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We describe the dynamics of a qubit interacting with a bosonic mode coupled to a zero-
temperature bath in the deep strong coupling (DSC) regime. We provide an analytical solution
for this open system dynamics in the off-resonance case of the qubit-mode interaction. Collapses
and revivals of parity chain populations and the oscillatory behavior of the mean photon number
are predicted. At the same time, photon number wave packets, propagating back and forth along
parity chains, become incoherently mixed. Finally, we investigate numerically the effect of detuning
on the validity of the analytical solution.

I. INTRODUCTION

The quantum Rabi model [1, 2], describing the in-
teraction of a two-level system and a quantized single
mode beyond the rotating-wave approximation (RWA),
has found an experimental playground with the advent
of novel technologies. On one hand, the development of
solid-state semiconductors [3] and, on the other hand,
the impressive progress on superconducting circuits [4–
7], have produced the largest light-matter coupling ever
observed. In this sense, the ultrastrong coupling (USC)
regime happens when the coupling strength g is compara-
ble to appreciable fractions of the oscillator frequency ω,
0.1 . g/ω . 1. Moreover, it is expected that these
architectures can reach soon the deep strong coupling
(DSC) regime, where g/ω & 1. These regimes are
unattainable for the usual experiments in quantum op-
tics, be in trapped ions [8] or cavity QED setups [9, 10].
In absence of dissipation, the DSC regime predicts the
appearance of a different kind of collapses and revivals in
the qubit level statistics, which are explained as photon
number wave packets propagating back and forth along
two independent parity chains [11]. From this point of
view, it would be of fundamental interest to study these
key features, and possible analytical solutions, in pres-
ence of dissipation [12]. Previous works studied related
issues, but considering cases between the perturbative JC
model with g/ω . 0.1 and the USC regime [13–15].

In this work, we study the DSC regime of the quantum
Rabi model in presence of mode dissipation. In Sec. II,
we present our model and show that a zero-temperature
Markovian bath drives the system to an incoherent mix-
ture of two parity chains of the Hilbert space. In order
to explore the solvability of this novel quantum open sys-
tem, we focus on the case of a slow qubit: ω0 � {ω, g},
where ω0 is the qubit transition frequency. This allows us
to explain the persistence of collapses and revivals of the
parity chain probabilities and the behavior of the mean
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photon number in the presence of dissipation. In Sec. III,
we show the main results of our analytical approach. For
the case of near-resonance, in Sec. IV, we provide a de-
tailed numerical analysis of the asymptotic behavior of
probability amplitudes associated to states belonging to
both parity chains and the photon statistics. Finally, in
Sec. V, we present our concluding remarks.

II. THE ANALYTICAL MODEL

We consider a general system composed of one qubit
coupled to a single bosonic mode, as described by the
quantum Rabi Hamiltonian

Ĥ = ~ωâ†â+
~
2
ω0σ̂z + ~g(σ̂ + σ̂+)(â+ â†), (1)

where σ̂z is a Pauli operator, σ̂ and σ̂† are the lowering
and raising qubit operators, â and â† are the annihilation
and creation mode operators, while |e〉 and |g〉 are the
upper and lower qubit states, correspondingly.

It is well known that the quantum Rabi model in
regimes where the RWA can be applied, that is the
Jaynes-Cummings model [16], is a solvable dynamics.
Recently, there has been a renewed interest in analyti-
cal and numerical approximations of the quantum Rabi
model beyond RWA, that is, in the USC and DSC
regimes [11, 17–26]. Here, we consider dissipative ef-
fects to the previous studied cases. More precisely, we
add a reservoir acting only on the bosonic mode sub-
system, and neglect dissipation and decoherence of the
slow qubit. The dissipative channel will be described
by a thermal bath at zero temperature under the Born-
Markov approximation. This model holds for the slow
qubit approximation and we will prove that this quan-
tum open system still possesses analytical solutions.

