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ABSTRACT 

 

Abscisic acid (ABA) signaling plays a critical role to regulate root growth 

and root system architecture. ABA-mediated growth promotion and root 

tropic response under water stress are key responses for plant survival 

under limiting water conditions. In this work we have explored the role of 

Arabidopsis thaliana PYRABACTIN RESISTANCE1 (PYR1)/PYR1-

LIKE (PYL)/ REGULATORY COMPONENTS OF ABA RECEPTORS 

(RCAR) ABA receptors for root ABA signaling. As a result, we discovered 

that PYL8 plays a non-redundant role for regulation of root ABA 

sensitivity. Unexpectedly, given the multigenic nature and partial 

functional redundancy observed in the PYR/PYL family, the single pyl8 

mutant showed reduced sensitivity to ABA-mediated root growth 

inhibition. This effect was due to lack of PYL8-mediated inhibition of 

several clade A PP2Cs since PYL8 interacted in vivo with at least five 

PP2Cs, namely HAB1, HAB2, ABI1, ABI2 and PP2CA/AHG3, as 

revealed by tandem affinity purification and mass spectrometry proteomic 

approaches. We also discovered that PYR/PYL receptors and clade A 

PP2Cs are crucial for the hydrotropic response that takes place to guide 

root growth far from regions with low water potential. Thus, an ABA-

hypersensitive pp2c quadruple mutant showed enhanced hydrotropism, 

whereas an ABA-insensitive sextuple pyr/pyl mutant showed reduced 

hydrotropic response, indicating that ABA-dependent inhibition of PP2Cs 

by PYR/PYLs is required for proper perception of a moisture gradient.   
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Introduction 

Control of ABA signaling by PYR/PYL/RCAR ABA-receptors involves 

direct ABA-dependent inhibition of clade A phosphatases type-2C 

(PP2Cs), such as ABI1, HAB1, PP2CA, which are key negative regulators 

of the pathway (Saez et al., 2004, 2006; Rubio et al., 2009). Under resting 

conditions clade A PP2Cs can interact with and dephosphorylate SnRK2.2, 

2.3 and 2.6/OST1, reducing their catalytic activity (Umezawa et al., 2009; 

Vlad et al., 2009; Fujii et al., 2009). The increase of ABA levels in the 

plant cell leads to PYR/PYL receptor-mediated inhibition of PP2C activity, 

which results in the activation of the three SnRK2s, and ultimately of the 

ABA signaling pathway (Ma et al., 2009; Park et al., 2009; Umezawa et 

al., 2009; Vlad et al., 2009; Gonzalez-Guzman et al., 2012). 

Biochemically, SnRK2s are activated through phosphorylation of certain 

Ser residues of their activation loop, including Ser175, either by 

autophosphorylation or by yet unidentified upstream activating kinases that 

are staurosporine-resistant (Boudsocq et al., 2007; Fujii et al., 2009; 

Umezawa et al., 2009; Vlad et al., 2009, 2010). Next, the SnRK2s directly 

phosphorylate transcription factors that bind to ABA-responsive promoter 

elements (ABREs), named ABFs/AREBs for ABRE-binding factors, and 

components of the machinery regulating stomatal aperture like the slow 

anion channel SLAC1, K+ inward channel KAT1 or ROS-biosynthetic 

enzymes as the NADPH oxidase AtrbohF (Kobayashi et al., 2005; Fujii et 

al., 2009; Geiger et al., 2009; Lee et al., 2009; Sato et al., 2009; 

Sirichandra et al., 2009).  

 PYR/PYL ABA receptors constitute a 14-member family and all of 

them (except PYL13) are able to activate ABA-responsive gene expression 

using protoplast transfection assays (Fujii et al., 2009). However, gene 

expression patterns obtained from public databases and GUS-reporter gene 
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analyses have revealed substantial differences among them (Gonzalez-

Guzman et al., 2012). Thus, expression of PYL3 and PYL10-13 is very low 

to undetectable in different whole-genome microarrays, whereas expression 

of PYR1 and the rest of PYL1-9 could be detected in both vegetative and 

reproductive tissues, although at different levels (Gonzalez-Guzman et al., 

2012).  From a biochemical point of view, recent studies reveal at least two 

families of PYR/PYL receptors, characterized by a different oligomeric 

state, some being dimeric (PYR1, PYL1 y PYL2), whereas others are 

monomeric (for instance PYL5, PYL6, PYL8) (Dupeux et al., 2011). The 

dimeric receptors show a higher Kd for ABA (>50 μM, lower affinity) than 

monomeric ones (~1 μM); however, in the presence of the PP2C, both 

groups of receptors form ternary complexes with high affinity for ABA (Kd 

30-60 nM) (Ma et al., 2009; Santiago et al., 2009a, b) and physiological 

characterization of some ABA responses in different multiple pyr/pyl 

mutants did not reveal a clear difference between dimeric and monomeric 

receptors (Gonzalez-Guzman et al., 2012). Finally, both the biochemical 

properties of the PYR/PYL receptors and in silico modeling of the ABA 

activation pathway reveal adequate coverage of the full spectrum of 

physiological ABA concentrations, ranging from basal ABA levels (nM 

range) to high levels induced by water stress (μM range) (Priest et al., 

2006). 

 Gene expression patterns, biochemical analysis of different PP2C-

PYL receptor complexes and genetic analysis of different pyr/pyl mutants 

suggest the function of PYR/PYL proteins is not completely redundant 

(Santiago et al., 2009; Szostkiewicz et al., 2010; Antoni et al., 2012; 

Gonzalez-Guzman et al., 2012). However, some functional redundancy 

exists since the generation of a pyr1pyl1pyl2pyl4 quadruple mutant, 1124, 

was required to obtain robust ABA-insensitive phenotypes (Park et al., 
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2009), and a pyr1pyl1pyl2pyl4pyl5pyl8 sextuple mutant, 112458, is at least 

one order of magnitude more ABA-insensitive than 1124 (Gonzalez-

Guzman et al., 2012). Recently, analysis of mutants lacking three, four, five 

or six PYR/PYLs has revealed quantitative regulation of ABA signaling by 

this family of receptors (Gonzalez-Guzman et al., 2012). Finally, GUS-

reporter analyses of PYR1, PYL1, PYL2, PYL4, PYL5 and PYL8 promoters 

has showed both overlapping and differential expression in different tissues 

(Gonzalez-Guzman et al., 2012). For instance, in 5-d-old seedlings, only 

PYR1 and PYL5 were expressed in the cortex of the upper part of the root, 

whereas PYL1, PYL4 and PYL8 were expressed in the columella cells. On 

the other side, overlapping expression of PYR1, PYL1, PYL2, PYL4 and 

PYL8 in root vascular tissue was observed (Gonzalez-Guzman et al., 2012)  

