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Behavioural syndromes, syndrome deviation
and the within- and between-individual components
of phenotypic correlations: when reality does not meet statistics

Laszlé Zsolt Garamszegi - Gabor Herczeg

Abstract Evolutionary mechanisms leading to correlations
across different behaviours, called behavioural syndromes,
are hard to study, mostly because behavioural syndromes
are group/population level phenomena. Recently (Herczeg
and Garamszegi Behav Ecol Sociobiol 66:161-169, 2012),
we introduced the concept of syndrome deviation that
allows the study of behavioural syndromes at the individual
level by focusing on the individual deviation from the
hypothetical perfect group-level behavioural correlation.
Subsequently, Dingemanse et al. (Behav Ecol Sociobiol
66:1543-1548, 2012) emphasized that behavioural syn-
dromes refer to the between-individual component of phe-
notypic correlations, and only this component is relevant
for syndrome deviation. They also recommended mixed
models to decompose the between- and within-individual
correlations. We agree that separating these components is
important, but the proposed approach is impractical to
apply for functionally different behaviours because (1) the
assumption of constant within-individual correlations is

Laszl6 Zsolt Garamszegi and Géabor Herczeg contributed equally to
this paper.

L. Z. Garamszegi

Department of Evolutionary Ecology, Estacion Biologica de
Donana—CSIC,

¢/Americo Vespucio, s/n,

41092 Seville, Spain

G. Herczeg (D<)

Behavioural Ecology Group, Department of Systematic Zoology
and Ecology, E6tvos Lorand University,

Pazmany Péter sétany 1/c,

1117 Budapest, Hungary

e-mail: gaborherczeg@caesar.elte.hu

unjustified and (2) different behaviours cannot be measured
at the same time. Further, our simulations based on mixed
models show that the statistical differentiation between the
within- and between-individual components is inefficient
when using realistic sample sizes. Until the separation of
between- and within-individual correlations is resolved, we
recommend alternative approaches for empirical behaviou-
ral syndrome research that consider the repeatability of the
behaviours and the optimal balance between within- and
between-individual sample sizes. Syndrome deviation cal-
culated from phenotypic correlations of traits that are
proven to be individual specific, or from the between-
individual correlations if possible, is a meaningful metric
to describe behavioural consistency and to explain its evo-
lutionary significance.

Keywords Behavioural consistency - Behavioural syndrome -
Behavioural type - Personality - Syndrome deviation -
Temperament

Introduction

In the last decade, a growing number of studies have
reported case evidence for behavioural consistency (for
meta-analyses, see Smith and Blumstein 2008; Bell et al.
2009; Garamszegi et al. 2012). Behavioural consistency can
be detected at several levels, for instance: (1) consistent
individual differences in one behavioural trait across time
or contexts; (2) consistent individual differences in the
behavioural response to temporal or contextual changes;
and (3) consistent individual differences (i.e. having similar
ranks) in suites of functionally different behaviours (e.g.
Dingemanse and Wolf 2010). Although these phenomena
are often treated—rather confusingly—as synonymous
(Dall et al. 2004; Réale et al. 2007; Dingemanse et al.
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2010; Sih et al. 2012), we distinctly classify forms of con-
sistency in single behaviours (1) as animal personality and
consistency in two or more functionally different behaviours
(3) as behavioural syndrome (see Garamszegi et al. 2012),
while we treat consistent behavioural responses (2) as a
form of plasticity. The mainstream approach in studying
behavioural consistency is to test for the repeatability of
single behaviours to detect animal personality or for the
correlation between multiple behaviours to detect behaviou-
ral syndromes. Upon obtaining significant results (i.e. proving
behavioural consistency), researchers would go back and
analyse single behaviours or the behavioural configuration
(behavioural type, Bell 2007). However, if behavioural con-
sistency (manifest as animal personality or behavioural syn-
drome) itself is supposed to be under selection, we should
also study it directly, and thus we need a variable describing
variation in consistency irrespective of the actual behavioural
type. Further, as behavioural syndromes are group level traits
(i.e. correlations), we cannot directly study their evolution
and thus need individual level variables for this purpose
(Herczeg and Garamszegi 2012). To solve these problems,
we introduced a new concept, syndrome deviation, which is
the individual deviation from the hypothetical perfect
behavioural syndrome (Herczeg and Garamszegi 2012).
We also provided two purposefully simple mathematical
solutions for this concept.