The time evolution of the above described system
obeys the following master equation (ME)

˙̂ρ = − i

~
[Ĥ, ρ̂] + L̂f [ρ̂], (2)
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where L̂f [ρ̂] is the standard Liouville superoperator

L̂f [ρ̂] =
κ

2
(2âρ̂â† − â†âρ̂− ρ̂â†â) (3)

and κ is a mode decay rate. We move into an interaction
picture, rewriting Eq. (1) as Ĥ = Ĥ0 + Ĥ1,

Ĥ0 = ~ω0

(
σ̂z
2

+ â†â

)
(4)

Ĥ1 = ~∆â†â+ ~g(σ̂ + σ̂+)(â+ â†), (5)

where we have introduced the detuning parameter ∆ =
ω−ω0, with 0 ≤ ω0 ≤ ω. By means of the unitary trans-
formation Û(t) = exp(iĤ0t/~), we find that the structure

of Eq. (2) holds for the density operator ρ̂I = Û ρ̂Û† with

Ĥ replaced by the interaction Hamiltonian

ĤI = ÛĤ1Û
†

= ~∆â†â+ ~g(e2iω0tσ̂+â† + σ̂+â+ H.c.).
(6)

We consider now the qubit rotated basis, |±〉 =

(|g〉 ± |e〉)/
√

2, and rewrite the total system density
operator ρ̂I(t), obtaining the four operators ρ̂αβ(t) =
〈α|ρ̂I(t)|β〉 (α, β = ±), describing the bosonic mode sub-
system. In this way, we obtain the following set of cou-
pled differential equations

˙̂ρ++ =− i∆[â†t ât, ρ̂++]− ig cos(ω0t)[ât + â†t , ρ̂++]

− g sin(ω0t)[(ât + â†t)ρ̂−+ − ρ̂+−(ât + â†t)] + L̂ρ̂++

˙̂ρ−− =− i∆[â†t ât, ρ̂−−] + ig cos(ω0t)[ât + â†t , ρ̂−−]

+ g sin(ω0t)[(ât + â†t)ρ̂+− − ρ̂−+(ât + â†t)] + L̂ρ̂−−
˙̂ρ+− =− i∆[â†t ât, ρ̂+−]− ig cos(ω0t){ât + â†t , ρ̂+−}

− g sin(ω0t)[(ât + â†t)ρ̂−− + ρ̂++(ât + â†t)] + L̂ρ̂+−
˙̂ρ−+ =− i∆[â†t ât, ρ̂−+] + ig cos(ω0t){ât + â†t , ρ̂−+}

+ g sin(ω0t)[(ât + â†t)ρ̂++ + ρ̂−−(ât + â†t)] + L̂ρ̂−+
(7)

where [, ] and { , } denote the standard commutator and
anti-commutator symbols, while ât ≡ e−iω0tâ.

We will study how collapses and revivals behaves in
presence of dissipative mechanisms. For this reason, in-
stead of studying the asymptotic character of the previ-
ous equation, we will develop an analytical method that
works in the case of the slow qubit limit, ω0 � {g,∆}.
We will consider evolution times under the condition
ω0t � 1, but long enough to permite several collapses
and revivals, ωt > 1. In this case, we can approximate
cos(ω0t) ≈ 1 and sin(ω0t) ≈ 0.

In order to solve Eq. (7), we consider the charac-
teristic function associated to the Wigner function, us-
ing the four continuous and square-integrable functions

χ±±(α, t) ≡ Tr[ρ̂±±(t)D̂(α)], where D̂(α) = eαâ
†−α∗â is

the displacement operator. Here, we present the ana-
lytical solution in the case where the qubit is prepared

in its ground state and the mode in the vacuum state,
ρ̂I(0) = |g〉〈g| ⊗ |0〉〈0|. In this manner, we have

χ±±(α, t) =
1

2
exp
{
− |α|

2

2
∓ β(t)α∗ ± β∗(t)α

}
, (8a)

χ±∓(α, t) =
1

2
F (t)exp

{
− |α|

2

2
∓ β(t)α∗ ∓ β∗(t)α

}
.