 ABA regulates root growth and root architecture, likely interacting 

with other hormones in these processes, such as auxins, gibberellins or 

brassinosteroids (Swarup et al., 2005; Deak and Malamy 2005; Rodrigues 

et al., 2009; Peret et al. 2009; Ubeda-Tomas et al., 2009 and 2012; Hacham 

et al., 2011). ABA signaling in the root is required for different processes, 

such as maintenance of primary root elongation and repression of lateral 

root formation when water availability is reduced (Sharp et al., 2004; Deak 

and Malamy 2005). Recent results in 17 natural accessions of Arabidopsis 

reveal increased root versus shoot biomass partitioning as a crucial plant 

response to cope with water stress (Des Marais et al., 2012). Several 

mechanisms dependent on ABA signaling have been proposed to maintain 

root elongation at low water potentials, such as osmotic adjustment in the 

root tip, restriction of ethylene production and control of K+ translocation 

from root to shoot (Gaymard et al., 1998; Sharp et al., 2004). Enhanced cell 

wall loosening is required to maintain root elongation at low water 

potential, and indeed ABA induces xyloglucan endotransglycosylase, 
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which is a cell wall degrading enzyme (Wu et al., 1994). Thus, the role of 

ABA in maintaining root growth under water deficits has been well 

established (Sharp et al., 2004); however, high concentrations of ABA 

inhibit root growth. Another important function of ABA is the regulation of 

the hydrotropic response, i.e. a genuine response of roots to a moisture 

gradient. Results from Takahashi et al., (2002) indicate that ABA 

constitutes an intrinsic signal in hydrotropism since both aba1-1 and abi2-1 

mutants were less sensitive to hydrotropic stimulation, whereas addition of 

ABA to aba1-1 restored its capacity to perceive the moisture gradient. 

Additionally, the no hydrotropic response (nhr1) mutant of Arabidopsis 

showed reduced ABA sensitivity in root (Eapen et al., 2003) and ABA 

induces the expression of MIZ1, a gene essential for hydrotropism 

(Kobayashi et al., 2007). Regulation of root growth by ABA must be 

closely connected with hydrotropism since the hydrotropic response likely 

involves asymmetric transmission of ABA signaling to the root sides that 

are in contact with different water potentials. 

 To further understand ABA perception and signaling in the root, we 

have analyzed root ABA sensitivity of 9 pyr/pyl mutants, i.e. pyr1, pyl1, 

pyl2, pyl4, pyl5, pyl6, pyl7, pyl8 and pyl9, as well as different combinations 

among them. Unexpectedly, given the partial functional redundancy among 

PYR/PYL genes, we found that pyl8 single knockout showed reduced 

sensitivity to ABA-mediated inhibition of root growth. Combination of 

different pyr/pyl mutations enhanced this phenotype. This genetic evidence 

together with root expression analyses served to pinpoint relevant ABA 

receptors in the root, particularly PYL8. Moreover, using tandem affinity 

purification (TAP) technology and mass-spectrometrical (MS) analyses, we 

were able to identify clade A PP2Cs that interacted in vivo with PYL8, 

providing new in vivo evidence for the mechanism of action of PYL8 to 
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regulate ABA signaling. Finally, we found that PYR/PYLs and clade A 

PP2Cs play an important role for the ABA-mediated root hydrotropic 

response.  

Results 

Regulation of ABA signaling in root by PYR/PYL receptors  

To further understand ABA perception in the root, we have analyzed root 

ABA sensitivity of different pyr/pyl single mutants, namely pyr1-1, pyl1, 

pyl2, pyl4, pyl5, pyl6, pyl7, pyl8-1 and pyl9 (Figure 1A; Supplemental 

Figure S1). All the mutants were generated in Col background, with the 

exception of pyl2, which is in La-er background (Park et al., 2009). We 

found that pyl8-1 showed reduced inhibition of root growth compared to 

wt, whereas the rest of single mutants did not show significant differences 

to wt in that response (Figure 1A). ABA-mediated inhibition of seedling 

establishment in pyr/pyl single mutants was quite similar to wt, although 

slight differences could be noticed in some mutants (Figure 1B). Root 

growth of pyl8-1 was even resistant to 20 μM ABA compared to wt, 

whereas the other single mutants did not show significant differences 

(P<0.01) compared to wt at 10 and 20 μM ABA (Figure 1A). To further 

verify that the phenotype observed in pyl8-1 was a consequence of 

impaired PYL8 expression, we analyzed the phenotype of a second pyl8 

allele, pyl8-2, and we found it also showed a reduced sensitivity to ABA-

mediated inhibition of root growth (Figure 1, A, B and C). Finally, the 

phenotype of pyl8-1 was complemented by introduction of a 35S:PYL8 

transgene (Figure 1D). 

 During the course of these experiments, we analyzed HAB1-

overexpressing lines (HAB1 OE), where additional copies of HAB1 have 

been introduced under control of its own promoter, ProHAB1:HAB1-dHA, 
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and we found they showed reduced sensitivity to ABA-mediated inhibition 

of root growth, which mimicked the pyl8 phenotype (Saez et al., 2004; 

Figure 1, A and C). Interestingly, these lines showed lower root growth 

than wt in medium lacking exogenous ABA and ABA supplementation 

improved root growth of HAB1 OE plants between 20-30% compared to 

growth in medium lacking ABA (Figure 1, A and C). Recently, improved 

root growth by ABA supplementation has also been reported for strong 

ABA insensitive mutants lacking five or six PYR/PYL receptors 

(Gonzalez-Guzman et al., 2012). 