Recently, Dingemanse et al. (2012) challenged our pro-
posal by (1) highlighting the potential importance of the
decomposition of within- and between-individual correla-
tions when drawing inferences about behavioural syn-
dromes from phenotypic correlations, (2) recommending
the use of mixed models based on repeated measures of
the same individuals for understanding the evolution of
behavioural syndromes and (3) proposing an alternative
mathematical solution for syndrome deviation. We welcome
this commentary, as it leads to the clarification of issues with
great theoretical and practical importance, and we were
actually hoping that our new concept would somehow ‘stir
the pot’ in behavioural syndrome research. Accordingly, we
address the above main issues with the aim of advancing the
field based on constructive discussion.

The decomposition of phenotypic correlations:
theoretical implications for behavioural syndromes

Dingemanse et al. (2012) main concern with the way we
approached syndrome deviation is that it would suffer from
the confounding effect of within-individual correlations if it
was based on phenotypic correlations. The authors derive a
statistical formula showing that phenotypic correlations are
composed of two components: the between- and within-
individual correlations. The between-individual component

can be interpreted as being based on stable individual
differences, while the within-individual component reflects
that the traits are unstable within an individual, but their
changes are not independent of each other. Dingemanse et
al. (2012) suggest that only the between-individual correlation
is relevant for behavioural syndromes, while within-
individual correlation should reflect state-dependence (e.g.
hunger level) of trait expression within an individual and can
be seen as a confounding effect.

The importance of the separation of within-subject and
between-subject effects is not new, but is a well-defined
issue in the social and evolutionary disciplines (Davis et
al. 1961; Kreft et al. 1995; Ives et al. 2007; Felsenstein
2008), with statistical solutions being available through
mixed-effect or repeated-measure modelling (Laird et al.
1987; 1999; Snijders and Bosker 1999; Roy 2006). More-
over, the multilevel aggregation of behavioural data (i.e.
within- and between-individual variance and covariance)
has also been recognised, yet often remains inappropriately
treated at the level of analysis (van de Pol and Wright 2009).
Therefore, from the statistical point of view, Dingemanse
and his co-authors correctly point to the problem posed by
the multi-level aggregation of behavioural data for the study
of behavioural syndromes. Correlations observed at the
between-individual level might have different biological
meaning than correlations observed at the within-
individual level. The separation between these is important
because it allows us to distinguish between alternative bio-
logical hypotheses, while inferences based on phenotypic
correlations between behaviours measured only once incur
the risk of erroneously attributing within-individual relation-
ships to between-individual relationships or vice versa.

Yet, we infer that the treatment of the within-individual
effect merely as a confounder is misleading. Within-
individual correlations, albeit unrecognised, might represent
phenomena that may be relevant for the study of behaviou-
ral consistency. For instance, if there was between-
individual variation in how consistently different behaviours
change within individuals (e.g. individuals may respond
differently to hunger or stress levels, and demonstrate dif-
ferent degree of behavioural associations in different con-
texts), and this variation was heritable, than there is full
potential for the emergence of behavioural correlations as
a result of adaptive evolution affecting within-individual
correlations alone. Behavioural correlations based on the
within-individual component might be seen as another form
of behavioural consistency (i.e. plasticity) and might beg for
evolutionary answers.

