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ABSTRACT 

Hydroxyapatite/silver nanocomposites have been designed and synthesized as an 

engineering material for biomedical applications. The hydroxyapatite matrix was 

synthesized by a sol-gel method and, subsequently, the Ag nanoparticles were deposited 

by heterogeneous precipitation followed by two different reduction routes: thermal or 

chemical. Both sets were studied and compared and, in all cases, the metal nanoparticles 

appear perfectly isolated and attached to the surface of the hydroxyapatite. The average 

metal particle size is below 10 nm, allowing an important contact surface between silver 

and the microorganisms. The antimicrobial behavior against common bacteria showed a 

high effectiveness, well above the commercial level, as well as against yeast, in the case 

of the chemically reduced sample. Due to the nanocomposite microstructure, only a 

negligible portion of metal was released to the lixiviated liquid after the biocide tests, 

minimizing the risk of toxicity. These nanocomposites offer a solution to the infections 

on the surface of implants, one of the main problems in reaching a suitable level of 

osseointegration. 
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1. Introduction      

Nowadays, much effort is being devoted in the field of nanomaterials to the 

fabrication of a new generation of reliable and longer-lasting implants for joint 

replacement [1]. Unfortunately, the appearance of infection in the tissues surrounding 

an implant is a factor that often decreases the success and life-span of the artificial 

device. The prevention of a biofilm formation is crucial in order to avoid complications 

due to bacterial infections after the implant positioning [2], for example, ostomyelitis 

and prosthetic joint infections are some of the pathogenesis that can take place in the 

case of orthopaedic infections in the presence of biofilm [3, 4]. 

A remarkable new approach to try to solve this problem has focused on ceramic-

matrix composites with metal particles embedded as a second phase, which have been 

proved to present mechanical and functional features which are useful for a wide range 

of applications [5-10]. It deals specifically with a hydroxyapatite matrix [HA, 

Ca10(PO4)6(OH)2] with embebbed silver nanoparticles (HA/Ag) [11, 12]. This 

nanocomposite has been proposed for several reasons. Firstly, hydroxyapatite works out 

as the ceramic matrix, as it is the main inorganic phase in bones and is osseoinductor, 

which makes it a candidate material for biomedical applications [13] (implants [14-16], 

drug carriers [17-19], bone tissue engineering scaffolds [20-22], etc). Secondly, silver 

has been the metal selected, as it has been for a long time a well known antibacterial, 

exhibiting activity against a broad spectrum of different bacteria, and even some 

bacterial strains with resistance against antibiotics [23, 24]. The preliminary studies of 

the behavior of these nanocomposites against some specific microorganisms has shown 

a promising biocidal effect [11, 12] and the need to be studied in depth from multiple 
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points of view: from the synthesis and preparation of the material up to the study of the 

interaction material/microorganism. 

In this work, two different routes to obtain HA/Ag nanocomposites are 

proposed. The physico-chemical properties of the resulting samples are compared and 

the antimicrobial benefits of the composites are evaluated against bacteria and yeast. 

Furthermore, the interaction of the nanoparticles with the microorganisms is studied in 

detail. 

2. Materials and methods 

2.1. Samples preparation 

The HA nanopowder was prepared in situ in the laboratory following the sol-gel 

route resumed in the flow chart in Fig. 1A and previously described elsewhere [11]. 

Regarding the preparation of the HA-Ag composite nanopowder, two different 

methods were followed depending on the reduction treatment. In the first procedure, the 

precursor was thermally reduced (samples labeled as HA/nAg-Th), while in the second 

case a chemical reduction was used (HA/nAg-Ch samples). In both cases, the first step 

was the preparation of a HA aqueous suspension (9 wt.% of solids loading); a dispersant 

(Dolapix CE-64) was added to improve the suspension stability at pH=7. At this pH 

there was a compromise, as on one hand no precipitation of the silver precursor took 

place and on the other hand, the solubility of calcium from the HA was extremely low, 

as shown in Fig. 2. 

The suspension was ball milled for 24 hours and, subsequently, the silver 

precursor suspension was dropped to reach a concentration of silver of 1 wt.% in the 
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final product. In the case of HA/nAg-Th, as shown in Fig. 1B, the pH was adjusted to 9 

by dropping a NaOH aqueous solution 1M to precipitate Ag
+
 as Ag2O, according to the 

potential-pH diagram in aqueous solution for silver [25]. The material is centrifuged at 

3500 rpm and dried. The reduction takes place at 350ºC for 2 hours in a controlled 

atmosphere of H2/Ar 10/90.  

