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Abstract 19 

Defoliation by herbivores may alter the source:sink balance of trees leading to transient decreases in 20 

carbon (C) stores. When C stores are replenished concurrently with re-growth both processes may 21 

compete, store formation proceeding at the expenses of growth. However, the interactions between both 22 

processes are not fully understood. We investigated the effects of defoliation by the pine processionary 23 

moth (PPM, Thaumetopoea pityocampa Dennis and Schiff.) on the non-structural carbohydrate (NSC) 24 

and nitrogen (N) stores and the growth of Pinus nigra Arnold trees. Short-term effects were evaluated 25 

immediately after a PPM outbreak and at the end of the first growing season in trees suffering a range of 26 

defoliation damage. Long-term effects were explored by a 17-year-long PPM defoliation experiment, 27 

with eleven years of repeated defoliation treatments followed by six years of recovery. Defoliation by 28 

PPM was followed by transient NSC decreases, but trees were able to exceed initial NSC pools and 29 

compensate growth in just one growing season. Such recovery was linked to increased foliage N. 30 

Repeated severe defoliations decreased growth and survival of trees in the long-term, but trees increased 31 

starch allocation to stems. Defoliation led to an accumulation of C storage compounds in  P. nigra trees 32 

irrespective of their ability to re-grow. In trees included in the short-term experiment, the accumulation of 33 

stores proceeded concurrently with re-growth. However, the repeated severe defoliations included in our 34 

long-term experiment impaired the growth of trees, surplus C being accumulated as stores. These results 35 

indicate that, growth declines in pines defoliated by PPM are not due to C (source) limitation but may 36 

respond to reduced sink strength of growing meristems due to defoliation and, thus, a decrease in C 37 

allocation to growth.  38 

 39 

Keywords: Pinus nigra, Thaumetopoea pityocampa, insect herbivory, non-structural carbohydrate, 40 

nitrogen, storage allocation. 41 
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Introduction 43 

Defoliation by herbivores reduces canopy leaf area causing a decrease in the net carbon (C) gain of trees 44 

by current photosynthesis and altering the balance between C sinks and sources (Trumble et al., 1993). 45 

This may lead to changes in C allocation patterns, C demands of growing sinks being supplied temporally 46 

by C “stores” (Kozlowski 1992; Pinkard et al. 1998; Quentin et al. 2011), namely non-structural 47 

carbohydrates (NSC) and lipids, which can be mobilized in the future to support growth or other plant 48 

functions (Chapin et al. 1990). This broad definition of stores includes accumulation, reserve formation 49 

and recycling (Chapin et al. 1990).  50 

Depending on the severity, frequency and timing of damage, C stores may be decreased or even 51 

depleted, and the growth of trees may become C source (photosynthetic) limited (Trumble et al. 1993). 52 

This situation seems to be more dramatic in evergreen conifer trees, which store most of their C and 53 

nitrogen (N) in the old foliage and hence may lose most of their C and N stores with defoliation (Li et al. 54 

2002; Millard et al. 2001). Since the carboxylating enzyme Rubisco is one of the most important N 55 

storage proteins in plants (Millard et al. 2007, 2010), the decrease in N stores after defoliation may also 56 

impair the C-uptake ability of evergreen conifers after damage.  57 

Multiple studies have shown that C stores of evergreen trees decrease soon after defoliation 58 

(Ericsson et al. 1980; Li et al. 2002; Webb and Karchesy 1977). However, trees are able to compensate to 59 

some degree for loss of foliage by changing allocation patterns favouring foliage production, increasing 60 

the photosynthetic rate of surviving leaves and inducing changes in leaf morphology (Heichel and Turner 61 

1976; Pinkard and Beadle 1998; Vanderklein and Reich 1999). Consequently, light defoliations do not 62 

normally cause a decrease in NSC pools (Kolb et al. 1992; Tschaplinski and Blake 1994; Van der Heyden 63 

and Stock 1995) and the few studies that have followed the evolution of NSC pools after moderate or 64 

severe defoliations indicate C (source) limitation is only transient and of short duration (Palacio et al. 65 

2008, 2011). In evergreen conifers, trees seem to be able to replenish their initial NSC pools after severe 66 

defoliations rather soon (Li et al. 2002; Roitto et al. 2003), although long-term studies assessing their 67 

recovery are lacking.  68 

The ability of plants to increase C gain ability after defoliation has been suggested as a 69 

mechanism to support re-growth and, ultimately, tree tolerance to defoliation (Eyles et al. 2009). 70 

However, the observation that NSC pools are replenished concurrently with re-growth, i.e. throughout the 71 

course of a growing season (Li et al. 2002; Palacio et al. 2008, 2011), poses the question as to what point 72 
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both processes interfere. According to the cost-benefit theory for plant storage (Chapin et al. 1990), the 73 

replenishment of C stores after defoliation should compete with growth, if true reserve formation is 74 

involved. Implicit in this idea is the assumption that plant growth is limited by C (source) availability and 75 

that C allocation to storage can be regarded as a cause for decreased plant growth. Alternatively, C store 76 

accumulation would proceed when acquisition exceeds demands (Chapin et al. 1990), once growth has 77 

been impaired by defoliation. Identifying how growth recovery and C store replenishment interact is 78 

crucial to understanding plant responses to disturbance and stress. However, to our knowledge, no 79 

previous studies have directly assessed the relationship between both processes in defoliated trees.  80 

The pine processionary moth (PPM), Thaumetopoea pityocampa, (Den. & Schiff.) is one of the 81 

most severe insect pests affecting Mediterranean evergreen conifers such as Pinus and Cedrus species 82 

(Masutti and Battisti 1990). PPM caterpillars can consume needles of any age during autumn and winter. 83 

However, they feed preferentially on the old needles of trees, and defoliations are most intense during 84 

winter when larvae are in the fourth and fifth instar (Démolin 1969). PPM larvae do not damage the buds, 85 

which burst in spring (Guyon 1986). When larvae are fully developed, they abandon the tree, marching in 86 

lines (hence their name) until they burrow in the ground where they turn into a chrysalis and then a moth, 87 

after a period that can range from a few months to several years (Battisti 1988). Such variability 88 

determines the population dynamics of this species, which, like many other foliage feeding insects shows 89 

periodical outbreaks, with an average periodicity of 6 years (Battisti 1988), although the cycle is not 90 

regular and it can exhibit sharp variations (Geri and Miller 1985). Defoliation by PPM has been shown to 91 

decrease the growth and the reproductive abilities of pine species and may threat the survival of drought-92 

stressed trees (Hódar et al. 2003; Kanat et al. 2005). C (source) limitation has been suggested as a cause 93 

of such growth declines (Hódar et al. 2003), although no studies have evaluated the impact of PPM 94 

damage on pine C stores.  95 

The aim of this study was to evaluate the impact of PPM on the NSC and N stores of planted 96 