 GUS-reporter analysis of PYR1, PYL1, PYL2, PYL4, PYL5 and PYL8 

promoters has been recently reported (Gonzalez-Guzman et al., 2012). We 

have completed this analysis by generating additional GUS-reporter lines 

for PYL6, PYL7 and PYL9 promoters (Supplemental Figure S2). Root 

expression of GUS driven by PYL6 promoter was almost undetectable, 

expression driven by PYL7 promoter was weak and could only be detected 

after 6h incubation with the GUS substrate, whereas ProPYL9:GUS lines 

showed GUS staining after 3h (Supplemental Figure S2). Additionally, we 

have used a modified pseudo-Schiff propidium iodide (PS-PI) staining 

method to get a detailed GUS staining of the apical root (Figure 2A). After 

3 h incubation with the GUS substrate, we could detect GUS staining in 

stele cells of the ProPYR1, ProPYL1, ProPYL2, ProPYL4, ProPYL8 and 

ProPYL9:GUS lines, as well as root epidermis and lateral root cap for 

PYL8 (Figure 2A and 2D). PS-PI staining combined with confocal laser 

scanning microscopy produced high-resolution images; however it 

eliminated GUS staining of columella cells in ProPYL1, ProPYL4 and 

ProPYL8:GUS lines, which was previously detected (Gonzalez-Guzman et 

al., 2012; Figure 2E). In order to get an estimation of GUS expression in 

the whole root, we performed a quantitative GUS activity assay in extracts 
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of root tissue prepared from 15-d-old seedlings by using 4-methyl 

umbelliferyl b-D-glucuronide (MUG) as a substrate (Figure 2B). GUS 

activity was particularly high for ProPYL8, ProPYL1, ProPYR1, ProPYL9 

and ProPYL2:GUS genes, whereas expression of ProPYL4, ProPYL5 and 

ProPYL7:GUS genes was lower and ProPYL6:GUS was almost 

undetectable (Figure 2B). These results were in good agreement with 

immunoblot analysis of the corresponding protein extracts using anti-GUS 

antibody (Figure 2C) and they provide a quantitative estimation on the 

expression of the different PYR/PYL receptors in root.  

 Since different PYR/PYL receptors are expressed at high levels in 

the root, we performed root growth assays of different triple, quadruple, 

pentuple and sextuple mutants (Figure 3). To this end, we transferred 4-d-

old seedlings to MS medium plates lacking or supplemented with 10, 20 or 

50 μM ABA. Some mutants were more resistant to ABA-mediated root-

growth inhibition than pyl8 and combination of pyl8 with other mutant loci 

enhanced the pyl8 phenotype, particularly evident at 50 μM ABA when 

compared to pentuple and sextuple mutants (Figure 3). Triple mutants 

lacking the pyl8 locus such as 114 or 145, also showed an ABA-insensitive 

phenotype, which indicates that in addition to PYL8, other loci contribute 

to root ABA sensitivity and additional pyr/pyl combinations will be 

required for a more comprehensive analysis. In spite of this limitation, in 

different combined mutants we observed additive effects by progressive 

inactivation of PYR/PYL genes (Figure 3). For instance, the ABA 

insensitive phenotype was clearly increased when pentuple and sextuple 

mutants were compared to pyl8 in 50 μM ABA, indicating a quantitative 

regulation of root ABA sensitivity by PYR/PYL genes (Figure 3). Finally, 

as previously described for 12458 and 112458 mutants (Gonzalez-Guzman 

et al., 2012), ABA supplementation (10-20 μM) slightly improved root 
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growth of 1458 and 11458 mutants compared to growth in the absence of 

supplemented ABA (Figure 3).   

PYL8 regulates root ABA signaling through interaction with clade A 

PP2Cs   

Given the important role of PYL8 to control root sensitivity to ABA, we 

decided to further pursue the study of its mechanism of action. To this end, 

we followed both a genetic and a biochemical approach. Firstly, since 

PYR/PYL ABA receptors inhibit PP2Cs in an ABA-dependent manner and 

PYL8 inhibited in vitro several PP2Cs (Santiago et al., 2009, Antoni et al., 

2012), we reasoned that pyl8 phenotype might be due to enhanced in vivo 

activity of PP2Cs. To test this hypothesis, we crossed pyl8-1 with the hab1-

1abi1-2pp2ca-1 triple mutant to generate different combinations of pyl8-1 

with pp2c mutants. The reduced sensitivity of pyl8 to ABA-mediated 

inhibition of root growth was notably diminished when pyl8 was combined 

either with abi1-2, hab1-1 or pp2ca-1 (Figure 4A). Therefore, these results 

are in agreement with the in vitro inhibition of clade A PP2Cs by PYL8 

and reveal genetic interaction of PYL8 with different clade A PP2Cs.  

 Secondly, we followed a biochemical approach to identify PYL8 

interacting proteins in vivo using Arabidopsis suspension cells that express 

a protein G-streptavidin (GS) tagged PYL8 as a bait for tandem affinity 

purification (TAP) (Van Leene et al., 2008). The GS tag combines two 

IgG-binding domains of protein G with a streptavidin-binding peptide, 

separated by two tobacco etch virus (TEV) cleavage sites, and it has proved 

to be a good tag for TAP approaches (Van Leene et al., 2008). Previously, 

PYL8 and other PYR/PYL ABA-receptors have been recovered in vivo as 

ABI1-interacting proteins using affinity protein complex purifications and 

subsequent identification by MS analyses (Nishimura et al., 2010). 

Therefore, it has been demonstrated that a single PP2C interacts in vivo 
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with different ABA receptors. We wondered whether a single ABA-

receptor might be able to interact in vivo with different PP2Cs. To this end, 

we performed TAP of protein complexes in Arabidopsis suspension cells 

that express PYL8 fused to the N- or C-terminal GS tag (GS-PYL8 and 

PYL8-GS, respectively) as bait, and subsequently, we proceeded to the 

identification of interacting partners by MS analyses (Supplemental Table 

S1). Recombinant GS-PYL8 or PYL8-GS protein production was 

confirmed by immunoblot analysis (Figure 4B). PYL8-bound complexes 

were recovered from both cultures (two technical repeats per culture) 

treated with 50 μM ABA and finally they were eluted from streptavidin 

beads and analyzed by SDS-PAGE (Figure 4B). MALDI-TOF/TOF-MS 

analysis of these complexes revealed that five clade A PP2Cs, i.e. HAB1, 

HAB2, ABI1, ABI2 and PP2CA/AHG3, were able to interact with PYL8 in 

samples supplemented with 50 μM ABA (Figure 4B and 4C; Supplemental 

Table S1). Therefore, these results provide evidence that a PYR/PYL ABA 

receptor can form complexes with several clade A PP2Cs in vivo in 

Arabidopsis.  