In the case of the HA/nAg-Ch sample, there was a chemical reduction with 

sodium borohydride (NaBH4, Sigma-Aldrich) as reductor agent, as described elsewhere 

[12]. It was added quickly into the stirred suspension with the HA and silver precursor 

to promote the precipitation of Ag
0
 according to the next reactions: 

 













H7)OH(BAg8OH3BHAg 8

e8H7)OH(BOH3BH

Ag 1e Ag 8

3

0

24

324

0-

 

Afterwards, as in the case of HA/nAg-Th, the powder was centrifuged and dried. 

Different dry treatments were compared in the case of HA/nAg-Ch to optimize the 

nanoparticle size distribution; three temperatures (60, 150 and 250ºC, respectively) and 

a lyophilization treatment were compared. All the steps in both procedures to add the 

silver were carried out in a dark room to avoid the spontaneous reduction of silver 

cations due to the presence of light. 

2.2. Characterization techniques 

A thermogravimetric analysis (TGA) was carried out in TGA using TA-

Instruments Model SDT 2960). The particle size distribution was determined in a 

Coulter LS 13320 particle size analyzer equipped with a laser source ( = 750 nm). X-
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ray powder diffraction (XRD) patterns were registered using a Bruker D8 Advance 

diffractometer with a Cu Kα radiation source at a scan speed of 0.5º/min. The 

transmission electron microscopy (TEM) images were obtained with a Field Emission 

TEM FEI Tecnai F20. UV-vis spectroscopy was performed using a Cary 4000 uv-vis 

spectrophotometer. 

The biocide activity was measured against three different microorganisms: 

Escherichia coli JM 110 (Gram-negative bacteria), Micrococcus luteus (Gram-positive 

bacteria) and Issatchenkia orientalis (yeast). The media used were Luria Bertani (LB) 

for Escherichia coli JM 110 and Micrococcus luteus, and for Issatchenkia orientalis it 

was yeast extract dextrose (YEPD). 10 µL of a saturated suspension according to the 

microorganism to be studied were added to 1 mL of the corresponding medium. 

Subsequently, an aqueous suspension of each HA/nAg sample was prepared with a 

concentration of 20 wt.%, and 150 µL were added to the medium with the 

microorganisms. For each test a silver free media was used as a control (the sample 

suspension was replaced by water). The inoculums were incubated at 30 ºC with 

horizontal shake for 48 h. The number of colonies was counted every 24 h. 

3. Results and discussion  

3.1. HA nanopowders 

The first goal was to determine the temperature of crystallization of HA from the 

thermogravimetric analysis of the dried hydroxyapatite gel (Fig. 3A). The test was 

carried out in air, at a heating rate of 5ºC/min in the range 25-1000ºC. An endothermal 

peak was observed around 550ºC and it was initially associated with the crystallization 
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of HA. In order to test this hypothesis, several calcination temperatures were tested to 

study the resulting crystallinity: 300ºC, 475ºC and 550ºC. 

The resulting phases were analyzed by XRD, showing a clear difference in 

crystallinity between all the samples (Fig. 3B). Thus, the powder resulting at 300ºC 

corresponded to totally amorphous HA; the powder calcined at 475ºC was partially 

amorphous, showing poorly defined peaks; finally, the powder resulting at 550ºC 

corresponded to pure, stoichiometric and crystalline HA. For this reason, the 

temperature chosen for the heat treatment was 550ºC.  

The granulometric analysis (Fig. 4A) shows a narrow particle size distribution 

with an average particle size around 125 nm, in agreement with TEM observations (Fig. 

4B). The parameter d90 indicates that 90% of the HA particles present a size below 155 

nm. It is also possible to differentiate the crystallographic planes (Fig. 4B).  In 

summary, the hydroxyapatite obtained by the followed sol-gel route was pure, 

stoichiometric and crystalline, with an average size d90 below 155 nm. 

3.2. HA/nAg nanocomposites 

In order to verify whether the final size distribution of the silver nanoparticles 

was affected or not by the method of drying the powders, different dry temperatures 

were tested in the oven and the results were also compared with those obtained by 

lyophilization (Table 1). This study was carried out with the sample chemically reduced 

(HA/nAg-Ch) because it will no suffer any further heat treatment and, therefore, is more 

sensitive to the dry process. As shown in Table 1, the size obtained by lyophilization is 

lower than any of those obtained by a thermal treatment. Therefore, lyophilization 

hinders the nanoparticle agglomeration better than the thermal treatments. According to 
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 7 

these results, both sets of samples (HA/nAg-Th, HA/nAg-Ch) were dried by 

lyophilization, in order to keep the metal particle size as small as possible. Thus, the 

metallic surface exposed to the microorganisms will increase, which is expected to 

enhance the bactericidal activity of the composite. 