Pinus nigra Arnold trees and their ability to replenish such stores in the short- (1 year) and the long-term 97 

(i.e. six years, the time frame of an average PPM outbreak). We use mass-based concentrations of NSC 98 

(namely soluble sugars and starch) as estimators of store formation and use (Chapin et al. 1990). We are, 99 

however, aware that part of the NSC pools of plants may actually be sequestered and hence not readily 100 

available for plant growth (Millard and Grelet, 2010). Consequently, C stores may be somewhat 101 

overestimated in our analysis. We consider just NSC since, although lipids are important C storage 102 
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compounds for some conifers, NSC account for most of mobile C pools in pine (Li et al 2002). We 103 

hypothesized that: i) Defoliation by the PPM will decrease NSC concentrations of trees causing a 104 

transient C-limitation; ii) C stores will be soon replenished so that the initial C limitation will be 105 

overcome in the course of a growing season; iii) Within the average time-frame of PPM outbreaks (six-106 

year periodicity), C stores of trees will be fully recovered by the end of a cycle. Also, we specifically 107 

assessed the relationship between initial NSC stores and growth on the recovery of NSC reserves of P. 108 

nigra trees after PPM outbreaks by using structural equation models (SEM). Since we expected trees not 109 

to be limited by C (source) availability, our hypothesis was that the replenishment of carbohydrate stores 110 

would not compete with the ability of trees to compensate growth after defoliation. 111 

 112 

Materials and methods 113 

Species and study site 114 

Pinus nigra subsp. nigra Arn. trees were sampled in a plantation located near Mora de Rubielos, Teruel, 115 

eastern Spain (40º 12’ N, 0º 43’ W, 1150 m s.n.m.). The trees were planted between 1968 and 1971 and 116 

form a relatively open stand. Average diameter at breast height (DBH, measured at 1.3 m) and total tree 117 

height were 8.0 ± 0.4 cm and 4.3 ± 0.1 m, respectively, at the beginning of the study (1992). The studied 118 

P. nigra trees usually bear up to 3 to 4-year old needles. Climate in this area is Mediterranean with a 119 

pronounced summer drought. The mean annual temperature in the study area is 12 ºC and the total annual 120 

rainfall is 436 mm based on monthly climatic data from the nearby “Mora de Rubielos” climatic station, 121 

located ca. 6 km from the sampling site (40º 15’ N, 0º 45’ W, 1040 m, period 1992-2010). During the 122 

study period, the precipitation recorded from April to June (mean = 144 mm) was low (49-117 mm) in 123 

1993, 1994, 2001 and 2005. 124 

The natural vegetation is dominated by Quercus ilex L. subsp. ballota (Desf.) Samp., Quercus 125 

coccifera L. and Juniperus species. The soils are basic, nutrient-poor and developed on clays. Based on 126 

historical records of PPM incidence in the area performed since the 1970s by the Spain and Aragón Forest 127 

Services, no previous severe defoliation had affected the studied stand. A more detailed description of the 128 

study site can be found in Hernández et al. (2005). 129 

 130 

Experimental design 131 
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We combined observations after a natural PPM outbreak occurring in winter 2009-2010, with a 17-year-132 

long defoliation experiment conducted between 1992 and 2009, to assess the short- and long-term effects, 133 

respectively, of PPM defoliations on the C stores and growth of trees and their subsequent recovery. 134 

Short-term effects inform us about the mechanisms behind the recovery of trees while long-term data 135 

illustrate the expected response of trees in the longer term under extreme defoliation scenarios. 136 

 137 

SHORT-TERM EFFECTS: NATURAL PPM OUTBREAK IN WINTER 2009-2010. 138 

In winter 2009-2010 a natural PPM outbreak affected the studied stand, leading to severe defoliation 139 

(over 80% of the whole canopy) of some individuals. In April 2011, we randomly selected trees within 140 

the stand not included in other defoliation experiments and that showed a wide range of crown defoliation 141 

and related PPM incidence. We visually assessed the degree of needle loss (defoliation) of each sampled 142 

tree by comparing them with five randomly selected reference trees showing no damage. These trees were 143 

used as reference “control” trees to correct for observer bias in estimates of defoliation. Since percentage 144 

estimates of crown defoliation vary among observers, all defoliation estimates were made by the same 145 

person (JJC). The mean diameter of sampled trees measured at 1.3 m was 16.97 ± 0.32 cm (mean ± SE), 146 

whereas the mean age, estimated at 1.3 m by counting rings in radial cores, was 36 ± 1 years. The mean 147 

distance between sampled trees ranged between 5 and 10 m.  148 

 149 

LONG-TERM EFFECTS: DEFOLIATION EXPERIMENT 150 

In 1992, we randomly selected 20 trees within the study stand and allocated them to two different 151 

defoliation treatments: 100% defoliation and control (undefoliated). Although frequent complete 152 

defoliations by PPM are rare in nature, we aimed at simulating extreme defoliation scenarios to detect 153 

mid- to long-term responses in growth to severe needle loss and to discern the time required by trees to 154 

recover growth levels similar to those observed before defoliations started. All trees were tagged and their 155 

height and DBH measured with tapes and ladders to account for initial (i.e. not due to treatments) tree 156 

variability in size. Treatments were applied for 11 years, between 1993 and 2003, by transposing PPM 157 

nests to trees included in the “defoliation” treatment. Defoliation damage was checked regularly 158 

throughout autumn and winter. If larvae hatched from transplanted nests were not enough to cause a 159 

complete defoliation of trees, more nests were transplanted from nearby affected trees. If still, canopy 160 

defoliation was not complete, needles of undefoliated branches were gradually clipped with scissors, 161 
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avoiding clipping complete branches and buds were left intact. This procedure aimed at achieving gradual 162 

but complete (and hence comparable) canopy defoliation, mimicking natural (yet extremely severe) PPM 163 

outbreaks. 164 

Treatments were applied in autumn and winter for two consecutive years followed by a year of 165 

recovery. Consequently, defoliations were applied in 1993 – 1994, 1996 – 1997, 1999 – 2000 and 2002 – 166 

2003, and trees were released from defoliation in years 1995, 1998 and 2001. From 2004 onwards, trees 167 

were left to recover until November 2009 (6 years later), when they were felled and harvested for 168 

analysis. Three of the initial 10 trees included in the defoliation treatment died during the experiment and, 169 

consequently, our sample size was reduced to n = 7 for defoliated trees.  170 

 171 

Growth measurements 172 

Short-term effects of PPM on growth were assessed by measuring the needle production, branch length 173 

and radial growth (earlywood, latewood and total current-year wood ring width) of trees in September 174 