In our paper (Herczeg and Garamszegi 2012), we defined
behavioural syndrome as a ‘correlation between rank-order
differences between individuals’ following Bell (2007).
This definition implicitly implies that individuals can be
discriminated and ranked based on their behaviours and that



individual ranks are stable, while we have not stated that
behavioural syndromes are phenotypic correlations. This
confusion may have arisen because we did not go into
mathematical details regarding between- and individual-
correlations, as it was not the goal of our paper. We aimed
to propose an approach where behavioural consistency it-
self, as an individual-specific trait, is quantified and ana-
lysed besides behavioural type to better understand the
evolution of behavioural consistency. We indeed welcome
any working approach for separating the between- and
within-individual correlations and emphasize that whenever
such approach becomes available (but see our reservations
below), our syndrome deviation concept can be easily ap-
plied for the pure between-individual correlations. Further-
more, the same concept can be extended for studying
behavioural consistency in single behavioural traits, i.e.
studying the evolution of animal personality where only
the between-individual component is relevant.

The use of mixed models for separating different
components

Dingemanse et al. (2012) recommend an approach in which
one collects multiple behavioural data per individual for
each trait via repeated trials and then applies mixed models.
Although the decomposition of phenotypic correlations into
within- and between-individual components via such
repeated-measurement design seems promising, we have both
conceptual and practical concerns regarding the usefulness of
this approach specifically in the field of behavioural
syndromes.

Concept

To claim their point, Dingemanse et al. (2012) derived an
equation from Snijders and Bosker (1999), who published
an equation that separates between-group and within-group
correlations (see also Garamszegi et al. 2013). Snijders and
Bosker (1999, page 31) assume that the within-group corre-
lation is the same in each group. Therefore, the application
of Eq. 1 from Dingemanse et al. (2012) to study behavioural
syndromes will also assume that within-individual correla-
tions are constant across individuals. However, as we argued
above, individuals may be well expected to show differences
in how they vary their behavioural profiles along different
contexts, which can potentially result in between-individual
differences in within-individual correlations. Such consistent
individual variation in the within-individual component
requires further development of Eq. 1 of Dingemanse et al.
(2012). For separating between- and within-individual corre-
lations properly, one may need to apply random-slope mixed
models, which is a data hungry exercise as it necessitates

several repeats within subjects to capture individual-specific
slopes. Our simulations that we detail below show that differ-
entiating between phenotypic and between-individual corre-
lations when assuming constant within-individual correlations
demands large sample sizes already. The picture gets even
more unrealistic when slopes within individual are also to be
estimated. However, the assumption about constant within-
individual correlation does not only call for practical issues,
but also directly exaggerates the problem outlined below.

The calculation of Eq. 1 of Dingemanse et al. (2012) and
the application of mixed models proposed by them also as-
sume that the two (or more) traits can be measured simulta-
neously or at the very same individual state. However, this is
rarely the case for a suite of behaviours (see, e.g. Garamszegi
et al. 2012 showing that the time interval between measure-
ments can vary up to several months). In fact, if behaviours are
defined based on their functions and the corresponding eco-
logical context (Réale et al. 2007), individuals can perform
only a single behaviour in any given moment, e.g. they cannot
explore an environment, fight against a territory intruder and
show antipredatory behaviour at the very same time. In prac-
tice, researchers measure functionally different behaviours in
separate trials. Dingemanse et al. (2012) point to Wilson et al.
(2011) as the example study applying a mixed model, but this
study was able to estimate within-individual correlations
between different behavioural variables that actually describe
the same behavioural phenomenon (aggression) and were
measured within the same trial (e.g. latency to attack, number
of attacks and number of flees).

The non-simultaneous measurement of traits imposes a
fallacy for the separation of between- and within-individual
correlations for the following reason. Let us assume that an
observer scores two functionally different behaviours based
on the repeated measures design as suggested by Dingemanse
etal. (2012). For example, s/he measures behaviours b, and b,
on two occasions. However, as the two behaviours cannot be
measured at the very same time, if b; is assayed at ¢ and £, b,
can only be tested assayed at #," and #,’, such that ¢, #¢," and t, #
l‘z'. Even if |l‘1_f2‘ or ‘tl'_f2'| >>|t1_f1,‘ or |l2_t2'|, and
the difference between ¢ and ¢ occasions seems small, such
differences can be important for behaviours. Behavioural traits
can change considerably within very short time, even from
one moment to another (for example, singing in male collared
flycatchers, Ficedula albicollis; Garamszegi et al. 2007).
Therefore, it is possible that the measured b, trait would be
completely different in ¢ and ¢ occasions. However, when the
investigator calculates within-individual correlation based on
the observed variance between #; and #, (or #;" and &), s/he
would inherently assume that the estimate of b, at ¢’ occasions
reflects what could have been estimated on ¢ occasions
(otherwise b; and b, estimates would not correspond to each
other), and thus that s/he is supposed to deal with individual-
specific stable trait values and neglect within-individual