In the XRD analysis of the samples, no other phases other than HA and Ag were 

detected (Fig. 5A). It is important to emphasize that neither destabilization nor 

dissolution of hydroxyapatite took place during the synthesis of Ag nanoparticles. 

One tool commonly used to characterize nanoparticles is surface plasmon 

resonance. In the particular case of silver nanoparticles, the main peak is normally 

presented at around 420 nm. Depending on the surroundings of the nanoparticles and 

their size and shape distribution, the position and shape of the band can vary [26, 27]. 

This can be seen in Fig. 5B, which shows the UV-VIS spectrum for HA/nAg-Th and 

HA/nAg-Ch, with the light absorption maxima corresponding to the surface plasmon 

resonance located at 426 nm. This single peak, clearly defined in both cases, is 

representative of globular particles, with a narrow distribution of sizes and homogeneity 

in particle shape. The position and shape of the surface plasmon absorption band is 

similar to those found by other authors [28-30]. In the case of several geometries or 

bimodal size distribution, more peaks appear at different wavelengths. The different 

intensity between the peaks of HA/nAg-Th (thermally reduced) and HA/nAg-Ch 

(chemically reduced) may be related to the number of particles (which is higher in the 

case of HA/nAg-Ch), and the possible presence of silver deposits in HA/nAg-Th.  

Fig. 6A and Fig. 6B show some TEM images for HA/nAg-Th and HA/nAg-Ch, 

respectively. In both cases, in the samples obtained by both reduction procedures, the 
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silver nanoparticles appear perfectly isolated and attached to the surface of the 

hydroxyapatite particles. The HA matrix acts as an effective scaffold where the 

nanoparticles are dispersed, avoiding their agglomeration. This is an important feature 

because a larger contact surface between silver and the microorganisms is expected to 

increase the bactericidal activity of the composite. Therefore, the small size of the silver 

nanoparticles ensures that a significantly large surface area is in contact with the 

microorganisms. It is also possible to observe the globular shape of the particles, in 

agreement with the information obtained from the surface plasmon. 

It can be roughly inferred from numerous TEM micrographs that the average 

particle size of the silver nanoparticles is below 10 nm. A size distribution was carried 

out to study this issue and the information is shown Fig. 7. The parameter d90 is 15.96 

nm and 10.01 nm for HA/nAg-Th and HA/nAg-Ch, respectively. 

The average size of the Ag nanoparticles in the case of HA/nAg-Ch (chemically 

reduced samples) was 7.02 nm, slightly below that corresponding to the HA/nAg-Th 

sample (thermally reduced samples), 8.85 nm. Therefore, the bacterial activity of 

HA/nAg-Ch might have been higher than that of HA/nAg-Th, due to the smaller silver 

nanoparticles. In order to test this hypothesis, it was necessary to test the bacterial 

activity of both types of samples in the laboratory. 

The logarithmic reduction rate (log η) was used to evaluate the bacterial activity 

of the samples. During the test, the viable microorganisms were counted after 24 and 48 

hours. Fig. 8 shows the results for both samples and compares them with a commercial 

broad-spectrum antibacterial material [31]. Pure HA was tested as a control, showing no 

activity. Regarding the activity against bacteria, there was a high activity in both 
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samples, well above the commercial level (marked in Fig. 8 with discontinuous line), 

and there was no difference between the activity of HA/nAg-Th and HA/nAg-Ch. 

However, in the case of yeast (I. Orientalis), only HA/nAg-Ch exceeded the 

disinfection limit of a commercial antimicrobial product, showing a more effective 

behavior. The lower effectiveness of the samples against the yeast may be related to the 

different external membrane structure of the cells [32].  

Other composite materials with silver nanoparticles have been found in the 

literature and show effectiveness against bacteria while are inactive against yeast [33]. 

As shown in Fig. 8, the HA/nAg composite is effective against both kinds of 

microorganisms. 

