EuFishBioMed (COST Action BM0804): A European Network to Promote the Use of Small Fishes in Biomedical Research

Uwe Strähle,¹ Laure Bally-Cuif,² Robert Kelsh,³ Dimitris Beis,⁴ Marina Mione,⁵ Pertti Panula,⁶ Antonio Figueras,⁷ Yoav Gothilf,⁸ Christian Brösamle,⁹ Robert Geisler,¹ and Gudrun Knedlitschek¹

Abstract

Small fresh water fishes such as the zebrafish (*Danio rerio*) have become important model organisms for biomedical research. They currently represent the best vertebrate embryo models in which it is possible to derive quantitative data on gene expression, signaling events, and cell behavior in real time in the living animal. Relevant phenotypes in fish mutants are similar to those of other vertebrate models and human diseases. They can be analyzed in great detail and much faster than in mammals. In recent years, approximately 2500 genetically distinct fish lines have been generated by European research groups alone. Their potential, including their possible use by industry, is far from being exploited. To promote zebrafish research in Europe, EuFishBioMed was founded and won support by the EU COST programme (http://www.cost.esf.org/). The main objective of EuFishBioMed is to establish a platform of knowledge exchange for research on small fish models with a strong focus on widening its biomedical applications and an integration of European research efforts and resources. EuFishBioMed currently lists more than 300 member laboratories in Europe, offers funding for short-term laboratory visits, organizes and co-sponsors meetings and workshops, and has successfully lobbied for the establishment of a European Zebrafish Resource Centre. To maintain this network in the future, beyond the funding period of the COST Action, we are currently establishing the European Society for Fish Models in Biology and Medicine.

Introduction

S MALL FRESHWATER FISHES such as zebrafish (*Danio rerio*) are increasingly being used as model organisms for biomedical research, offering sequenced genomes and a rich repertoire of genetic, molecular, and cellular manipulation tools.^{1,2} A unique set of properties (small size, numerous offspring, optical transparency of the embryo, amenability to genetic and chemical screens) has made them popular vertebrate animal models.^{2,3} It has become clear that the potential of small fish models far exceeds their traditional usage in the fields of cell biology and developmental genetics. Zebrafish models have been described for a large number of human conditions including, but not limited to, polycystic kidney disease,^{4,5} heart arrhythmias,⁶ congenital heart defects and cardiomyopathies,⁷ and myopathies of the skeletal musculature,⁸ anemias,^{9,10} cholesterol processing,¹¹ Waardenburg syndrome,¹⁰ Hirschsprung Disease,¹² glaucoma,¹³ cancer,¹⁴ neurological and psychiatric disorders,^{15–17} tissue regeneration,¹⁸ congenital and acquired deafness,^{10,19} neural and retinal degeneration,^{20,21} as well as infectious diseases.^{22,23} In some cases, a novel disease gene was discovered first in the zebrafish and only subsequently a human disease was linked to it, such as the iron transporter ferroprotein gene in

¹Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.

²Laboratory of Neurobiology & Development (NED), UPR 3294, CNRS Institute of Neurobiology Alfred Fessard, Gif-sur-Yvette cédex, France.

³Department of Biology and Biochemistry and Centre for Regenerative Medicine, University of Bath, Claverton Down, Bath, United Kingdom.

⁴Biomedical Research Foundation, Academy of Athens, Developmental Biology, Athens, Greece.

⁵IFOM, The Firc Institute of Molecular Oncology, Milan, Italy.

⁶Neuroscience Center and Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki, Finland.

⁷Institute of Marine Research, Spanish National Research Council (CSIC), Vigo, Spain.

⁸Department of Neurobiology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.

⁹wtb - wissenschaftliche texte brösamle, Ismaning, Germany.

hemochromatosis type 4, a disorder in iron metabolism leading to anemia in humans.²⁴ Thus, zebrafish are not only excellent models for deciphering the pathophysiology of human diseases but serve also as effective tools to discover new human disease genes (for example, Ref. 25).

In addition, small fish models are ideal for generating and experimentally validating large data-sets *in vivo*, making them particularly suited to the genome-wide approaches favored by systems biology.²⁶ By capitalizing on their transparency, the small size of the embryos, the ease of introducing markers, and the possibility of achieving optical resolution at cellular and subcellular level, these small fishes provide vertebrate models that allow analysis of development and organ formation at a systems level in living organisms.^{27,28} Such processes can be studied against the disturbances introduced by genetic mutations and chemicals, eventually allowing the integration of data into a virtual model of a vertebrate embryo.