correlations within the #—¢ interval. This would be theo-
retically incompatible with Dingemanse et al. (2012) aiming
to estimate between-individual correlations while con-
trolling for the within-individual components. Variations
within the —# interval can represent not only errors but also
biases, if such variations occur at an individual-specific man-
ner and are also mediated by properties that belong to
behavioural consistency.

Furthermore, the measurement process of b; at #; can
directly affect b, measured at ¢#," if |t;—¢,'| is small (e.g. an
exposure to an aggressive conspecific or predator at #; will
affect behaviour at #," if the animal becomes stressed) making
a considerable pause between #; and #,' necessary for re-
acclimation. Such a problem due to contextual overlap calls
for increasing the time lag between measuring the different
behaviours, while an attempt to deal with the previous prob-
lem of neglecting within-individual variation between subse-
quent measurements of different behaviours would require
extremely short time lags. Hence, addressing these two prob-
lems in parallel is challenging if not impossible. Note that
these issues are irrelevant when stable morphological traits are
correlated with each other (i.e. traits within the ¢ and ¢’ interval
can be stable), or when higher-level within-group and
between-group correlations (e.g. within- and between-
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Fig. 1 Histograms showing estimates of different correlations (green
between-individual correlation, rj,4; red within-individual correlation,
7e; blue phenotypic correlations, p) between two behavioural traits that
have been simulated 1000 times with true correlations of r;,3=0.5 and
7.=0.1 (upper panels) and of r;,q=0.1 and r.=0.5 (lower panels) at a
repeatability of R=0.5 under different sample size scenarios. The
expected phenotypic correlation (rp) is calculated based on Eq. 1 of

school) are considered as originally exemplified by Snijders
and Bosker (1999). Hence, the problem posed by the temporal
arrangements of measurements is specific to the study of
behavioural syndromes.

Practice

For a powerful statistical discrimination between within-
and between-individual correlations, an appropriate sam-
pling is required at both levels, which might also set up
practical constraints for the study of behavioural syndromes.
To investigate the effect of sample size on the effectiveness
of the combined use of repeated-measurement design and
the mixed model approach to separate within- and between-
individual components, we performed a simulation (Fig. 1).
As a start, we modelled a realistic situation when a research-
er works with behaviours that have moderate repeatability
(R=0.5, see Bell et al. 2009 and Garamszegi et al. 2012)
and show modest phenotypic correlations (rp=0.3; see
Garamszegi et al. 2012). According to Eq. 1 of Dingemanse
et al., this can occur if, for example, the between-individual
correlation is ry,q=0.5 and the within-individual correlation
is 7.=0.1, which may imply that even a weak within-
individual correlation can inflate the interpretations one
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Dingemanse et al. (2012). Particular estimates of between- and within-
individual correlations originate from mixed models based on within-
subject centring and by using individuals as random factors. Phenotypic
correlations are approximated by randomly taking one measurement
from each individual. Dashed lines are the corresponding means of the
distributions. On the printed version, the colours may appear as differ-
ent shades of grey (rina: light grey; rp: medium grey; r.: dark grey)



would make from phenotypic correlations. As a contrast, we
choose an opposite setup, where r;,q=0.1 and r,=0.5 to
model the situation when the within-individual component
is considerable and introduces an upward bias. We also used
a parameterization based on r;,4=0.3 and r,=0.3.