Fig. 9 shows a sequence in chronological order of four TEM micrographs during 

the treatment of E. coli with HA/nAg-Ch. The Ag nanoparticles in contact with the 

membrane caused permeability and, subsequently, cell death [34]. At the beginning of 

the process (Fig. 9A), the particles are attached to the bacteria surface. The next step is 

the rupture of the cellular membrane (Fig. 9B), that enabled the penetration of the 

particles inside the bacteria and it was also possible to observe the destruction of the 

microorganism (Fig. 9C). Fig. 9D shows the appearance of a dead bacterium with the 

membrane completely ruptured. Therefore, this sequence corroborates that the 

membrane is one of the attack points of the silver nanoparticles. 

Moreover, silver cations, Ag
+
, are more aggressive against cell tissues than 

metallic silver, Ag
0
. For this reason, in order to determine whether silver was in the 

liquid in the form of either cationic silver or metallic silver, the liquid was analyzed by 

UV-VIS spectroscopy. In Fig. 10 the curves corresponding to the surface plasmon 
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resonance are shown and it is possible to assert that the silver present is in metallic form 

and, therefore, the possible risks are minimized. 

4. Conclusions 

This work presents the synthesis and antimicrobial study of a set of 

hydroxyapatite/silver nanocomposites. Firstly, a method for the synthesis of the HA 

nanopowder was presented. Subsequently, two different methods for the addition of a 

second phase consisting in silver nanoparticles were tested: the first one followed a 

thermal reduction and the second one a chemical reduction. In both cases, the silver 

nanoparticles were perfectly isolated and attached to the surface of the hydroxyapatite. 

Regarding the activity against bacteria, there was a high activity in both samples; 

however, in the case of yeast, only the chemically reduced sample (HA/nAg-Ch) 

exceeded the disinfection limit of a commercial antimicrobial product. The combination 

of the bioactivity of the ceramic matrix with the biocide activity of the silver 

nanoparticles makes this material an excellent candidate for implants, bone filling and 

reconstructive surgery applications. In conclusion, this work demonstrates the 

effectiveness of the material as biocide and the low risk in its use in bone-related 

applications. 
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Figure Captations 

Fig. 1 A. Synthesis of pure hydroxyapatite nanopowder. B. Synthesis of HA/nAg 

composite nanopowder 

Fig. 2 HA solubility curve for different pH values 

Fig. 3 A. TG/DTA curves to determine the conditions of the heat treatment to obtain 

HA powder. B. X-ray diffractograms for samples calcined at 300ºC, 475ºC and 550ºC, 

leading to amorphous HA, partially amorphous HA and crystalline HA, respectively 

Fig. 4 A. Particle size distribution of the HA powder. B. TEM micrograph showing the 

size and morphology of the HA nanoparticles synthesized and detail of the 

crystallographic planes 

Fig. 5 A. XRD graphics for both samples of HA with nAg. B. UV-vis spectrum of the 

HA/nAg samples showing the surface plasmon band of silver nanoparticles in both 

samples 

Fig. 6 A. TEM micrographs of the thermally reduced sample, HA/nAg-Th. B. TEM 

micrographs of the chemically reduced sample, HA/nAg-Ch, and detail of a Ag-

nanoparticle attached to the surface of a HA particle 

Fig. 7 Particle size distribution of silver nanoparticles obtained by both reduction 

methods 

Fig. 8 Logarithm reduction used to characterize the effectiveness of the biocide agent 

for bacteria E. coli, M. luteus and yeast I. orientalis studied at 24 and 48 hours 

Fig. 9A-D TEM micrographs showing the sequence of stages when E. coli is exposed to 

HA/nAg powder 

Fig. 10 Curves corresponding to the surface plasmon resonance of silver in the 

lixiviated liquid of HA/nAg-Ch 
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Table 1. Particle size distribution of silver nanoparticles obtained by different dry processes. 

Sample Dry treatment Size (nm) D90 

HA/nAg-Ch-60 60ºC 9.7±3.8 15.9 

HA/nAg-Ch-150 150ºC 9.9±2.2 16.7 

HA/nAg-Ch-250 250ºC 8.9±3.1 11.1 

HA/nAg-Ch-L Lyophilization 7.0±2.8 10.1 
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Table 2. Silver concentration measured in the lixiviated liquid after the biocide tests. 

 

HA/nAg-Th  HA/nAg-Ch 

Ag concentration (ppm) pH  Ag concentration (ppm) pH 

E. Coli 1.981 6.716  1.184 6.57 

M. Luteous 1.199 7.030  1.342 6.93 

I. Orientalis 0.008 6.733  1.614 6.64 
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