2011 (i.e. one growing season after the PPM attack). Primary growth was estimated by randomly 175 

collecting three current-year branches from the upper third, southern-oriented and light-exposed side of 176 

the crowns of each tree. All sampled branches were healthy and had grown in 2011 and thus contained 177 

needles formed in that year. We measured the length of the shoot formed in 2011 (i.e. lateral branch 178 

growth) and averaged the individual branch values per tree. Then, we measured the average needle 179 

biomass production in 2011 of each tree by drying (in the oven at 60ºC for 72 hours) and weighing all the 180 

needles formed in 2011 of the different branches harvested.  181 

Secondary growth was measured in two radial cores per tree, taken at 1.3 m (breast height) using 182 

a Pressler increment borer. Wood samples were carefully cut and visually cross-dated to measure the 183 

width of the 2011 tree-ring. Once dated, we measured the earlywood and latewood widths to the nearest 184 

0.01 mm using a binocular scope and a LINTAB measuring device (Rinntech, Heidelberg, Germany). 185 

Total tree-ring width was calculated as the sum of the earlywood and latewood widths. Values of the two 186 

radii were averaged to obtain annual estimates of radial growth per tree.  187 

The growth of trees included in the long-term experiment was monitored annually by measuring 188 

the height and DBH of each tree in November when both types of growth have been completed. 189 

Secondary growth was measured as in the trees included in the short term experiment, by collecting two 190 
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cores per tree at 1.3 m. Wood cores were subsequently sanded and visually cross-dated, and the accuracy 191 

of visual cross-dating checked with the program COFECHA (Holmes 1983).  192 

 193 

Plant harvest 194 

Only needles and main stem wood were considered in the analyses. These fractions (particularly needles) 195 

account for the largest proportion of total NSC pools in pine trees and, consequently, are most affected by 196 

defoliations (Li et al. 2002). For the short-term experiment, needle and stem wood samples were obtained 197 

from marked trees in April 2011, prior to bud burst, and September 2011, at the end of the growing 198 

season, when trees had completed both their primary and radial growth. All samples were collected 199 

between 10:00 and 13:00 h to avoid diurnal variability in carbohydrate concentrations. Current-year 200 

needles were collected from three current-year branches from the upper third, southern-oriented and light-201 

exposed side of the crowns of each tree. In September 2011, these were the same branches used for 202 

primary growth measurements (see above). Stem wood samples were obtained from two radial cores per 203 

tree, taken at 1.3 m using a Pressler increment borer. After collection in the field, needle and wood 204 

samples were taken to the laboratory in a portable cooler. Needles were dried in the oven at 60ºC for 72 205 

hours. Portions of current-year tree-rings were separated from each core using a razor blade. Wood 206 

samples were subsequently frozen and stored at -20 ºC until freeze-dried. All dried samples were 207 

weighted and milled to a fine powder in a ball mill (Retsch Mixer MM301, Leeds, UK) prior to chemical 208 

analyses. 209 

Plant samples for the long-term experiment were collected from the trees felled at the end of the 210 

experiment in November 2009, when primary and secondary growth had terminated and trees were 211 

dormant. From each tree, we collected two slices of the stem at 1.3m height plus needle samples of the 212 

youngest 4 cohorts from sun-exposed top branches. All samples were collected between 10:00 and 13:00 213 

h, kept in a cooler until transported to the lab and then frozen at -20 ºC until processing. Since trees were 214 

relatively young, most of the stem wood was sapwood. Samples of stem sapwood were hence collected 215 

from different positions within each slice and divided in two sections for chemical analyses: an outer 216 

section, including the youngest rings formed between 2004 and 2009, and an inner section with the oldest 217 

rings (formed between 1996 and 2003). All samples were freeze-dried, weighted and milled to a fine 218 

powder in a ball mill (Retsch Mixer MM301, Leeds, UK) prior to chemical analyses. 219 

 220 
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Chemical analyses 221 

Total C and N mass-based concentrations were analyzed with an elemental analyzer (Elementar 222 

VarioMAX N/CM, Hanau, Germany). Soluble sugars (SS) were extracted with 80% (v/v) ethanol and 223 

their concentration determined colorimetrically, using the phenol-sulphuric method of Dubois et al. 224 

(1956) as modified by Buysse and Merckx (1993). Starch and complex sugars remaining in the 225 

undissolved pellet after ethanol extractions were enzymatically reduced to glucose and analyzed as 226 

described in Palacio et al. (2007). Non-structural carbohydrates measured after ethanol extraction are 227 

referred to as soluble sugars and carbohydrates measured after enzymatic digestion are referred to as 228 

starch. Both are expressed in glucose equivalents. The sum of SS and starch is referred to as total non-229 

structural carbohydrates (NSC). NSC pools of current-year needles included in the short-term experiment 230 

and collected in September 2011 were calculated as the product between the average current-year needle 231 

biomass per branch and the NSC concentrations of current-year needles. 232 

 233 

Statistical analyses 234 

Short-term effects of PPM defoliation on the SS, starch, NSC and N concentrations and the C:N ratio of 235 

needles and sapwood of P. nigra trees in April and September 2011 and on the starch, NSC and N pools 236 

of needles in September 2011 were analyzed by univariate General Linear Models (GLMs, Least Squares 237 

fit) with “defoliation” as a fixed factor and the “DBH of the tree in April” as a covariate to account for 238 

tree individual variability in size. The same GLM was used to evaluate the short-term effects of PPM 239 

defoliation on the growth of trees, i.e. current-year needle biomass per branch, lateral branch length, and 240 

earlywood (EW), latewood (LW) and total current-year wood ring width as measured in September 2011 241 

in the same trees. 242 

Long-term effects of defoliation by PPM on the SS, starch, NSC and N concentrations and the 243 

C:N ratio of needles and sapwood of P. nigra trees were analyzed by GLMs with “defoliation treatment” 244 

(defoliated / control) and “cohort” as fixed factors and the “DBH of trees in 1992”, the year prior to the 245 

first application of treatments, as a covariate. Four different cohorts of needles were considered, while in 246 

stems, sapwood was divided in the two 1996-2003 and 2004-2009 segments. Long-term defoliation 247 

effects on the growth of trees were evaluated by GLMs with “defoliation treatment” as a fixed factor and 248 

the “DBH of trees in 1992” plus the “height of trees in 1992” as covariates. Response variables were the 249 