The zebrafish is attracting increasing attention from the pharmaceutical industry as it is highly amenable to whole animal drug screening²⁹ and toxicological studies.^{30–32} First examples have already appeared in the literature where drug candidates were successfully identified by screening for suppression of complex genetic defects (phenotypic rescue) in zebrafish embryos.³³ In Germany, the zebrafish embryo toxicity assay has become a DIN standard for testing the water quality of sewage plants.³⁴ Moreover, molecular studies suggest that the zebrafish embryo may offer a suitable alternative model for systematic testing of chemicals under the European REACH initiative.³⁵

The rising interest in this field is encouraging an increasing number of researchers within the biomedical community to consider using small fish. However, the highly fragmented research endeavor and a limited awareness of the specific research topics pursued by each European laboratory, leaves a lot to be improved with respect to concerted scientific approaches and strategies. Moreover, the full potential of zebrafish has only started to be recognized in the industrial and regulatory sector. To overcome this, we have established the European Network on Fish Biomedical Models (EuFishBioMed) and successfully applied for sponsoring by the EU COST programme (http://www.cost.eu/ domains_actions).

EuFishBioMed, the European Network of Zebrafish Researchers

The necessity for a European network of zebrafish researchers was recognized in discussions held at a break-out session of the 5th European Zebrafish Meeting in Amsterdam, in 2007. In particular, the complex funding structure in Europe with both national and centralized European resources demanded a visible Europe-wide organization that could lobby for funding opportunities and infrastructure for zebrafish research. From the beginning, it was clear that this network should not only include researchers working with zebrafish but also laboratories using other small fish species in their biomedically oriented research, such as medaka and swordtail. The European COST programme (http://www .cost.eu/domains_actions) with its aim of fostering scientific collaboration across Europe appeared most appropriate for funding of such an initiative. By winning support through a COST Action for the years 2009 to 2013, the European zebrafish community was endowed with the resources to firmly establish the networking infrastructure of EuFishBioMed.

One of the objectives of EuFishBioMed is to promote research on and use of small fish as models for human diseases by providing a communication platform. To this end, a website was established at the Institute of Toxicology and Genetics (ITG) of the Karlsruhe Institute of Technology (KIT). The database of EuFishBioMed lists 353 principal investigators from 23 European countries as network members. Interested parties from outside of Europe are welcome too: in particular, colleagues from Australia and New Zealand eagerly subscribed to the information network, with both countries being partners in the COST programme. In addition, we count members from India, Chile, Singapore, USA, and Japan.

Lobby work to promote Europe-wide standardized protocols for fish husbandry, as well as regulatory guidelines concerning experimental work with these fish models (Ref. 31 and http://eufishbiomed.kit.edu), is an on-going activity of EuFishBioMed. This is particularly important in view of the differences in national and regional regulatory guidelines in Europe. For example, even within Germany, different regulatory opinions exist as to when a zebrafish is regarded as an animal and when experimentation should thus be subject to approval by the authorities. EuFishBioMed has gained an

TABLE 1.	Workshops	AND	Meetings	Supported	BY	EuFishBioMed	
----------	-----------	-----	----------	-----------	----	--------------	--

Title	Location	Date
6th European Zebrafish Genetics and Development Meeting	Rome, Italy	July 15–19, 2009
Disease Modeling in Zebrafish: Cancer and Immune Responses	Spoleto, Italy	July 20–22, 2009
1st European Zebrafish PI Meeting	Padua, Italy	March 18–22, 2010
In Vitro Fertilization and Cryopreservation of Sperm in Medaka	Karlsruhe, Germany	March 29–31, 2010
Fish	-	
The Zebrafish Embryo Model in Toxicology and Teratology	Karlsruhe, Germany	September 2-3, 2010
Zebrafish As a Neurophysiological and Neurobehavioural	London, United Kingdom	September 8–9, 2010
Model		-
BioImage Analysis Workshop	Karlsruhe, Germany	October 1, 2010
Cutting Edge Technologies in Biomedical Research	Karlsruhe, Germany	May 4–6, 2011
7th European Zebrafish Development and Genetics Meeting	Edinburgh, United Kingdom	July 5–9, 2011
Blood, Immunity, Cancer and Endothelium Workshop	Edinburgh, United Kingdom	July 9–11, 2011
"Zebrafish Disease Models (ZDM4)" Zebrafish: An Animal Model in Biomedical Research	Utrecht, The Netherlands	November 14-15, 2011
Zebransh. An Animai wouer in Diometrical Research	Ottecht, me Nethenands	November 14–15, 2011