(8b)

The corresponding operators ρ̂±,±(t) take the form

ρ̂±±(t) =
1

2
| ± β(t)〉〈±β(t)| (9a)

ρ̂±∓(t) =
1

2

F (t)

e−2|β(t)|2
| ± β(t)〉〈∓β(t)|, (9b)

where the field coherent states amplitude β(t) and the
decoherence function F (t) are defined as

β(t) ≡ ig

z

(
e−zt − 1

)
, (10)

F (t) ≡ e
− 2g2

|z|2 [κt+ 2
g=m(z∗β(t))]

, (11)

with the complex variable z = κ/2 + i∆. Once obtained
the time evolution of the whole system density operator
ρ̂I(t), we derive the quantities of interest such as the
probability of the system to be in one of the states |gn〉
or |en〉, that is

Pg/e,n(t) =
1

2
e−|β(t)|

2 |β(t)|2n
n!

[
1± (−1)nF (t)e2|β(t)|

2
]
,

(12)
where the sign +(−) holds for g(e). In addition, we com-
pute the purity µ(t) = Tr[ρ2I(t)] of the whole system

µ(t) =
1

2

[
1 +

F 2(t)

e−4|β(t)|2

]
. (13)

As regards the qubit and bosonic mode subsystems, we
derive the expressions for the qubit level populations
Pg/e(t) and the photon number distribution Pn(t)

Pg/e(t) =
1

2
[1± F (t)] , (14)

Pn(t) = e−|β(t)|
2 |β(t)|2n

n!
, (15)

where Pn(t) is a Poissonian distribution with a mean pho-
ton number 〈N(t)〉 = |β(t)|2.

Given the nature of the interaction containing both
rotating and counter-rotating terms, the Hilbert space
of the system is split in two parity chains [11], associ-
ated with the eigenvalues p = ±1 of the parity operator

Π̂ ≡ −σ̂z(−1)â
†â, that are unconnected for κ = 0. For in-

stance, the states {|g, 2N〉, |e, 2N+1〉} have parity p = 1,
while the states {|e, 2N〉, |g, 2N + 1〉} possess the oppo-
site parity p = −1, where N is an integer number. The
probabilities that the system is in a state of one of the
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FIG. 1. Effect of the parameter g/ω on probabilities P
(+)
0 (t)

(a), P
(−)
0 (t) (b) bosonic mode mean photon number 〈N(t)〉

(c), and purity µ(t) (d). We consider the off-resonance case
∆/ω ' 1 and a dissipative decay rate κ/ω = 0.01.

two chains are

P (+)
n (t) =

|β(t)|2n
n!

Pg,0(t), (16a)

P (−)
n (t) =

|β(t)|2n
n!

Pe,0(t). (16b)

We remark that in the unitary limit, κ = 0, the decoher-

ence function becomes F (t) = e−2|β(t)|
2

so that we obtain

Pg,0(t) = e−|β(t)|
2

and Pe,0(t) = 0. Hence, starting from
|g, 0〉, the evolved state vector remains in the subspace
corresponding to parity chain p = 1. Actually, starting
from any superposition state of the system, the time evo-
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FIG. 2. Analytic plot of time evolution of P
(+)
n (a) and P

(−)
n

(b) for n = 0 (solid), 1 (dotted), 2 (dashed). (c) behaviour of
the subsystems: mean photon number 〈N(t)〉 (solid), proba-
bility of qubit lower state Pg(t) (dashed). For the parameters
g/ω = 2, ∆/ω ' 1 and κ/ω = 0.01.

lution of P
(±)
n (t) takes place independently in each parity

chain [11]. Here, for κ > 0, we see that Pe,0(t) 6= 0 and
both parity chains are connected by the dissipative mech-
anism. It is straightforward to obtain analogous results
starting from state |e, 0〉, just replacing F (t) by −F (t).