DBH, height increment and total current-year wood ring width of trees on the first year after the 250 
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application of treatments (1993), the last year of the application of treatments (2003), the year of harvest 251 

(2009), and the average DBH, height increments and annual wood ring width values for the period of 252 

defoliations (1993-2003) and recovery (2003-2009). When variables were not normally distributed, they 253 

were angularly transformed (arctg(x0.5)) to meet the requirements of GLMs. All GLM and regression 254 

analyses were run in JMP 8.0 (SAS Institute Inc., Cary, 1989-2007). 255 

The relationship between store replenishment and re-growth ability of trees was studied by using 256 

data from the short-term experiment. We followed two different methods: correlations and structural 257 

equation modeling (SEM). In the first approach, the difference between April and September NSC 258 

concentrations in leaves and stem sapwood were correlated against the different growth indicators (needle 259 

biomass productivity, branch length growth and wood ring width increment) by Pearson correlation 260 

analyses. Correlations were run in SPSS 15.0. (SPSS for Windows, Chicago, 2009).  261 

Secondly, SEM was used to evaluate the more complex relationships between defoliation by 262 

PPM, N and NSC concentrations in April, the difference between April and September NSC 263 

concentrations (as an indicator of store replenishment) and growth. SEM is a robust tool to unravel 264 

multivariate relationships between plant traits, as it enables disentangling direct and indirect effects 265 

among variables (Shipley 2004). We first built a theoretical model including the logical relationships 266 

between our variables based on previous knowledge. In our model defoliation was directly related to NSC 267 

and N concentrations in April, owing to the well-documented immediate effects of defoliation on N and 268 

NSC stores (Ericsson et al. 1980; Tschaplinski and Blake 1994; Webb and Karchesy 1977). We also 269 

considered defoliation to be directly related to the growth attained at the end of summer, to account for 270 

other effects of defoliation on plant growth different to the impact on NSC and N availability. NSC 271 

concentrations in April were logically related to store replenishment in September, but also to growth, 272 

since pine trees are known to invest both stored NSC and new photoassimilates into new growth (von 273 

Felten et al. 2007). The concentration of N in April was also directly related to growth and the difference 274 

between April and September NSC concentrations, owing to the close relationship between total N and 275 

Rubisco concentrations in leaves and, hence, the carboxylation potential of trees (Millard et al. 2007). 276 

Finally, growth attained throughout the growing season was related to the difference between April and 277 

September NSC concentrations as a way to explore the relationship between NSC accumulation (store 278 

replenishment) and growth after defoliation. 279 
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We fitted our theoretical model using SEM to six different data sets, depending on the origin of 280 

NSC concentrations (needles or stem sapwood) and the variable used as a proxy for tree growth (needle 281 

biomass production, branch length growth or current-year wood ring width increment). SEM estimation 282 

followed the maximum likelihood method (Arbuckle 2009). The goodness of fit of each model was 283 

evaluated by a combination of statistics and fit indexes including: the chi-square and its probability level, 284 

the root mean square error of approximation (RMSEA), the root mean square residual (RMR), the 285 

Goodness-of-Fit Index (GFI), the Adjusted Goodness-of-Fit Index (AGFI), the Normed Fit Index (NFI) 286 

and the Akaike Information Criterion (AIC). Non-significant chi-square statistics indicate an acceptable 287 

model fit, while values close to zero for the RMSEA and RMR indexes and values close to one for the 288 

probability level, GFI, AGFI, and NFI statistics indicate consistency between the theoretical and 289 

evaluated models. Finally, the AIC is an index used to compare different models: the most parsimonious 290 

models showing the lowest AIC values. Since different indices follow different approximations and hence 291 

reflect different aspects of model fit, the use of a combination of statistics and indexes provides a robust 292 

tool to evaluate the fit of models generated by SEM (Jöreskog 1993). SEMs were performed in Amos 293 

18.0. 294 

 295 

Results 296 

Short-term effects of PPM defoliation on N and NSC concentrations 297 

The mean defoliation of sampled trees was 42 ± 5 %. The defoliation intensity was a good surrogate of 298 

PPM incidence because canopy defoliation and the number of PPM nests counted per tree (mean 3 ± 1 299 

nests tree-1) were strongly related (r = 0.68, P<0.001).  300 

Defoliation by PPM had a strong immediate effect on the NSC of P. nigra trees in the needles 301 

and a weak impact on the NSC accumulated in stem sapwood and the needle N concentrations. Trees 302 

harvested soon after the end of PPM defoliation but before bud break, in April 2011, showed decreased 303 

non-structural carbohydrate concentrations (including SS, starch and NSC) in both the needles and stems 304 

as defoliation increased (Fig. 1; Table 1). On the contrary, N concentrations in old needles increased 305 

significantly with defoliation, and hence trees with higher needle loss showed significantly lower C:N 306 

ratios in their needles (Fig. 1; Table 1).  307 

 308 

Recovery of NSC stores and growth after one growing season 309 
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At the end of the growing season (September 2011), trees included in the short-term analysis showed 310 

significantly higher NSC concentrations and pools in current-year needles with increasing defoliation (Fig 311 

2, Table 1). This indicates trees not only replenished their C stores in just one growing season, but the 312 

refilling of stores was proportional to defoliation intensity, more defoliated trees showing increased NSC 313 

concentrations and pools at the end of summer (Fig. 2). Patterns for N were also highly significant, N 314 

concentrations and pools increasing and C:N ratios decreasing with damage (Fig 2, Table 1). In stems, 315 

defoliation effects were not significant for any of the chemical variables studied (Table 1). Similarly, 316 

GLMs showed there was a significant positive effect of PPM defoliation on branch growth (F = 11.153, 317 

d.f. = 1, P = 0.002) and foliage production (F = 17.369, d.f. = 1, P < 0.001), trees with higher defoliation 318 

damage showed increased branch growth and higher current-year needle biomass (Fig. 2). This also 319 

explains the recovery of needle NSC and N pools. Defoliation effects were not significant for any 320 

indicator of secondary growth (EW width: P = 0.579, LW width: P = 0.311, tree- ring width: P = 0.464, 321 

Fig 2). 322 

 323 

Long-term effects of PPM defoliations on NSC and N concentrations and growth 324 

There were significant differences in the NSC and N concentrations and the C:N ratio of the different 325 

cohorts of tree rings and needles analyzed (Table 2). In sapwood, the outermost rings, i.e. the youngest 326 

ones, showed higher concentrations and sharper variations of NSC and N than older rings. This indicates 327 