EuFishBioMed has been organizing workshops and meetings (Table 1) to bring together leading experts in the field and to allow young researchers and investigators to get insight into research with fish models. Topics covered by these meetings have ranged from sperm freezing, neurobiology, behavioral analysis, and disease models, to automation and digital image processing. To foster strategic discussions, we have established a European Zebrafish Principal Investigator Meeting (EZPM), an international meeting for principal investigators from all over the world.³⁶ This meeting takes place every 2 years, alternating with the Strategic Conference of Zebrafish Investigators in Asilomar, CA. An additional important objective is the outreach to the wider biomedical research community, to industry and regulators to facilitate translation of zebrafish research into medical and industrial applications. To this end, workshops on disease models or specific applications, such as toxicology, have been held with participants from interested parties outside the zebrafish field (Table 1).

Lectures are well suited for information exchange but fail to teach manual skills. One of the main aims of Eu-FishBioMed was to enhance the transfer of technology between zebrafish research groups and make experimental protocols available to groups new to fish research. Eu-FishBioMed therefore also co-sponsors training schools and funds short term scientific missions (i.e., visits of graduate students and postdocs) to laboratories in Europe to learn zebrafish techniques with relevance for the research in the home laboratory. This offer is specifically available for young researchers. So far, the COST Action EuFishBioMed has funded 27 travel grants. This instrument has turned out to be a most effective motor for research collaborations across Europe and at the same time efficiently promotes the scientific training of early stage researchers.

Establishment of a European Zebrafish Resource Center

An additional important aim of EuFishBioMed is to lobby for national and European funding and to develop the necessary infrastructure for the use of fish models in biomedical research in Europe. Several white papers were written and submitted to national as well as European funding bodies (http://eufishbiomed.kit.edu/eufishbiomed/eufish_down loads.htm). These papers highlight research areas to which zebrafish can specifically contribute as a model.

A specific deficit in Europe has been the lack of a centralized infrastructure to maintain and distribute zebrafish lines and mutants. In recent years, approximately 2500 mutant and transgenic lines were generated by European research groups, mostly in large mutagenesis screens organized as part of the ZF-MODELS project (http://zf-health.org/zfmodels/ information/ contact.html). The potential of these fish lines, including their possible use by the biotechnology industry, is far from being exploited. Most of these lines are still kept in the labs in which they were created. The only option to assure their long-term maintenance is to transfer them to the Zebrafish International Resource Center (ZIRC) in the United States. Due to the difficulty of international shipping, future access of European researchers to these lines will be severely impaired. To prevent this loss for European research, EuFishBioMed lobbied successfully for support to build a European Zebrafish Resource Center (EZRC). This unique European infrastructure, located at the Karlsruhe Institute of Technology, Karlsruhe, Germany, has recently become operational and will closely collaborate with ZIRC. In addition to maintaining and distributing zebrafish stocks, it will provide access to critical technology platforms (automated screening, high-throughput imaging, data storage, mapping and expression profiling). Thus, EZRC and ZIRC will complement each other in their services to the international community.

The Future: The European Society for Fish Models in Biology and Medicine

Although the administrative burden associated with a COST Action is enormous in relation to the allocated funds, there is general agreement among the scientists concerned that the EuFishBioMed COST Action (BM0804) has had a major impact on European research in this field. The establishment of a well-connected European zebrafish community with a common communication platform and resource center has been critical to meet the specific needs of zebrafish researchers and their institutions. EuFishBioMed has become a platform for the realization of new research projects dedicated to more specific clinical, industrial, or regulatory needs. Most importantly, it has provided the tools to lobby efficiently for support without unnecessarily duplicating efforts in the complex European funding and regulatory landscape.