We commenced with a reasonable sampling scheme, in
which the investigator is allowed to take 90 measurements
per behaviour, i.e. to assess the two behaviours in N=30
individuals at m=3 occasions. Subsequently, we augmented
these sample sizes to N=300 and m=30 sequentially, resulting
in four sample size combinations (Fig. 1). Based on these
parameter setups, we simulated data in the following fashion.
First, we created N individual-specific values from a normal
distribution with a zero mean and unit variance for the two
variables that were forced to take the specified between-
individual correlation (7y,q). Then, around each individual-
specific datum as an individual mean, we simulated m
within-individual measurements with (1—R)/R variance and
with a correlation structure between behaviours as specified
by the within-individual correlation (7). Such a procedure
was performed 1000 times within a set, and was repeated at
different sample size, repeatability (R=0.2 and R=0.8 in addi-
tion to R=0.5) and correlation scenarios.

To analyse the simulated data, we used mixed models re-
lying on within-subject centring to separate between slopes that
correspond to the within-individual and between-individual
levels (Snijders and Bosker 1999; van de Pol and Wright
2009). Such an approach requires that one behavioural variable
is arbitrarily handled as a predictor and the other as a response,
while such discrimination is not warranted in association with
behavioural syndromes that deal with correlations. However,
we repeated each procedure in both possible combinations of
the two behaviours being predictor or response and the results
were basically identical from the parallel runs. We included
‘individual’ as a random effect term to capture the hierar-
chical structure of the data. From each model, we extracted
the between- and within-individual slope estimates, and
based on the corresponding ¢ and df values we converted
them into effect sizes in the form of Pearson correlation
coefficient (Nakagawa and Cuthill 2007). We also used
alternative approaches to derive the within- and between-
individual correlations (such as based on the correlation of
the Best Linear Unbiased Predictors and residuals from mo-
dels that included a random effect and an intercept only), and
these also gave very similar results to those we report here (data
not shown). Finally, we estimated phenotypic correlations from
the generated data by randomly taking a single measurement of
each behaviour from each individual. The simulation and the
mixed-effect modelling were performed in the R statistical
environment (R Development Core Team 2007).

Given the statistically modest sample sizes and the sam-
pling variance, we expected that the estimated parameters
would show some deviations across the 1000 repeats. We

inspected the frequency distributions of different assessments
of correlations through each simulation set and compared
them across different parameter scenarios. The results that
were based on 7;,q=0.5 and »,=0.1 as well as on r,3=0.1
and r,=0.5 while considering R=0.5 are presented in Fig. 1
(upper and lower panel, respectively). The outputs from other
scenarios are given in the Appendix (Figs. S1-3).

The simulations generally suggest that using realistic sam-
ple sizes (N=30, m=3) the mixed effect modelling is rather
inefficient in discriminating between-individual correlations
from phenotypic correlations, as their distribution is largely
overlap. Due to the sampling variance, there are fair chances to
detect a broad range of estimates around the true between-
individual correlation even when mixed-models are applied on
multiple measurements. Increasing sample size in terms of the
number of individuals results in narrowed intervals, but at a
low within-individual sample size the estimate remains a poor
approximation of reality, and phenotypic and between-
individuals correlations are still hard to distinguish. The simu-
lated data can reproduce the specified correlations with small
errors at extreme sample sizes only (N=300, m=30 signifying
9000 measurements on two behaviours). When repeatability is
high (see Appendix), the effect of within-individual sample
size is not that pronounced, as estimates from small within-
individual samples are more reliable. However, between-
individual and phenotypic correlations cannot be well discri-
minated, because r,q approximates rp (while », can be
neglected) when repeatability is high (Eq. 1 of Dingemanse
etal. 2012). In the opposite situation, when repeatability is low,
the within-individual component dominates the phenotypic
correlation. In such case, it is more important to have large
within-individual sample sizes. Note that in the above simu-
lations, we systematically assumed that the within-individual
components are constant across individuals. However, if the
within-individual component is also allowed to vary to be
realistic, and thus random-slope mixed models are to be used,
we suspect that we would detect an even stronger role for
sample sizes affecting the appropriate estimation of within-
individual effects.