NSC and N was preferentially stored and remobilized from younger rings within the sapwood of P. nigra 328 

trees. Contrastingly, older needles stored more NSC than younger cohorts (Table 2). For N, old cohorts of 329 

needles of defoliated trees showed lower concentrations while in control trees the trend was reversed 330 

(Table 2).  331 

Differences between treatments showed that defoliated trees accumulated more NSC in their 332 

sapwood and more N in both their sapwood and needles than control trees, consequently, the C:N ratio of 333 

defoliated trees was also lower (Table 2). Starch needle concentrations seemed to follow an opposite 334 

trend, decreasing in defoliated trees as compared to controls, although effects were weak due to the low 335 

replication (n = 3) and not significant for needle SS and NSC concentrations (Table 2). Taken together, 336 

these results seem to indicate a shift from needle to stem accumulation of NSC in response to long-term 337 

defoliation treatments. Increased NSC (in sapwood) and N status of defoliated trees six years after the last 338 

defoliation event indicates that these trees may reach the next PPM population outbreak (which have an 339 
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average periodicity of six years) with more C and N stores than non-defoliated trees (Table 2). The effects 340 

on NSC in sapwood stood for trees subjected to similar treatments but with nine years of recovery (data 341 

not shown). 342 

The analysis of long-term effects on growth showed defoliation treatments significantly 343 

decreased height and diameter growth of trees and the width of rings formed after PPM defoliations 344 

(Table 3). These effects were already significant on the first year after defoliations started (1993, F = 345 

41.90, d.f. = 1, P < 0.001 for tree-ring width), and they remained until the end of the recovery period 346 

(2009), six years after the completion of treatments, except for tree-ring width which did not show 347 

significant differences in 2009 (Table 3). Long-term defoliation by PPM had also an important effect on 348 

the survival of trees, and 30% of the ten initial individuals died. These data will be considered elsewhere 349 

(Camarero and R. Hernández, unpublished results). 350 

 351 

Relationship between stores replenishment and growth after defoliation 352 

The six models obtained with SEM, built from the different data sets available, provided a reasonably 353 

good fit to our theoretical model (Table 4). However, of all models explored, the model which included 354 

the NSC data of sapwood and the width of the current year tree ring as a surrogate of tree growth (number 355 

6), showed the best fit (Table 4) and hence was the one selected for representation (Fig. 3). Nevertheless, 356 

provided there was considerable and meaningful variation in the significance of the different relationships 357 

of the models obtained with different data sets (Fig. 3, Table 5), all models will be considered in the 358 

discussion of results. 359 

According to all SEMs obtained and in agreement with the results of GLMs, defoliation had a 360 

significant immediate positive effect on foliage N concentrations and a negative one on sapwood and 361 

needle NSC concentrations (Fig. 3, Table 5). Not surprisingly, NSC concentrations in spring were 362 

negatively related to the replenishment of NSC stores at the end of the growth season (measured as the 363 

difference between September and April NSC concentrations) in all models (Fig. 3, Table 5). However, 364 

they were unrelated to any measurement of growth included in the analyses (Fig. 3, Table 5). Foliage N 365 

concentrations in April were unrelated to the replenishment of sapwood NSC (Fig. 3), but they were 366 

strongly and positively related to the increase in needle NSC concentrations throughout the growing 367 

season (see data sets 1-3 in Table 5). Similarly, N concentrations did not show any effect on stem wood 368 
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growth (Fig. 3), but they were significantly and positively related to needle biomass production and 369 

branch length increment (Table 5). 370 

Direct effects of defoliation on growth were not significant for any growth indicator measured, 371 

and only positive indirect effects were recorded for leaf biomass production and branch length growth, 372 

through the aforementioned impact on N concentrations (Table 5). For wood growth, defoliation had no 373 

significant effect whatsoever, which agrees with our results of GLMs for the short-term experiments (Fig. 374 

2). 375 

The growth attained at the end of summer by defoliated trees was unrelated to NSC refilling 376 

when foliage production and tree-ring width were used as indicators of growth (Fig 3; Table 5). Similarly, 377 

when the difference in the NSC status of April and September was directly related to growth parameters, 378 

correlations rendered no significant results (P > 0.05; data not shown), indicating both processes were 379 

unrelated. However, when branch length growth was used as a proxy for tree growth in SEMs, it was 380 

significantly and negatively related to the level of NSC accumulated in both needles and sapwood 381 

throughout the growing season (Table 5). Taken together, these results indicate NSC accumulation 382 

proceeded even when trees were re-growing, although branches that grew more in length had less surplus 383 

of NSC for accumulation. 384 

 385 

Discussion 386 

Transient C limitation after PPM defoliation 387 

Defoliation by PPM decreased the NSC concentrations of trees leading to a short-term C (source) 388 

limitation. The observed decrease in SS, starch and NSC concentrations proportional to defoliation in 389 

April indicates trees had already started remobilizing C stores from their old needles to recover from 390 

damage before bud burst. This does not seem to be the case for N, which showed an opposite trend, 391 

although increases were very moderate (see Fig. 2). However, in accordance with our hypotheses, such C 392 

limitation was only transient and P. nigra trees were able to replenish their NSC stores in just one 393 

growing season. Similarly, trees subjected to extreme repeated defoliation events were able to compensate 394 

C losses in the course of an average PPM outbreak cycle. This may enhance their chances to survive 395 

subsequent defoliations. Altogether, these results seem to indicate reported (Hódar et al. 2003; Kanat et 396 

al. 2005) and observed (Table 2) declines in tree growth and/or reproduction after PPM attacks are not 397 

caused by a C (source) limitation. 398 
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The fast recovery of NSC concentrations in our experiment responded to a shift in biomass 399 

allocation to foliage, as indicated by the significantly greater biomass of current year needles in more 400 

severely defoliated trees (Fig. 3). However, compensatory increases in the photosynthesis of trees may 401 

have also contributed to the recovery of NSC concentrations (Eyles et al. 2011; Pinkard and Beadle 1998; 402 

Pinkard et al. 1998; Vanderklein and Reich 1999). According to our results, increased foliage N (hence 403 

Rubisco) concentrations could be partly responsible of the fast recovery of the NSC status through an up-404 

regulation of the photosynthetic ability of trees (Hoogesteger and Karlsson 1992). Although we did not 405 

measure the photosynthetic rate of trees in this study, the SEM analysis indicated a strong positive effect 406 

of needle N concentrations in April on foliage NSC replenishment in September (Table 5). Also, needle N 407 

concentration increased with defoliation immediately after damage (Fig. 1) and the situation persisted at 408 

the end of the growth season (Fig. 2) and even six years after the attacks (Table 2). Similarly, Hódar et al. 409 