 We did not recover any ABA-activated SnRK2 in these complexes, 

which suggests that the ABA-dependent interaction of PYL8 with the 

PP2Cs effectively competed in planta with the interaction of PP2Cs and 

SnRK2s or alternatively, that the residual interaction of the SnRK2s (via 

the ABA box) and PP2Cs was not enough to withstand the double 

purification of the TAP procedure. When samples were not supplemented 

with exogenous ABA, only one peptide that significantly matched both to 

HAB1 and HAB2 (VIQWQGAR, identical sequence in both PP2Cs) could 

be recovered from PYL8-interacting proteins in one experiment (Figure 

4C; Supplemental Table S1). Thus, exogenous ABA supplementation 
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dramatically increased the recovery of PP2Cs as PYL8-interacting proteins 

in TAP complexes. 

PYR/PYL receptors and clade A PP2Cs mediate the root hydrotropic 

response  

PYR/PYL receptors and clade A PP2Cs are key players for ABA signaling 

in root, and taking into account the important role of ABA for 

hydrotropism, we decided to investigate their role in the root hydrotropic 

response. Since PYL8 plays an important role for ABA signaling in root 

and it interacts at least with 5 clade A PP2Cs, we generated an abi1-2 abi2-

2 hab1-1 pp2ca-1 quadruple mutant, abbreviated as Qabi2-2 (Figure 5A 

and 5B). The Qabi2-2 mutant is impaired in four PYL8-interacting PP2Cs 

and it turned out to be very hypersensitive to ABA-mediated inhibition of 

root and shoot growth (Figure 5A and 5B). Using the experimental system 

developed by Takahashi et al., (2002), i.e. split agar plates containing 

sorbitol in the region with low water potential, we measured the 

hydrotropic response of mutants showing enhanced or impaired ABA 

signaling (Figure 5C and 5D). In this assay, MS medium containing 1% 

agar and agar containing 400 mM sorbitol are placed side-by-side, which 

generates a water potential gradient at the border between the two media 

(see Figure 5E and 5F). Thus, we analysed the hydrotropic response of the 

strongly ABA-hypersensitive Qabi2-2 mutant and the ABA-insensitive 

112458 sextuple mutant, which is strongly impaired in ABA perception 

through PYR/PYL receptors (Gonzalez-Guzman et al., 2012). As a result, 

we found that Qabi2-2 mutant showed enhanced root curvature compared 

to wt when faced with a medium containing -1 MPa sorbitol (Figure 5C). 

Conversely, the 112458 mutant showed reduced root curvature compared 

to wt (Figure 5D). This response had important consequences, since 

seedlings of the Qabi2-2 mutant avoided better than wt the entrance in 
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medium with low water potential, whereas seedlings of 112458 mutant 

were impaired in that response (Figure 5E and 5F).  

DISCUSSION 

Previous analyses of loss-of- function mutants indicated that combination 

of several pyr/pyl loci was required to impair ABA signaling (Park et al., 

2009; Gonzalez-Guzman et al., 2012). Thus, the generation of pyr1pyl1pyl4 

triple or pyr1pyl1pyl2pyl4 quadruple mutants (Park et al., 2009) or different 

combinations of triple mutants (Gonzalez-Guzman et al., 2012) was at least 

required to obtain a robust ABA-insensitive phenotype, which suggested 

certain functional redundancy among PYR/PYL genes. Only the pyr1 

mutant was reported to show a phenotype by inactivation of a single 

PYR/PYL gene, i.e.  pyrabactin resistance (Park et al., 2009). Given these 

precedents, we were surprised to find that the single pyl8 mutant showed 

reduced ABA-mediated inhibition of root growth compared to wt.

 Several reasons might explain the non-redundant role of PYL8 to 

regulate root sensitivity to ABA. First, the root expression pattern of PYL8 

shows some specificity with respect to other PYR/PYL receptors 

(discussed below). Second, biochemically PYL8 is a monomeric receptor 

(higher affinity for ABA than dimeric receptors) that shows higher capacity 

(lower inhibitory concentration 50) to inhibit in vitro certain PP2Cs (ABI1, 

PP2CA, HAI1) than other PYR/PYLs (Santiago et al., 2009; Antoni et al., 

2012). For instance, the ABA-dependent inhibition of PP2CA and HAI1 by 

PYL8 was almost one order of magnitude higher than by other PYR/PYLs 

(Antoni et al., 2012). Third, we have shown that at least five clade A 

PP2Cs interacted in vivo with PYL8 in an ABA-dependent manner. We 

can´t exclude that other clade A PP2Cs that are strongly induced by ABA 

(HAI1, HAI2, HAI3) but otherwise expressed at low levels could also 

interact with PYL8. The Arabidopsis suspension cells used in TAP 
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experiments were supplemented with ABA to prepare protein extracts but 

they were not grown in the presence of ABA to avoid growth impairment 

and overexpression of the other PP2Cs. Therefore, lack of PYL8 function 

likely leads to a globally enhanced activity of PP2Cs or diminished 

capacity to inhibit them. Indeed, both the analysis of root ABA sensitivity 

of pyl8 pp2c mutants (Figure 4A) and HAB1 OE plants (Figure 1, A and C) 

support this idea. Thus, root ABA sensitivity of HAB1 OE plants mimicked 

pyl8 or pyr/pyl combined mutants, which suggests that these phenotypes 

are due to enhanced clade A PP2C activity. Interestingly, HAB1 OE plants 

as well as severe ABA-insensitive pyr/pyl mutants (1458, 11458, 12458 

and 112458) showed improved root growth upon supplementation of the 

growth media with ABA (Figure 1 and 3; Gonzalez-Guzman et al., 2012). 

Therefore, although ABA has an inhibitory role on root growth depending 

on the concentration and plant growth conditions, it is clear that ABA 

contributes to root growth stimulation under certain conditions. Low 

concentrations of ABA (<1 μM) are known to stimulate root growth in 

Arabidopsis wt (Ephritikhine et al., 1999; Fuji et al., 2007). ABA is also 

required to maintain primary root growth at low water potentials in maize 

seedlings, and one of the factors that explain it is the restriction of ethylene 

production by ABA (reviewed by Sharp et al., 2004). Finally, mutants 

whose threshold for ABA perception and signaling has been dramatically 

altered can reveal the ABA stimulatory effect on root growth at 

concentrations that would be inhibitory for wt. Different physiological 

mechanisms have been pointed out to explain this effect at low water 

potentials (Sharp et al., 2004). The interaction of ABA with other 

hormones that regulate root growth, although not well known yet, will be 

another possible explanation.      
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 Our TAP experiments, together with those of Nishimura et al., 

(2010) using YFP-ABI1 as a bait, provide evidence that multiple 

interactions among PP2Cs and PYR/PYLs occur in vivo, generating a 

regulatory network that offers a wide sensitivity and combinatorial 

possibilities to modulate ABA signaling. Mathematical modeling will be 

required to provide quantitative insights on the complex combinatory of the 

PP2C-ABA-PYL interactions. However, our results differed from 

Nishimura et al., (2010) because we did not recovered any ABA-activated 

SnRK2 in our complexes. Although in vitro experiments have suggested 

the possible existence of quaternary PYL-ABA-PP2C-SnRK2 complexes 

(Soon et al., 2012), the actual fact is that such complexes have not been 

recovered from plant extracts yet. The ABI1-interacting proteins identified 

by MS analyses by Nishimura et al., (2010) might simply reflect the 

recovery of independent PYL-ABA-ABI1 and ABI1-SnRK2 complexes. 

