genetic drift or selection
on these loci, but not extreme founder effects. In summary, the
data suggest that no variability losses have taken place during

the introduction of the Manila clam in the Italian region of
Veneto, and that the founding population carried most of the
genetic variability existing in the original Pacific populations.

However, more markers and populations have to be scored to
be conclusive.

Population Variability in the Grooved Carpet-Shell Clam

Frequencies of the intron size variants at the locus TBP in
the carpet shell clam populations are given in Table 3. Devia-
tions from HWE were not significant. Whereas the commonest

alleles were the same in the 2 populations, allele frequencies
clearly varied, resulting in a highly significant FST value of 0.339
(P < 0.001).

Figure 2. Examples of agarose gels showing variation at two loci in

R. decussatus. (A) ILP at the TBP locus: lanes 1, 2, 4, 6, 7, 8, 10, and 13,

genotype 573/573; lanes 3, 5, 11, 12, 14, 15, and 16, genotype 597/573;

lane 9, genotype 597/597. (B) RFLP at SRP54 cut with EcoR I: lane 1,

genotype A/B; lanes 2 and 12, genotype A/A; lanes 3, 7, and 13, genotype

B/D; lanes 4, 5, and 9, genotype BB; lanes 6, 8, 10, and 11, genotype B/C.

TABLE 2.

Frequencies of length variants, heterozygosity (h), and deviations
from Hardy-Weinberg equilibrium (FIS) at three introns in

2 populations of the Manila clam, R. philippinarum.

Locus Allele Japan Italy

TBP

583 0.280 0.259

648 0.200 0.328

542 0.140 0.172

731 0.240 0.103

853 0.140 0.138

N 25 27

h 0.785 0.766

Fis 0.001 0.117

SRP54

578 0.926 0.814

402 0.019 0.171

308 0.037 0.014

799 0.019 0.000

N 27 35

h 0.140 0.308

Fis –0.035 0.362

H3-iA

856 0.109 0.194

755 0.891 0.806

N 32 31

h 0.194 0.313

Fis –0.107 –0.224
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In the case of SRP54, where no intron length polymorphism
was found in R.decussatus, we studied RFLP polymorphisms

with the restriction enzyme EcoR I. We found a total of 4
different haplotypes (Fig. 2 B), whose population frequencies
are given in Table 3. Restriction site changes responsible for

the observed RFLP variability were confirmed by sequencing
selected individuals. The most common haplotype was the same
in all populations (B). The frequencies varied significantly

across populations (P < 0.001), resulting in FST ¼ 0.021. Tests
for HWE were nonsignificant (Table 3).

The contrasting amounts of differentiation between the two
loci in the two populations of the grooved carpet-shell clam is
striking, and several explanations can be considered. The life
history of clams includes a planktonic larval phase of at least

2 wk, which would preclude genetic differentiation caused by
restrictions to gene flow. On the other hand, genetic differences
between the Atlantic and the Mediterranean populations have

been reported in the literature for a number of marine species,
including several bivalves (Quesada et al. 1995a; Quesada et al.
1995b, Rı́os et al. 2002, Saavedra & Peña 2005). These differ-

ences have been explained by fragmentation and divergence
during glacial periods (Quesada et al. 1995b, Bargelloni et al.
2003). Finally, stabilizing selection at SRP54 or diversifying
selection at TBP could be responsible of the contrasting pat-

terns observed at the two loci. The study of more populations is
necessary to characterize the pattern of variability in the grooved
carpet-shell clam and check if it corresponds to widespread

restriction to gene flow or to an Atlantic/Mediterranean dif-
ferentiation pattern. It is also necessary to increase the number
of intronic markers studied and to compare them with other

types of markers, to give accurate explanations for the genetic
differentiation observed.
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Populations
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H 0.646 0.495
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