III. ANALYTICAL RESULTS

In this section, we discuss the dynamics in the limit of
large detuning ∆/ω ' 1 (i.e. ω0/ω ' 0) as described by
our analytical model. Let us recall that this model is only
valid for dimensionless time τ = ωt� 1/(1−∆/ω). The
focus of this discussion will be on the peculiar dynamics
of the DSC regime [11], such as collapses, revivals, and
parity chains and how they are modified by the presence
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FIG. 3. Analytic plot of probabilities P
(±)
n (t) for n ≤ 20

sampled at times τl = πl (with l = 0, . . . , 12), with the same
parameters as in Fig. 2.

of dissipation, κ.
Figure 1 shows how the DSC dynamics emerges under

the condition ∆/ω ' 1, as one increases g/ω. The first
signatures are the appearance of collapses and revivals in

the probability P
(+)
0 (t), and a periodic dynamics of the

average photon number 〈N(t)〉, as it was already seen
in Ref. [11]. The novel feature consists on the transfer
of probability from the positive to the negative parity
chain, evidenced in Fig. 1b. This effect is induced by the
presence of the small dissipation, κ = 0.01ω. Another
consequence is the fact that the purity µ(t) decreases by
increasing g/ω and that, in the DSC regime, the system
reaches quite rapidly a maximally mixed state.

In Fig. 2, we show with greater detail the time evo-
lution of the two parity chains, setting g = 2ω. Proba-

bilities P
(+)
n and P

(−)
n exhibit revivals at τ = 2π × Z+,

and there is a progressive transfer of it from the positive
to the negative parity chain. The consequence is that,
at the end, the revivals of both chains exhibit the same
structure and height, and that the qubit ends up with
the same probability in the state |g〉 or |e〉 (cf. Fig. 2c).

In order to better illustrate the role of dissipation in
connecting the two parity chains, we plot in Fig. 3 differ-

ent time shots of the statistics P
(±)
n (t) for large enough

values of n. We notice that, starting from |g, 0〉, the
two chains are connected via the dissipative channel re-
sulting in an incoherent mixture of them, breaking their
independent dynamics stemming from the unitary case.

In our analytical framework, we can compute the
steady state of the system,

ρ̂S =
1

2

[
|βS〉〈βS |⊗|+〉〈+|+|−βS〉〈−βS |⊗|−〉〈−|

]
, (17)

where βS = −ig/z is the steady amplitude of the field
coherent state. The structure of the steady state is note-
worthy, since it is a statistical mixture of two parts, one
that associates |βS〉 to the qubit state |+〉 and the other
connects | − βS〉 to |−〉.

This means that the system relaxes upon the two
states |±,±βS〉, which have the same energy mean value
λρS = ~∆|βS |2 + ~g(βS + β∗S). In Fig. 4, we show

how the first elements of the two parity chains P
(±)
n (t)

(n = 0, 1, 2) and the mean photon number 〈N(t)〉 ap-
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P
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2 (solid), (c) Mean photon number 〈N(t)〉, with g/ω = 2,
∆/ω ' 1, and κ/ω = 0.2.
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FIG. 5. Comparison between the mean photon number
〈N(t)〉 from the analytical solution, in the limit ∆/ω ' 1
(solid), and through MCWF method for ∆/ω = 0.8 (dashed),
in the DSC regime g/ω = 2 and for κ/ω = 0.01.
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proach the steady state for relatively large values of de-

cay rate κ/ω. We remark that P
(±)
0 (t) vanish at long

times, while the other probabilities reach a non-zero con-
stant value, so that the steady state Poissonian photon

statistics Pn(t) = P
(+)
n (t) + P

(−)
n (t) has a mean value

|βS |2 = 4g2/(κ2 + 4∆2), with ∆/ω ' 1.
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FIG. 7. Effect of detuning in the DSC regime g/ω = 2
and κ/ω = 0.01. Plots of 〈N(t)〉: analytical (solid-gray) and
numerical solutions for ∆/ω = 0.75 (dashed), ∆/ω = 0.5
(dotted), ∆/ω = 0.25 (dash-dotted), ∆/ω = 0 (solid-black).