Alternatively, TAP is a more stringent technique than single GFP affinity 

purification, which might result in loss of the SnRK2 ABA box-PP2C 

interaction or weaker interactions than ternary ABA complexes. This could 

explain another divergence with respect to Nishimura et al., (2010), i.e. the 

dramatic increase in the recovery of PP2C peptides by exogenous addition 

of ABA.  Thus, without ABA supplementation, GS-PYL8 only recovered 

one PP2C peptide in one experiment (none with PYL8 tagged at the C-

terminus), compared to 28 peptides when 50 μM ABA was supplemented 

(Figure 4C; Supplemental Table S1). These results suggest that in vivo 

PYL8 only shows a weak/transient interaction with clade A PP2Cs when 

ABA levels are low, further supporting the current model for PYR/PYL-

mediated signaling able to perceive changes in ABA levels (Cutler et al., 

2010).   
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 The expression in the root of PYR1, PYL1, PYL2, PYL4, PYL8 and 

PYL9 was predominant in the vascular tissue (Figure 2; Gonzalez-Guzman 

et al., 2012), where ABA-biosynthetic enzymes are localized too (Cheng et 

al., 2002; Tan et al., 2003).  Active ABA signaling in the root vascular 

tissue that carries out ABA biosynthesis might act as a positive feedback 

for ABA production or play a regulatory role for different transport 

processes (Barrero et al., 2005; Gaymard et al., 1998). Additionally, 

expression in columella cells could also be detected for PYL1, PYL4 and 

PYL8. Active pools of ABA have been detected in the columella cells by a 

ProRD29B:GUS reporter system, which suggests that even in the absence 

of stress ABA signaling occurs in these cells (Christmann et al., 2005). 

Root columella cells play a key role for sensing gravity in a process 

governed by auxins, and the presence of ABA receptors in this region 

suggests that ABA signaling might somehow affect auxin signaling in this 

area. For instance, it has been proposed that degradation of starch grains in 

amyloplasts in columella cells is required to have a hydrotropic response, 

since gravitropism would be inhibitory to hydrotropism (Takahashi et al., 

2003). It has been also suggested that starch degradation in the columella 

cells of roots subjected to osmotic stress might be an osmoregulatory 

mechanism to increase osmolite concentration and to sustain glucose 

supply under water stress (Ponce et al., 2008). Since ABA signaling is 

required both for hydrotropism and osmoregulation of water-stressed roots 

(Takahashi et al., 2002; Sharp et al., 2004; this work), the presence of 

PYR/PYL receptors in columella cells might contribute to regulate both 

processes.  

 Finally, expression of PYL8 was also documented in the root 

epidermis and lateral root cap. The localization of the moisture-gradient 

sensing apparatus has not been precisely defined, likely because different 
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root tissues might be required for proper hydrotropic perception and 

response. However, root cap has been suggested to play a role for moisture-

gradient perception (Eapen et al., 2003; Kobayashi et al., 2007). The 

localization of at least three ABA receptors in this area and the presence of 

PYL8 in root epidermis and lateral root cap fit well with the requirement of 

ABA signaling for root hydrotropism. Moreover, we provide evidence that 

pyr/pyl mutants are impaired in hydrotropism, indicating that ABA 

perception by these receptors is required for a proper response. 

Interestingly, this response can be enhanced by multiple knocking out of 

the PP2Cs that represses ABA signaling under basal conditions. Thus, the 

enhanced hydrotropic response of pp2c knockouts together with their 

reduced water loss and enhanced transcriptional response to ABA 

constitute a powerful mechanism to cope with water stress (Saez et al., 

2006; Rubio et al., 2009). Future studies on the role played by ABA 

signaling for hydrotropism should answer important questions, such as how 

ABA generates the asymmetric growth required to escape from low water 

potential regions of the soil or whether ABA gradients are generated in the 

root in an analogous manner to auxins.   

MATERIALS AND METHODS 

Plant material and growth conditions 

Arabidopsis thaliana plants were routinely grown under greenhouse conditions in pots 

containing a 1:3 vermiculite-soil mixture. For plants grown under growth chamber 

conditions, seeds were surface sterilized by treatment with 70% ethanol for 20 min, 

followed by commercial bleach (2.5 % sodium hypochlorite) containing 0.05 % Triton 

X-100 for 10 min, and finally, four washes with sterile distilled water. Stratification of 

the seeds was conducted in the dark at 4ºC for 3 days. Then, seeds were sowed on 

Murashige-Skoog (1962) (MS) plates composed of MS basal salts, 0.1% 2-[N-

morpholino]ethanesulfonic acid and 1% agar. The pH was adjusted to 5.7 with KOH 

before autoclaving. Plates were sealed and incubated in a controlled environment 
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growth chamber at 22ºC under a 16 h light, 8 h dark photoperiod at 80-100 μE m-2 sec-1. 

The pyr1-1 allele and the T-DNA insertion lines for pyl1, pyl2, pyl4, pyl5 and pyl8-1 

have been described previously (Lackman et al., 2011; Park et al., 2009; Gonzalez-

Guzman et al., 2012). Seeds of pyl6, pyl7 and pyl8-2 insertion lines, SAIL_1179_D01, 

SALK_012096 and SALK_033867, respectively, were obtained from the Nottingham 

Arabidopsis Stock Centre. The abi1-2 abi2-2 hab1-1 pp2ca-1 quadruple mutant was 

generated by crossing two triple pp2c mutants described in Rubio et al., (2009). The 

pyl8-1 allele was crossed with the abi1-2 hab1-1 pp2ca-1 triple mutant to generate 

different combinations of pyl8 and pp2c knockout alleles.   