(2004) found increased N concentrations in the needles of pine trees defoliated by the PPM.  410 

Increased sink strength after defoliation (Stitt et al. 1991) could have also contributed to up-411 

regulate photosynthesis. Pinkard et al. (2007) found compensatory increases in the photosynthetic rate of 412 

defoliated Eucalyptus globulus trees were positively related to the level of damage, which they attributed 413 

to a regulation of photosynthetic responses by increased sink strength. Similarly, we found the recovery 414 

of NSC pools and concentrations of trees to be proportional to damage (Fig. 2). Recent advances indicate 415 

leaf starch and sucrose concentrations can act as regulators of photosynthesis, accumulation of 416 

carbohydrates in leaves leading to a down-regulation of the photosynthetic rate (Kasai 2008).  417 

Interestingly, we found no relationship between the NSC status of trees soon after defoliation 418 

and their ability to re-grow (Fig. 4, Table 5). This may indicate the re-growth of defoliated P. nigra trees 419 

was primarily supplied by current assimilation. Our results for the short-term experiment show needle 420 

NSC concentrations were more sensitive to defoliation than stem sapwood ones. Also, previous studies 421 

indicate early twig growth of pine trees largely depends on current year photosynthates (Hansen and Beck 422 

1990, 1994; von Felten et al. 2007). Defoliation may increase the dependence of twig growth on current 423 

photosynthesis in pine. Indeed, in our study, foliage N concentrations in April were significantly and 424 

positively related to leaf biomass production and branch length increment (Table 5), suggesting current 425 

photosynthesis was more important than stores in leaf biomass and primary growth recovery of P. nigra 426 

trees. The lack of a similar response in radial growth (Fig. 4, Table 5) could be attributed to the 427 
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observation that wood formation in pines is supported by a mixture of stored and current-year C (von 428 

Felten et al. 2007). 429 

 430 

Defoliation effects on growth  431 

We observed no significant short-term effects of defoliation on stem wood growth and even significant 432 

positive effects on leaf biomass production and branch length growth (Fig 3). These results seem to 433 

contradict previous reports of decreased radial and height growth on pine trees after PPM attacks (Hódar 434 

et al. 2003; Kanat et al. 2005) and our own results for the long-term defoliation experiment (Table 2). The 435 

explanation to these apparent discrepancies may lay in the different approaches followed. While most 436 

previous studies, and also our long-term experience, compared undefoliated trees with severely defoliated 437 

ones (Kanat et al. 2005), trees in our short-term experiment were selected over a range of damage from 0 438 

to 100 % defoliation, so that the number of trees with very severe damage (above 80%) was low. Hódar et 439 

al. (2003) analyzed the impact of PPM defoliation intensity on the growth rate of the leader shoots of P. 440 

sylvestris and found that increased intensities of defoliation led to progressive decreases in shoot growth 441 

rate. Although no direct statistical comparison between control and defoliated trees subjected to different 442 

intensities of damage was performed, their results indicate that only those trees subjected to high 443 

defoliation intensities show markedly reduced growth as compared to control trees (see Fig. 1 in Hódar et 444 

al. 2003). Consequently, when comparing control and defoliated trees, only severe defoliation treatments 445 

seem to produce significant different abilities in trees to compensate defoliation damage. For pine trees, 446 

removal of up to 80 % of leaves has been shown to have no significant impact on the lateral branch 447 

growth of trees (Handa et al. 2005). Consequently, most of our observations in the short-term experiment 448 

may have fallen below the level of damage for compensation growth to be detected, leading to the 449 

observed results. 450 

In any case, the results from our short-term experiment indicate that P. nigra trees are able to 451 

recover efficiently from moderate (and punctual) PPM defoliations, and illustrate some of the 452 

mechanisms used to achieve such recovery (see above). Contrastingly, our long-term experiment provides 453 

information about the potential impacts of severe and repeated PPM defoliations on P. nigra growth and 454 

NSC stores. Our results demonstrate that although repeated severe defoliation by PPM can have a strong 455 

impact on the growth and survival of P. nigra trees, 66% of the trees were able to survive the extreme 456 

treatments imposed and they did not show C starvation. 457 
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 458 

Interactions between NSC accumulation and growth after defoliation 459 

Defoliation led to increased accumulation of C storage compounds in P. nigra trees in both the short- and 460 

the long-term while re-growth was only maintained under moderate damage. Correlation analyses and 461 

SEM indicated that, when damage was moderate, as in our short-term experiment, C-store accumulation 462 

and re-growth after defoliation were generally unrelated. The only component of growth that seemed to 463 

have a negative impact on NSC accumulation was branch elongation, with branches that grew more 464 

showing smaller surpluses of NSC for accumulation (Table 5). Indeed, in our short-term experiment, trees 465 

with higher defoliation levels showed both higher NSC pools and concentrations and re-growth than trees 466 

with less damage (Figs. 2 and 3). These results are in agreement with our third hypothesis. 467 

However, in trees subjected to extreme and recurrent defoliations (such as our long-term 468 

treatments), 30% of trees died and, for those trees that survived, growth was not recovered to the same 469 

extent as NSC concentrations. The increase in stem NSC concentrations indicates these trees were not 470 

limited by C availability (Hoch et al. 2003; Körner 2003). What, then, limited their growth? We suggest 471 

repeated extreme defoliations reduced the sink strength of growing meristems (sink limitation), so that the 472 

surplus of fixed carbohydrates not invested in growth accumulated as storage compounds. In line with 473 

this suggestion, indole-3-acetic acid (IAA), which favours assimilate import into sink organs (Darussalam 474 

et al. 1998), has been shown to decrease near the cambial region of pruned P. sylvestris trees (Sundberg et 475 

al. 1993), and this has been related to reduced radial growth after pruning (Thomas et al. 2006).   476 

In conclusion, our results show P. nigra trees respond to defoliation by accumulating 477 

carbohydrate storage compounds. Defoliation by PPM caused only a transient C (source) limitation in P. 478 

nigra trees and after just one growing season trees were even able to over-compensate initial NSC losses. 479 

Also, within the average periodicity of PPM outbreaks, trees are able to fully recover their initial NSC 480 

concentrations. When defoliation is moderate, we suggest the sink strength of growing meristems is not 481 

decreased and the compensatory increase in the photosynthetic ability of trees enables them to recover 482 

both growth and initial NSC status. However, when damage is extreme and recurrent, the sink strength of 483 

growth processes may be reduced leading to decreased tree growth and surplus sugars being accumulated 484 

as NSC.  485 
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Figure legends 619 