IV. NUMERICAL RESULTS FOR 0 ≤ ∆/ω < 1

The role of this section is to investigate numerically all
regimes of the detuning ∆ using the Monte Carlo wave-
function method [27]. As a first example, we shall dis-
cuss a set of simulations for small values of the detuning
∆/ω = 0.8, for which the analytical solution may still be
valid at short times τ � 5. These are values that may
be achieved for experimental circuit QED setups [5, 6],
selecting a resonator of ω ∼ 6 GHz and ω0 = 1.2 GHz.
The results of the simulation are shown in Fig. 5 where
we plot the Monte Carlo simulation together with the
analytical ansatz. It is evident that both solutions are
very close, with an error < 4% for τ ≤ 9, justifying the
approximations of Sec. II, at least for 0.8 ≤ ∆/ω ≤ 1.

We investigate now the effect of moving towards the
full resonance ∆/ω = 0. The behavior of parity chain

probabilities P
(±)
n (t) is heavily affected by the reduction

of the detuning values ∆/ω. As an example, in Fig. 6,

we show that the probabilities P
(±)
0 (t) are progressively

spoiled, losing the symmetry of the ideal case ∆/ω ' 1

(see Fig. 3a). We outline that the probabilities P
(±)
n (t)

with n > 0 present irregular oscillations that do not van-

ish for long times. Despite the distortions of P
(±)
n (t), we

show in Fig. 7 that the mean photon number 〈N(t)〉 ex-
hibits regular oscillations. The only effect of decreasing
the rate ∆/ω, towards a resonant condition, is to reduce
the amplitude of oscillations and to induce a small shift
in the peak times. In order to quantify this effect, we
estimate the error in each curve at τ = 8.5 with respect
to the analytical solution. The percentage of relative dif-
ferences are 7% (∆/ω = 0.75), 17% (0.5), 29% (0.25) and
38% (0). These features can be explained as an internal
dephasing mechanism due to the qubit free energy [11].

Finally, let us consider the simultaneous effect of differ-
ent decay rates and detunings. Figure 8 shows the results
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FIG. 8. Mean photon number 〈N(t)〉 for different values of
parameter κ/ω: 0.3 (solid), 0.5(dashed), 1(dotted) and for the
coupling parameter g/ω = 2. (a) Numerical results composed
by four curves for each κ/ω value, corresponding, from top to
bottom, to ∆/ω = 0.75, 0.5, 0.25, 0, (b) Analytical solution in
the far off resonant limit ∆/ω ∼= 1.

of the numerical simulation for the mean photon num-
ber. We notice that the effect of a decreasing detuning
becomes almost negligible in the presence of dissipation.
Moreover, the asymptotic value of 〈N(t)〉 agree very well
with the analytical predictions of Sec. II.

V. CONCLUSIONS

We have studied the DSC regime of the quantum
Rabi model with a zero-temperature bath interacting
with the single quantized mode. We have found analyt-
ical solutions for the off-resonant case, describing the
dissipative dynamics that induces incoherent mixtures
of both parity chains. Furthermore, we have presented
a numerical analysis for the near-resonant case where
analytical solutions are not available. Finally, we have
estimated the limits of our analytical solutions as ∆/ω
decreases, among other features.
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and E. Solano, Phys. Rev. Lett. 105, 263603 (2010).

[12] P. Lougovski, F. Casagrande, A. Lulli and E. Solano,
Phys. Rev. A 76, 033802 (2007).

[13] T. Werlang, A. V. Dodonov, E. I. Duzzioni, and C. J.
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