 

Generation of transgenic lines and GUS analyses. 

To construct the ProPYL6 and ProPYL8:GUS genes, a fragment comprising 1.5 kb 5’ 

upstream of the ATG start codon plus the first 30 bp of the PYL6 or PYL8 coding 

sequences, respectively, was amplified by PCR and cloned into pCR8/GW/TOPO T/A. 

Next, it was recombined by Gateway LR reaction into pMDC163 destination vector 

(Curtis and Grossniklaus, 2003). To generate the ProPYL7:GUS gene, the upstream 

sequence amplified was of 0.5 kb to avoid overlapping with regulatory sequences of the 

At4g01023 neighboring gene. The different pMDC163-based constructs carrying 

ProPYR/PYL:GUS genes were transferred to Agrobacterium tumefaciens pGV2260 

(Deblaere et al., 1985) by electroporation and used to transform Col wt plants by the 

floral dipping method. Seeds of transformed plants were harvested and plated on 

hygromycin (20 μg/ml) selection medium to identify T1 transgenic plants and T3 

progenies homozygous for the selection marker were used for further studies. Imaging 

of GUS and GUS quantitative assays were performed as described by Jefferson et al., 

(1987). Root GUS staining was also visualized using modified pseudo-Schiff propidium 

iodide staining and confocal laser scanning microscopy as previously described 

(Truernit et al., 2008)  

 The coding sequence of PYL8 was amplified by PCR and cloned into 

pCR8/GW/TOPO (Santiago et al., 2009a). Next, it was recombined by LR reaction into 

the ALLIGATOR2 destination vector (Bensmihen et al., 2004). The ALLIGATOR2-

35S:3HA-PYL8 construct was transferred to Agrobacterium tumefaciens C58C1 

(pGV2260) (Deblaere et al., 1985) by electroporation and used to transform pyl8-1 

plants by the floral dip method. T1 transgenic seeds were selected based on GFP 
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visualization and T3 progenies homozygous for the selection marker were used for 

further studies. The generation of ProHAB1:HAB1-dHA lines was described previously 

(Saez et al., 2004).  

Seed germination and seedling establishment assays.  

After surface sterilization of the seeds, stratification was conducted in the dark at 4ºC 

for 3 d. Next, approximately 100 seeds of each genotype were sowed on MS plates 

lacking or supplemented with 0.5 μM ABA. To score seed germination, radical 

emergence was analyzed at 72 h after sowing. Seedling establishment was scored as the 

percentage of seeds that developed green expanded cotyledons and the first pair of true 

leaves at 7-d.  

Root growth assays.  

Seedlings were grown on vertically oriented MS plates for 4 to 5 days. Afterwards, 20 

plants were transferred to new MS plates lacking or supplemented with the indicated 

concentrations of ABA. The plates were scanned on a flatbed scanner after 10-d to 

produce image files suitable for quantitative analysis of root growth using the NIH 

Image software ImageJ v1.37.  

Tandem Affinity Purification (TAP) 

Cloning of transgenes encoding GS-tagged fusions under control of the constitutive 

cauliflower tobacco mosaic virus 35S promoter and transformation of Arabidopsis cell 

suspension cultures were carried out as previously described (Van Leene et al., 2007). 

Briefly, the GS tag combines two IgG-binding domains of protein G with a streptavidin-

binding peptide, separated by two tobacco etch virus (TEV) cleavage sites. In GS-

PYL8, the two IgG-binding domains of protein G are placed in front of the streptavidin-

binding peptide; in PYL8-GS, the order of these domains is opposite. Tandem affinity 

purification of protein complexes was done using the GS tag (Bürckstümmer et al, 

2006) followed by protein precipitation and separation, according to Van Leene et al. 

(2008). For the protocols of proteolysis and peptide isolation, acquisition of mass 

spectra by a 4800 MALDI TOF/TOF Proteomics Analyzer (AB SCIEX), and MS-based 

protein homology identification based on the TAIR genomic database, we refer to Van 

Leene et al. (2010). Experimental background proteins were subtracted based on 

approximately 40 TAP experiments on wild type cultures and cultures expressing TAP-

tagged mock proteins GUS, RFP and GFP (Van Leene et al., 2010). 
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Hydrotropism assay  

The hydrotropic response was analyzed in 7-d-old Arabidopsis seedlings as described 

by Takahashi et al., (2002). Briefly, plastic square plates were filled with 1% agar 

containing MS medium. After the solidification of the agar, half of the medium was 

removed by cutting with a scalpel in an angle of 36º and replaced with 1% agar 

containing MS medium supplemented with 400 mM sorbitol. Root tips were placed in 

the border between these two media, where a water potential gradient was generated, 

and plates were positioned vertically. After 14 hours the hydrotropic response was 

calculated by measuring root curvature angle. 

 

 

Accession numbers 

The Arabidopsis Genome Initiative locus identifiers for PYR1, PYL1, PYL2, PYL3, 

PYL4, PYL5, PYL6, PYL7, PYL8, PYL9, PYL10, PYL11, PYL12 and PYL13 are, 

At4g17870, At5g46790, At2g26040, At1g73000, At2g38310, At5g05440, At2g40330, 

At4g01026, At5g53160, At1g01360, At4g27920, At5g45860, At5g45870 and 

At4g18620, respectively.  

 

Supplemental material 

The following supplemental material is available for this article online: 

Supplemental Figure S1. Schematic diagram of the PYR1, PYL1, PYL2, PYL4, PYL5, 

PYL6, PYL7, PYL8 and PYL9 genes showing the position of the T-DNA insertion or the 

nonsense mutation in the pyr1-1 allele. 

Supplemental Figure S2. GUS expression driven by ProPYL6, ProPYL7 and 

ProPYL9:GUS genes in roots of 5-d-old seedlings  

Supplemental Table S1. Summary of results obtained in TAP experiments and peptide 

identification using the 4800 MALDI TOF/TOFTM Proteomics analyzer (AB SCIEX) 

and the GPS explorer v3.6 (AB SCIEX) software package. 