EU COST Action funding will cease in 2013, raising the question of how to continue afterwards. To this end, at the occasion of the 2011 European Zebrafish Meeting in Edinburgh, the EuFishBioMed management committee made a decision to found a charitable association. This association will be named the European Society for Fish Models in Biology and Medicine. It will not only maintain the acronym EuFishBioMed but hopefully also continue and expand the key services currently offered by EuFishBioMed, including its website, database, and the organization and sponsoring of workshops and meetings.

Acknowledgments

We thank Veronika Leonhardt for excellent secretarial assistance, Dr. Wolf Thies for building and maintaining the EuFishBioMed website even after his retirement, and the Karlsruhe Institute of Technology for continuous support. Our network is financed by the EU COST Action Eu-FishBioMed (BM 0804) from 2009 to 2013. The European Zebrafish Resource Center is partially funded by the Klaus Tschira Foundation (Project No. 00.170.2010) and KIT. US, RG, and LB-C are supported by the European Union's 7th Framework Programme (EC Grant Agreement HEALTH-F4-2010-242048, ZF-HEALTH).

Disclosure Statement

No competing financial interests exist.

References

1. Beis D, Stainier DY. In vivo cell biology: Following the zebrafish trend. Trends Cell Biol 2006;16:105–112.

- 2. Lawson ND, Wolfe SA. Forward and reverse genetic approaches for the analysis of vertebrate development in the zebrafish. Dev Cell 2011;21:48–64.
- 3. Zon LI, Peterson R. The new age of chemical screening in zebrafish. Zebrafish 2010;7:1.
- Cao Y, Semanchik N, Lee SH, Somlo S, Barbano PE, Coifman R, et al. Chemical modifier screen identifies HDAC inhibitors as suppressors of PKD models. Proc Natl Acad Sci USA 2009;106:21819–21824.
- Sullivan-Brown J, Schottenfeld J, Okabe N, Hostetter CL, Serluca FC, Thiberge SY, et al. Zebrafish mutations affecting cilia motility share similar cystic phenotypes and suggest a mechanism of cyst formation that differs from pkd2 morphants. Dev Biol 2008;314:261–275.
- Peal DS, Mills RW, Lynch SN, Mosley JM, Lim E, Ellinor PT, et al. Novel chemical suppressors of long QT syndrome identified by an *in vivo* functional screen. Circulation 2011;123:23–30.
- Bakkers J. Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovasc Res 2011;91:279–288.
- 8. Ingham PW. The power of the zebrafish for disease analysis. Hum Mol Genet 2009;18:R107–112.
- 9. Amatruda JF, Zon LI. Dissecting hematopoiesis and disease using the zebrafish. Dev Biol 1999;216:1–15.
- Dutton K, Abbas L, Spencer J, Brannon C, Mowbray C, Nikaido M, et al. A zebrafish model for Waardenburg syndrome type IV reveals diverse roles for Sox10 in the otic vesicle. Dis Model Mech 2009;2:68–83.
- Fang L, Green SR, Baek JS, Lee SH, Ellett F, Deer E, et al. *In vivo* visualization and attenuation of oxidized lipid accumulation in hypercholesterolemic zebrafish. J Clin Invest 2011;121:4861–4869.
- Dutton KA, Pauliny A, Lopes SS, Elworthy S, Carney TJ, Rauch J, et al. Zebrafish colourless encodes sox10 and specifies non-ectomesenchymal neural crest fates. Development 2001;128:4113–4125.
- Bibliowicz J, Tittle RK, Gross JM. Toward a better understanding of human eye disease insights from the zebrafish, *Danio rerio*. Prog Mol Biol Transl Sci 2011;100:287–330.
- Liu S, Leach SD. Zebrafish models for cancer. Annu Rev Pathol 2011;6:71–93.
- Kabashi E, Brustein E, Champagne N, Drapeau P. Zebrafish models for the functional genomics of neurogenetic disorders. Biochim Biophys Acta 2011;1812:335–345.
- Brennan CH. Zebrafish behavioural assays of translational relevance for the study of psychiatric disease. Rev Neurosci 2011;22:37–48.
- Panula P, Chen YC, Priyadarshini M, Kudo H, Semenova S, Sundvik M, et al. The comparative neuroanatomy and neurochemistry of zebrafish CNS systems of relevance to human neuropsychiatric diseases. Neurobiol Dis 2010;40:46–57.
- Poss KD. Getting to the heart of regeneration in zebrafish. Semin Cell Dev Biol. 2007;18:36–45.
- Chiu LL, Cunningham LL, Raible DW, Rubel EW, Ou HC. Using the zebrafish lateral line to screen for ototoxicity. J Assoc Res Otolaryngol 2008;9:178–190.
- Bandmann O, Burton EA. Genetic zebrafish models of neurodegenerative diseases. Neurobiol Dis 2010;40:58–65.
- Brockerhoff SE, Fadool JM. Genetics of photoreceptor degeneration and regeneration in zebrafish. Cell Mol Life Sci 2011;68:651–659.
- Meijer AH, Spaink HP. Host-pathogen interactions made transparent with the zebrafish model. Curr Drug Targets 2011;12:1000–1017.