Fig. 1 Relationship between the percentage of canopy defoliation by the PPM and the NSC 620 

concentrations of the needles and stems and the N concentrations and C:N ratios of the current-year 621 

needles of P. nigra trees included in the short-term experiment and measured in April 2011. Results of 622 

linear regression analyses are shown separately in each chart 623 

 624 

Fig. 2 Relationship between the percentage of canopy defoliation by the PPM in April 2011 and the NSC 625 

and N concentrations and pools and the C:N ratio of the current-year needles of P. nigra trees included in 626 

the short-term experiment and measured in September 2011. Regression lines are shown only when 627 

significant (P<0.05). 628 

 629 

Fig. 3 Relationship between the percentage of canopy defoliation by the PPM in April 2011 and the 630 

branch growth, foliage production (biomass of current-year needles) and radial increment (tree-ring width 631 

of the current year) of P. nigra trees included in the short-term experiment and measured in September 632 

2011. Regression lines are shown only when significant (P<0.05). 633 

 634 

Fig. 4 Structural equation model showing the relationships between the non-structural carbohydrate 635 

(NSC) and nitrogen (N) concentrations and the growth of P. nigra trees included in the short-term 636 

experiment of PPM defoliation. Data used for NSC and N concentrations belong to sapwood and needles, 637 

respectively; while “growth” represents current-year tree-ring width (n = 50). These variables were 638 

selected following model 6, the one with the best goodness of fit (see Table 4). Results for models 639 

considering NSC in needles and branch growth processes are summarized in Table 5. Solid and dashed 640 

arrows indicate positive and negative effects, respectively. Arrow widths are proportional to the 641 

magnitude of standardized path coefficients. ‘n.s.’ indicates paths were non-significant at α = 0.05. 642 

Unexplained variance, i.e. error terms, of each observed variable is indicated by arrows located near 643 

response variables. The proportion of explained variance (R2) is interpreted similarly to a regression 644 

analysis 645 

646 
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Table 1. Statistics assessing the effects of defoliation on the NSC and N concentrations and pools of trees 647 

harvested in April 2011 (just after PPM defoliation) and in September 2011 (one growing season after 648 

PPM defoliation). Differences due to defoliation intensity in starch, soluble sugars (SS), total non-649 

structural carbohydrate (NSC) and total nitrogen (N) and carbon (C) concentrations and the C:N ratios 650 

were assessed in needles and stems by GLMs. The model comprised “defoliation” as a fixed factor and 651 

the DBH at the beginning of the experiment as a covariate. Only “Defoliation” effects are shown. 652 

Significant effects (P<0.05) are shown in bold, d.f. = 1 in all cases. 653 

 April 2011 September 2011 

Variable Needles Stems Needles Stems 
F P-value F P-value F P-value F P-value 

Concentrations         
SS 7.14 0.010 0.56 0.457 3.89 0.055 2.03 0.161 
Starch 42.76 < 0.001 5.60 0.022 4.68 0.036 3.39 0.071 
NSC 42.51 < 0.001 5.58 0.022 5.53 0.023 1.03 0.316 
Total N 8.09 0.007 - - 22.24 <0.001 - - 
C:N 8.27 0.006 - - 25.03 <0.001 - - 

Pools         
SS - - - - 19.70 <0.001 - - 
Starch - - - - 21.81 <0.001 - - 
NSC - - - - 23.16 <0.001 - - 
Total N - - - - 21.47 <0.001 - - 

 654 
655 
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Table 2. Soluble sugars (SS), starch, total non-structural carbohydrate (NSC), nitrogen (N) concentrations 656 

and C:N ratios in the older (1996-2003 rings) and younger (2003-2009 rings) sections of the sapwood and 657 

the three youngest cohorts of needles of P. nigra trees defoliated by the PPM in the long-term experiment, 658 

plus summary statistics of GLMs analyzing the differences between treatments and cohorts. Only fixed 659 

factor effects are shown (their interaction was not significant in any case). Values are means, while 660 

standard errors are indicated in parentheses. For statistics, values are F ratios, while P-values are 661 

indicated in parentheses, d.f. = 1 in all cases. Significant (P<0.05) factor effects are indicated in bold. See 662 

materials and methods for further details. 663 

Fraction Control Defoliated Statistics 
Sapwood 1996-2003 

rings 
2003-2009 

rings 
1996-2003 

rings 
2003-2009 

rings 
Treat. Cohort 

SS 
(%) 

0.35 
(0.03) 

0.57 
(0.02) 

0.44 
(0.04) 

0.79 
(0.08) 

14.02 
(<0.001) 

52.01 
(<0.001) 

Starch 
(%) 

0.67 
(0.04) 

0.73 
(0.03) 

0.65 
(0.02) 

0.83 
(0.07) 

0.90 
(0.350) 

7.27 
(0.011) 

NSC 
(%) 

1.02 
(0.07) 

1.30 
(0.05) 

1.09 
(0.05) 

1.62 
(0.12) 

6.48 
(0.016) 

32.726 
(<0.001) 

Total N 
(%) 

0.02 
(0.002) 

0.03 
(0.003) 

0.04 
(0.002) 

0.05 
(0.004) 

41.84 
(<0.001) 

11.15 
(0.002) 

C:N 2233.19 
(176.10) 

1806.59 
(164.95) 

1385.78 
(67.52) 

1073.68 
(78.13) 

31.76 
(<0.001) 

7.01 
(0.013) 

 Control Defoliated Statistics 
Needles 0-yr 1-yr 2-yr 0-yr 1-yr 2-yr Treat. Cohort 

SS 
(%) 

4.66 
(0.31) 

5.13 
(0.43) 

5.41 
(0.45) 

5.24 
(0.19) 

5.28 
(0.25) 

5.56 
(0.28) 

0.05 
(0.825) 

2.10 
(0.161) 

Starch 
(%) 

3.92 
(0.25) 

4.53 
(0.52) 

4.31 
(0.43) 

4.08 
(0.13) 

3.77 
(0.21) 

4.00 
(0.17) 

5.63 
(0.026) 

1.59 
(0.221) 

NSC 
(%) 

8.56 
(0.54) 

9.66 
(0.93) 

9.72 
(0.85) 

9.31 
(0.11) 

9.05 
(0.05) 

9.56 
(0.14) 

1.40 
(0.249) 

2.44 
(0.132) 

Total N 
(%) 

0.81 
(0.03) 

0.83 
(0.07) 

0.89 
(0.08) 

1.04 
(0.06) 

0.92 
(0.05) 

0.86 
(0.04) 

5.53 
(0.027) 

6.88 
(<0.001) 

C:N 64.18 
(2.62) 

63.70 
(5.61) 

60.40 
(5.86) 

51.09 
(3.56) 