Supplemental Table S2. List of oligonucleotides used in this work 
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Figure legends 

Figure 1. PYL8 plays a non-redundant role for root sensitivity to ABA. A, 

Quantification of ABA-mediated root growth inhibition of pyr/pyl mutants 

compared with the wild type. Data are averages ± SE from three 

independent experiments (n = 15 each). * P < 0.01 (Student’s t test) with 

respect to the wild type in the same experimental condition. B, Seedling 

establishment of pyr/pyl mutants compared with  Columbia (Col)  and La-

er wild types in medium supplemented with  0.5 μM ABA at 3, 5, 7 and 10 

days after sowing. Data show the percentage of seeds that germinated and 

developed green cotyledons. Values are averages ±SE for three 

independent experiments (100 seeds each). * P<0.01 (Student’s t test) with 

respect to the wild type in the same experimental condition. C, ABA 

insensitive phenotype of pyl8-1 and pyl8-2 alleles compared to Col wt. 

Photographs show representative seedlings 10-d after the transfer of 4-d-

old seedlings from MS medium to plates lacking or supplemented with 10 

μM ABA. D, Complementation of the pyl8-1 allele by introduction of a 

35S:3HA-PYL8 transgene (pyl8-1 complemented). Photograph shows 

representative seedlings 12-d after the transfer of 4-d-old seedlings from 

MS medium to plates supplemented with 20 μM ABA.  

Figure 2. GUS expression driven by ProPYR1, ProPYL1, ProPYL2, 

ProPYL4, ProPYL5, ProPYL6, ProPYL7, ProPYL8 and ProPYL9:GUS 

genes in the apical root. A, GUS expression visualized using modified 

pseudo-Schiff propidium iodide staining and confocal laser scanning 

microscopy. B, Quantification of GUS activity in 15-d-old roots using 

MUG as a substrate. C, Immunoblot analysis of protein extracts from 15-d-

old roots using anti-GUS antibody. Ponceau staining from a 43 kDa protein 

is shown as loading control. D, Magnification of the apical root from 

ProPYL8:GUS lines that were stained as described in A. E, GUS 
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expression driven by ProPYL1, ProPYL4 and ProPYL8:GUS genes in 

columella cells. GUS staining observed in the absence of subsequent PS-PI 

staining. 

Figure 3. Quantification of ABA-mediated inhibition of root growth of 

pyr/pyl mutants compared with the wild type. Data are averages ± SE from 

three independent experiments (n = 15 each). The letters denote significant 

differences among the different genetic backgrounds (P<0.05, Fisher LSD 

tests). Primary root length of 15 plants per genotype (three independent 

experiments) was measured after 8 days in medium lacking or 

supplemented with 10, 20 or 50 μM ABA. The 145, 148, 1458 and 12458 

mutants contain the pyr1-1 allele; the 114, 1124, 11458 and 112458 

mutants contain both pyr1-1 and pyl1 alleles. The rest of abbreviations 

reflect the corresponding pyl number. 

Figure 4. Genetic and biochemical interaction of PYL8 with clade A 

PP2Cs. A, The reduced sensitivity of pyl8 to ABA-mediated inhibition of 

root growth is abrogated by knocking out clade A PP2Cs. Quantification of 

ABA-mediated root growth inhibition of the indicated genotypes compared 

with the wild type. Data are averages ± SE from three independent 

experiments (n = 15 each). * P < 0.01 (Student’s t test) with respect to the 

wild type in the same growth conditions. Photographs show representative 

seedlings 10-d after the transfer of 4-d-old seedlings to MS plates lacking 

or supplemented with 5 µM ABA. Bars = 1 cm. B, Clade A PP2Cs interact 

in vivo with PYL8 in the presence of ABA. GS-PYL8 and PYL8-GS 

interact with clade A PP2Cs expressed in Arabidopsis cell suspension 

cultures. The SDS-PAGE analysis shows the zone were HAB1/HAB2 (two 

upper bands) and ABI1/ABI2/PP2CA (lower bands) were recovered as 

interacting partners of PYL8 when extracts and TAP purification buffers 

were supplemented with 50 μM ABA. C, Quantification of significantly 
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(p>95%) matched peptides of clade A PP2Cs recovered in independent 

TAP experiments using either GS-PYL8 or PYL8-GS as baits. ABA 

supplementation (50 μM, +ABA) dramatically increased the recovery of 

clade A PP2Cs compared to samples lacking ABA supplementation (-

ABA). Detailed results of the peptides identified by MS analyses are 

provided as supplemental table S1.  

 

Figure 5. Enhanced hydrotropic response of pp2c quadruple mutant and 

reduced hydrotropic response of pyr/pyl sextuple mutant. A, ABA-

hypersensitive phenotype of hab1-1abi1-2pp2ca-1abi2-2 quadruple 

mutant, abbreviated as Qabi2-2, compared to Col wild-type. Photograph of 

representative seedlings 10 d (left) or 20 d (right) after the transfer of 4-d-

old seedlings to MS plates lacking or supplemented with 10 µM ABA. B, 

ABA-hypersensitive root growth inhibition of Qabi2-2 mutant compared to 

Col wild-type. C, Enhanced hydrotropic response of Qabi2-2 mutant 

compared to wt. D, Reduced hydrotropic response of pyr/pyl sextuple 

mutant compared to wt. C, D, Hydrotropism assays with 7-d-old 

Arabidopsis seedlings. Data represent measures of the root curvature angle 

taken 14 h after transfer of 7-d-old seedlings to split agar plates containing 

0.4 M sorbitol in the region with low water potential. Values are averages 

from three independent experiments ± SE (n =42 each). * indicates P < 

0.05 (Student's t test) when comparing data from each genotype and wild 

type in the same assay conditions. E,F, Photographs show the experiments 

described in C and D, respectively, after 3 days of the transfer of 7-d-old 

seedlings to split agar plates containing 0.4 M sorbitol. The arrow marks 

the limit between MS medium and medium supplemented with 0.4 M 

sorbitol.  
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Supplemental Figure S1. Schematic diagram of the PYR1, PYL1, PYL2, PYL4, PYL5, PYL6, PYL7, PYL8 and
PYL9 genes showing the position of the T-DNA insertion in different pyl mutants or the nonsense mutation in
the pyr1-1 allele. RT-PCR analyses of mRNAs from wt and the corresponding pyr/pyl mutant are shown over
each gene (wt, left; mutant, right); the upper box corresponds to the analysis of each PYR/PYL gene and the
lower box to the ACTIN control of cDNA. In the case of pyl7, where the T-DNA insertion into the PYL7 promoter
leads to a knock-down mutation, quantitative RT-PCR analysis is shown.



Supplemental Figure S2. GUS expression driven by ProPYL6, ProPYL7 and ProPYL9:GUS genes in roots of 5-d-old 
seedlings. Photographs show 5-d-old seedlings that were either mock or 10 μM ABA-treated for 10 h. 