- 23. Lieschke GJ, Trede NS. Fish immunology. Curr Biol 2009;19:R678–682.
- 24. De Domenico I, Vaughn MB, Yoon D, Kushner JP, Ward DM, Kaplan J. Zebrafish as a model for defining the functional impact of mammalian ferroportin mutations. Blood 2007;110:3780–3783.
- 25. Bloch-Zupan A, Jamet X, Etard C, Laugel V, Muller J, Geoffroy V, et al. Homozygosity mapping and candidate prioritization identify mutations, missed by whole-exome sequencing, in SMOC2, causing major dental developmental defects. Am J Hum Genet 2011;89:773–781.
- Ramialison M, Reinhardt R, Henrich T, Wittbrodt B, Kellner T, Lowy CM, et al. Cis-regulatory properties of medaka synexpression groups. Development 2010;139:917–928.
- Keller PJ, Schmidt AD, Santella A, Khairy K, Bao Z, Wittbrodt J, et al. Fast, high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy. Nat Methods 2010;7:637–642.
- Olivier N, Luengo-Oroz MA, Duloquin L, Faure E, Savy T, Veilleux I, et al. Cell lineage reconstruction of early zebrafish embryos using label-free nonlinear microscopy. Science 2010;329:967–971.
- 29. Zon LI, Peterson RT. *In vivo* drug discovery in the zebrafish. Nat Rev Drug Discov 2005;4:35–44.
- Strahle U, Grabher C. The zebrafish embryo as a model for assessing offtarget drug effects. Dis Model Mech 2010; 3:689–692.
- 31. Strahle U, Scholz S, Geisler R, Greiner P, Hollert H, Rastegar S, et al. Zebrafish embryos as an alternative to animal experiments. A commentary on the definition of the onset of protected life stages in animal welfare regulations. Reprod Toxicol 2012;33:128–132.
- Yang L, Ho NY, Alshut R, Legradi J, Weiss C, Reischl M, et al. Zebrafish embryos as models for embryotoxic and teratological effects of chemicals. Reprod Toxicol 2009; 28:245–253.
- Peterson RT, Shaw SY, Peterson TA, Milan DJ, Zhong TP, Schreiber SL, et al. Chemical suppression of a genetic mutation in a zebrafish model of aortic coarctation. Nat Biotechnol 2004;22:595–599.
- Braunbeck T, Boettcher M, Hollert H, Kosmehl T, Lammer E, Leist E, et al. Towards an alternative for the acute fish LC(50) test in chemical assessment: The fish embryo toxicity test goes multi-species. An update. ALTEX 2005;22: 87–102.
- 35. Lammer E, Carr GJ, Wendler K, Rawlings JM, Belanger SE, Braunbeck T. Is the fish embryo toxicity test (FET) with the zebrafish (*Danio rerio*) a potential alternative for the fish acute toxicity test? Comp Biochem Physiol C Toxicol Pharmacol 2009;149:196–209.
- Brennan C, Dosch R, Haramis AP, Luckenbach T, Martinez-Morales JR, Moro E, et al. Report of the European Zebrafish Principal Investigator Meeting in Padua, Italy, March 18–22, 2010. Zebrafish 2010;7:305–310.

Address correspondence to: Uwe Strähle, Ph.D. Institute of Toxicology and Genetics Karlsruhe Institute of Technology Hermannvon-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany

93

E-mail: uwe.straehle@kit.edu