Our recommendations

The simulations unanimously indicate that when working
with sample sizes and within-individual replicates with which
behavioural ecologists operate, it is almost impossible to
obtain considerable improvement from mixed models over
approaches based on phenotypic correlations if one aims to
estimate the between-individual correlation. Although the
separation of different correlations is important statistically,
practical limitations lead us to come up with the following
recommendations.

First, it might be useful to perform a pilot study based on a
fewer number of individuals, on which the behaviours are



assessed repeatedly. Such a study would focus on within-
individual variations, and thus it would require a balanced
within-individual sampling at a modest between-individual
sample size that allows the estimation of repeatability of traits
and also the within-individual correlation (see also Harmon and
Losos 2005 for an analogous problem). A subsequent study
could focus on between-individual variations and could be
designed according to the findings of the pilot study. If repea-
tability is high or within-individual correlation is generally low,
given the mathematical equation describing the link between
different components, more effort can be invested in the col-
lection of data across individuals rather than continuing sam-
pling within individuals. However, if repeatability is modest
and the covariance of traits within individuals is not negligible
(especially if there is an evidence for individually varying
within-individual effects), it remains important to collect mul-
tiple data from the same individuals. In this latter case, impro-
ving the sample size in terms of the number of individuals at the
cost of lowering within-individual sample size would only
result in biased estimates even in cases when mixed models
are used to handle few repeats within individuals.

If the above design is not feasible due to logistic constraints
embedded in the study system, one is left with a more general
approach. Namely, first estimate repeatability of the studied
behaviours, then work with individual-specific estimates of
traits and subsequently assume that the detected phenotypic
correlations will represent between-individual correlations. Al-
though the use of such ‘phenotypic correlation of individual
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Fig. 2 a The correlation between the ranks of two behavioural traits,
when each individual has the same rank in both behaviours, as it would
be expected from the null hypothesis of perfect behavioural syndrome.
b The correlation between the ranks of two behavioural traits, when
each individual has the same rank in both behaviours except two
individuals that changed ranks along the second behaviour (filled
circles). Dashed lines show syndrome deviation as could be calculated
from the observed (black dashes, as suggested by Dingemanse et al.
2012) correlation and from the expected correlation based on perfect
syndrome structure (grey dashes, as suggested by Herczeg and
Garamszegi 2012). Individuals that are ranked the same way along
the two behaviours (open circles), in theory, do not deviate from the
syndrome, but receive different syndrome deviation values, if these are
calculated based on the observed correlation (solid black line). In fact,

means’ may not offer a statistically perfect solution to the
elimination of the within-individual component (see Appendix
of Dingemanse et al. 2012), it may still be the best proxy of
between-individual correlations if (1) the repeatability of the
behavioural traits within individuals is established or (2) within-
individual correlation is shown to be negligible.

In general, we know very little about how within-
individual correlations inflate phenotypic correlations in na-
ture. In our meta-analysis (Garamszegi et al. 2012), we have
shown that the strength of the detected phenotypic correlation
is positively related to the geometric mean of the repeatability
of traits. According to Eq. 1 in Dingemanse et al. (2012), such
a positive relationship can occur under certain assumptions if
the between-individual component is dominant, which may
provide some empirical justification for neglecting the within-
individual component. However, to appropriately estimate the
error that the ignorance of the within-individual component
causes, more empirical studies are warranted.

Estimating syndrome deviation

Let us assume that repeatability estimates support that indivi-
duals can be consistently ranked along the same behaviour (i.e.
the most aggressive individual is the most aggressive at each
consecutive trials), thus they can be discriminated based on
their average trait expression. We measure syndrome deviation
as the inconsistencies of these ranks within the same individual
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choosing the observed correlation as reference creates a rank-
dependent bias because very low or high ranked individuals receive
higher false deviation scores than individuals with middle ranks. Note
that the observed correlation always depends on the individuals at
hand, thus deviation scores of the ‘non-deviant’ individuals are always
conditional to the proportion of individuals that deviate from the
syndrome structure with different degree. However, when using the
expected correlation as a reference (dotted black line), only the deviant
individuals receive non-zero scores. Lines are the regression lines and
shown merely for illustrative purposes. When the correlation is based
on ranks that have the same range (e.g. 1-10), Sqait1 =Smairz that yields
O=r given that r=[% Sy,i2/Swair2, Where s is the standard deviation, (3 is
the slope, and r is the correlation coefficient



across different behaviours (Herczeg and Garamszegi 2012).
Therefore, such an approach naturally targets the between-
individual component of the correlation, and we continue our
discussion based on this scenario.