ProPYL6:GUS ProPYL7:GUS ProPYL9:GUS

MS MSABA ABA ABAMS



Supplemental Table S1. Summary of results obtained in TAP experiments and peptide 
identification using the 4800 MALDI TOF/TOFTM Proteomics analyzer (AB SCIEX) 
and the GPS explorer v3.6 (AB SCIEX) software package with search engine Mascot 
version 2.2 (Matrix Science) and database TAIR10. Four TAP experiments (two 
samples each) were performed using N-terminal (Nm) GS-tagged PYL8, two in the 
presence of 50 μM supplemented ABA and two in the absence of exogenous ABA. 
Additionally, four TAP experiments were performed using C-terminal (Cm) SG-tagged 
PYL8, in the same conditions as above. The table shows the significantly (p>95%) 
matched peptides recovered in the experiments. Column headers for Protein and Peptide 
data are explained below. Protein score: The score calculated by the Mascot search 
engine for each protein. This score is based on the probability that peptide mass matches 
are non-random events. If the Protein Score is equal to or greater than the Mascot® 
Significance Level calculated for the database search, the protein match is considered to 
be statistically non-random at the 95% confidence interval. Protein score = -10*Log(P), 
where P is the probability that the observed match is a random event. Expect: Protein 
score expectation value. RMS error (ppm): RMS error of the set of matched mass 
values, in ppm. Sequence coverage %: Percentage of protein sequence covered by 
assigned peptide matches. Unique peptides: The number of peptides with unique 
sequences matching the selected protein. Total Ion Score: A score calculated by 
weighting Ion Scores for all individual peptides matched to a given protein. Peptide 
Number: Peptide index number within the list of peptides associated with a given 
protein. Start: The starting position of the peptide in the protein. End: The ending 
position of the peptide in the protein. Observed: The observed monoisotopic mass of 
the peptide in the spectrum (m/z). Mr (Exp): The experimental mass of the peptide 
calculated from the observed m/z value. Mr (Calc): The theoretical mass of the peptide 
based on its sequence. Delta (Da): The difference between the theoretical (Mr (Calc)) 
and experimental (Mr (Exp)) masses, in daltons. Miss: Number of missed Trypsin 
cleavage sites. Ions score: The Ions Score is calculated by the Mascot search engine for 
each peptide matched from MS/MS peak lists. This score is based on the probability 
that ion fragmentation matches are non-random events. If the Ion Score is equal to or 
greater than the Mascot® Significance Level calculated for the database search, the 
peptide match is considered to be statistically non-random at the 95% confidence 
interval. Ions score = -10*Log(P), where P is the probability that the observed match is 
a random event. Best Ions score: The highest individual Ion Score for a given protein 
identification. Expect: Ions score expectation value. Peptide: The amino acid sequence 
of the selected peptide. Variable Modification: Variable modification type on the 
peptide. 
 
 
 
 
 
 
 
 



Supplemental Table S2. List of oligonucleotides used in this work. 
 
For amplification of the promoters: 
FpromPYR1: ACT AAA CTA ATC ATT CTC TAC 
RpromPYR1: TCGTTCTTCTGGTGTTAACTCCG 
FpromPYL1: AGCAATATAATTTTACACTCTGGA 
RprmPYL1: GGAGGAGGACTCTGAATTCGCCAT 
FpromPYL2: AAACTTATCGAACTGGAATTG  
RprmPYL2: TAGGCCTTTCACGGCCGGGGATG 
FpromPYL4: TGTGTCCATGTCCGGAGTTGT 
RpromPYL4: GGCGGAAGAAGGACGGTGAACG               
FpromPYL5: GGTGTGATGGTCGAATATTT  
RpromPYL5: GCCGTGTTGGAGTTGCACCGGT   
FpromPYL8:  ACTGTGAAGCAAACCCTATATAT 
RpromPYL8: CGTCAAGTTCTCAATCCCGTTAG 
FpromPYL6: ATTATGTCACCTAACCCGAAAGC 
RpromPYL6: GGATCTCTGAAACTGTATCGACG  
FpromPYL7: TCTCATGCTGACATCAGCTAC  
RpromPYL7: ATCTGTATCGTCTCCTCCGATC 
FpromPYL9: TTTTATCTGATAAGGTTACTGT  
RpromPYL9: CGCCGTGCCGCCTTCAACGCCG  
 
  
 
For genotyping of the mutants: 
FNc4g17870: ACCATGGCTTCGGAGTTAACACCA 
R4g17870: TCACGTCAC CTGAGAACCACT 
FPYL1: ATGGCGAATTCAGAGTCCTCC 
RPYL1: TTACCTAACCTGAGAAGAGTT 
FwNcoPYL2: ACCATGGGCTCATCCCCGGCCGTGA 
RvStopPYL2: TTATTCATCATCATGCATAGGTG 
FPYL4: ACCATGGTTGCCGTTCACCGTCCTT 
RPYL4: TCACAGAGACATCTTCTTCTTGC 
FPYL5: ATGAGGTCACCGGTGCAACT 
RPYL5: TTATTGCCGGTTGGTACTTCGA 
FwMEANpyl8: ATGGAAGCTAACGGGATTGAG  
RvESRVpyl8 : TTAGACTCTCGATTCTGTCGT 
pROK2: GCCGATTTCGGAACCACCATC                                               
Spm3: ACCGTCGACTACCTTTTTTCTTGTAGTG 
LB3SAIL: TAGCATCTGAATTTCATAACCAATCTCGATACAC 
DS5: GTTCGAAATCGATCGGGATAAAAC                                                               
Fpyl6.1: GCCTCGAGACAGTAGAAGATTG  
Rpyl6.1: CGTATGACTCAACGACACGTG  
FpromPYL7: TCTCATGCTGACATCAGCTAC  
RpromPYL7: ATCTGTATCGTCTCCTCCGATC  
Fpyl9.1: GGTTTAAAGGCAACGAGAGC  
Rpyl9.1: TCACTGAGTAATGTCCTGAGA  
Fp1470PYL9 (to identify T-DNA insertion): CCT GAT ACA TGG AGA ATC ACT CA  
 
TAP constructs 
FattBPYL8: AAAAAGCAGGCTCCACCATGGAAGCTAACGGGATTGAG 
RPYL8StopattB: AGAAAGCTGGGTCTTAGACTCTCGATTCTGTCG  
RPYL8attB: AGAAAGCTGGGTCTGAGACTCTCGATTCTGTCG  
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