57.93 
(3.44) 

63.02 
(2.33) 

4.03 
(0.056) 

22.94 
(<0.001) 

Sapwood: control, n = 10; defoliated, n = 8. Needles: n = 3.  664 

Abbreviations: 0-yr = current-year needles (from 2009), 1-yr = one-year-old needles (from 2008), 2-yr = 665 

two-year-old needles (from 2007), Treat. = Treatment. 666 

667 
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Table 3. Radial, height and tree-ring width growth of control and defoliated P. nigra trees included in the 668 

long-term PPM defoliation experiment along with the results of statistical tests (GLMs) on treatment 669 

effects. GLMs (Least Squares) were fit with “treatment” (control/ defoliated) as a fixed factor and the size 670 

of trees at the beginning of the experiment (DBH and height of trees in 1992) as covariates. Treatments 671 

were applied between 1996-2003 (treatment period) while trees were left to recover between 2004-2009 672 

(recovery period). Trees were finally harvested in 2009, when the experiment terminated. Growth data are 673 

shown for the last year of the treatment period (2003, “end treatment period”) and also as the average 674 

across treatment and recovery periods. Significant effects (P<0.05) are shown in bold, d.f. = 1 in all 675 

cases.. See materials and methods for further details on the design and analysis. 676 

Variables Control Defoliated Statistics 
 Mean SE Mean SE F P-value 
Radial growth (cm)       

DBH end treatment period 14.4 0.7 9.4 1.1 48.01 <0.001 
Treatment period  6.8 0.7 0.9 0.2 48.01 <0.001 
Recovery period 2.2 0.2 1.3 0.3 7.95 0.014 
DBH final harvest 16.5 0.8 10.8 1.3 39.23 <0.001 

Height growth (m)       
End treatment period 0.4 0.02 0.02 0.004 145.38 <0.001 
Treatment period 2.8 0.2 0.4 0.05 98.71 <0.001 
Recovery period 1.5 0.1 0.6 0.1 59.76 <0.001 
Final harvest 0.4 0.02 0.3 0.05 5.47 0.035 

Tree-ring width (mm)       
End treatment period 3.2 0.4 0.03 0.02 24.46 <0.001 
Treatment period 2.3 0.1 0.2 0.04 30.47 <0.001 
Recovery period 2.2 0.1 1.2 0.1 9.44 0.009 
Final harvest 1.8 0.2 1.5 0.2 0.92 0.211 

 677 
678 
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Table 4. Input variables for non-structural carbohydrates (NSC) and growth included in the different data 679 

sets used to construct the structural equation models evaluated and summary of statistical indices 680 

indicating their goodness of fit. All models conformed to the same theoretical model shown in Fig 4. 681 

RMSEA index rendered values lower than 0.001 for all models. The best model for each index is 682 

highlighted in bold. Overall, data set 6 is the one that produced the model with the best fit. 683 

Data 
set 

NSC* Growth† Chi-
square§ 

P RMR GFI AGFI NFI AIC 

1 Needle Needle BM 0.326 0.850 0.190 0.997 0.980 0.998 26.326 
2 Needle Branch Len. 0.412 0.814 0.281 0.997 0.975 0.997 26.412 
3 Needle Ring width 0.268 0.875 0.083 0.998 0.984 0.998 26.268 
4 Stem Needle BM 0.364 0.833 0.077 0.997 0.978 0.995 26.364 
5 Stem Branch Len. 0.924 0.630 0.136 0.992 0.944 0.988 26.924 
6 Stem Ring width 0.151 0.927 0.017 0.999 0.991 0.997 26.151 

 684 
* Indicates origin of the NSC data included in the models. 685 
† Abbreviations: Needle BM = Current-year needle biomass production; Branch Len. = Branch length 686 

growth; Ring width = total current-year tree- ring width. 687 
§ All chi-squares were not significant at α = 0.05. 688 

 689 
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Table 5. Input variables and standardized path coefficients (P values, in parentheses) of the different 691 

predictor  predict and relationships included in the structural equation models (n = 50 in all cases) built 692 

with varying combinations of the different data sets available (see input variables). Note these models 693 

were not considered in the main SEM analysis represented in Fig. 4, since they showed a poorer fit than 694 

the selected model number 6 (see Table 4 for indexes of goodness of fit). All models conformed to the 695 

same theoretical model shown in Fig 4. Significant effects (at α = 0.05) are indicated in bold.  696 

 Data 1 Data 2 Data 3 Data 4 Data 5 

Input variables      
NSC* Needles Needles Needles Sapwood Sapwood 

Growth† Needle 
BM 

Branch 
Length Ring width Needle BM Branch 

Length 
Relationships      

Defoliation  NSC (April) -0.699 
(<0.001) 

-.699 
(<0.001) 

-.699 
(<0.001) 

-0.340 
(0.011) 

-0.340 
(0.011) 

Defoliation  N (April) 0.396 
(0.003) 

0.396 
(0.003) 

0.396 
(0.003) 

0.396 
(0.003) 

0.396 
(0.003) 

NSC (April)  Growth 0.009 
(0.959) 

0.017 
(0.917) 

0.023 
(0.906) 

-0.187 
(0.135) 

-0.211 
(0.089) 

Defoliation  Growth 0.286 
(0.104) 

0.333 
(0.058) 

0.043 
(0.832) 

0.221 
(0.102) 

0.254 
(0.058) 

N (April)  Growth 0.366 
(0.005) 

0.329 
(0.012) 

0.203 
(0.182) 

0.357 
(0.005) 

0.319 
(0.012) 

Growth  NSC (Sept. - April) -0.104 
(0.079) 

-0.117 
(.045) 

-0.048 
(0.370) 

-0.171 
(0.139) 

-0.303 
(0.006) 

NSC (April)  NSC (Sept. - 
April) 

-0.907 
(<0.001) 

-0.912 
(<0.001) 

-0.890 
(<0.001) 

-0.763 
(<0.001) 

-0.806 
(<0.001) 

N (April)  NSC (Sept. - 
April) 

0.365 
(0.005) 

0.167 
(0.004) 

0.130 
(0.019) 

-0.016 
(0.887) 

0.033 
(0.751) 

 697 

Abbreviations: NSC (April) and NSC (Sept. - April): non-structural carbohydrate concentrations 698 

measured in April and difference between April and September 2011 NSC concentrations, respectively; N 699 

(April): nitrogen concentrations measured in April 2011. 700 
* Indicates origin of the NSC data included in the models. 701 
† Abbreviations as in Table 4. 702 
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Figure 1 705 
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Figure 2 708 
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Figure 3. 711 
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Figure 4. 713 
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