We wholeheartedly agree that the statistical tools to esti-
mate syndrome deviation can/should be improved, and in fact
welcome such progress. Dingemanse et al. (2012) also suggest
a possible solution for our syndrome deviation concept. How-
ever, they emphasize using the observed correlation as the
baseline for the calculation of syndrome deviation instead of
the expected perfect rank correlation (r,=1) advocated by us,
labelling the latter as arbitrary. We think that this would lead to
misinterpretations. First, in a perfect rank correlation (rank
correlation is used to define behavioural syndromes, see Bell
2007) represented by r,=1 (or —1) the slope of a fitted regres-
sion line can also be only 1 (or —1), unlike parametric corre-
lations where in the case of »=1 (or —1) the slope could be
anything but zero (i.e. in a rank correlation only the slope of 1
or —1 represent cases where all data points are on the straight
line, while in a parametric correlation any slope but 0 could
represent cases with all points in a straight line). So
using the perfect rank correlation (r,=1) as the null model of a
perfect behavioural syndrome is a logical choice when behav-
iours are ranked and brought into the same scale (Herczeg and
Garamszegi 2012), as it represents the null scenario that indi-
viduals are ranked in the same way along both behavioural axes
(Fig. 2a). On the other hand, using the observed correlation of
ranks as a null would be biased, because the observed correla-
tion is already a result of individuals differing in their consis-
tency (besides measurement error), so identifying individual
deviation based on this correlation would be practically mea-
ningless (Fig. 2b). Taken together, the baseline (null model) for
the calculations should be the theoretical perfect syndrome and
not the observed one, and only in rank correlations do we know
how perfect syndromes would look.

Summary

We anticipate the theoretical suggestions of Dingemanse et
al. (2012) about the importance of different components of
phenotypic correlations. We infer that shortcomings in as-
sociation with the use of phenotypic correlations for making
inferences for behavioural syndromes do not directly under-
mine our concept about syndrome deviation (Herczeg and
Garamszegi 2012), because it can be easily applied to
between-individual correlations. We find that the emerging
discussion is useful, because it points to a neglected issue,
and the whole field of behavioural syndrome research would
benefit from differentiating between the different components
of phenotypic behavioural correlations, which might be one of
the main goals in the future. However, before dismissing field
studies based on phenotypic correlations (i.e. most studies), we

recommend that more consensus and research are needed to
appropriately deal with the problem. Such a scientific progress
should consider the constraints of the study of animal behaviour
in terms of sample size and also address assumptions about
variation in within-individual correlations and the temporal/
contextual overlap between behavioural measurements. Until
the problems with separating between- and within-individual
behavioural correlations are convincingly solved, we suggest
focusing on the phenotypic correlations of individual-specific
estimates of traits (or their ranks) together with the repeatability
of behaviours, or if feasible, running a pilot study to determine
the balance between sample size within and between indivi-
duals. The field would also benefit from more empirical evi-
dence about the magnitude by which within-individual
correlations affect the phenotypic correlation, and about the
biological significance of within-individual correlations and
their potential variation among individuals. If a potential beha-
vioural correlation (phenotypic or pure between-individual) is
biologically meaningful, the calculation of syndrome deviation
becomes meaningful as well (and even makes perfect sense in
the absence of a significant correlation) and appropriate evolu-
tionary questions and research designs can be tailored. We think
that by adapting the concept of syndrome deviation, studying
the evolution (heritability, fitness consequences, genetic back-
ground) of behavioural consistency observed at different levels
became easier, since this approach provides an individual-level
trait that can be subject to selection.
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