1 **Pigment-based chloroplast types in Dinoflagellates** 2 Manuel Zapata¹, Santiago Fraga², Francisco Rodríguez^{2*}, José L Garrido¹ 3 ¹Instituto de Investigaciones Marinas, CSIC, c/ Eduardo Cabello 6, 36208-Vigo, Spain 4 ²Instituto Español de Oceanografía, Subida a Radio Faro 50, 36390-Vigo, Spain 5 *E-mail: francisco.rodriguez@vi.ieo.es 6 7 ABSTRACT: Most photosynthetic dinoflagellates contain a chloroplast with peridinin as the 8 9 major carotenoid. Chloroplasts from other algal lineages have been reported, suggesting multiple plastid losses and replacements through endosymbiotic events. The pigment 10 composition of 64 dinoflagellates species (122 strains) was analysed by using high-11 performance liquid chromatography. In addition to chlorophyll (chl) a, both chl c_2 and divinyl 12 protochlorophyllide occurred in chl c-containing species. Chl c_1 co-occurred with c_2 in some 13 peridinin-containing (e.g. Gambierdiscus spp.) and fucoxanthin-containing dinoflagellates 14 (e.g. Kryptoperidinium foliaceum). Chl c_3 occurred in dinoflagellates whose plastids 15 contained 19'-acyloxyfucoxanthins (e.g. Karenia mikimotoi). Chl b was present in green 16 dinoflagellates (Lepidodinium chlorophorum). Based on unique combinations of chlorophylls 17 18 and carotenoids, 6 pigment-based chloroplast types were defined: Type-1: peridinin / dinoxanthin / chl c2 (Alexandrium minutum); Type-2: fucoxanthin / 19'-acyloxy fucoxanthins 19 / 4-keto-19'-acyloxy-fucoxanthins / gyroxanthin diesters / chls c2, c3, monogalactosyl-20 diacylglycerol-chl c2 (Karenia mikimotoi); Type-3: fucoxanthin /19'-acyloxyfucoxanthins / 21 gyroxanthin diesters / chl c_2 , c_3 (Karlodinium veneficum); Type-4: fucoxanthin / chl c_1 and c_2 22 (K. foliaceum); Type-5: alloxanthin / chl c_2 / phycobiliproteins (Dinophysis tripos); Type-6: 23 neoxanthin / violaxanthin / a major unknown carotenoid / chl b (Lepidodinium 24 *chlorophorum*). While plastids with peridinin, and probably those with chl b, originated by 25 secondary endosymbiosis, the other chloroplast types were obtained through tertiary 26 endosymbiosis. Choroplast types corresponded with evolutionary lineages within 27 dinoflagellates. Caution must be observed when only peridinin is used for tracking 28 photosynthetic dinoflagellates in field samples. The additional marker pigments offer 29 oceanographers greater power for detecting dinophytes in mixed populations. 30 KEY WORDS: Dinophyta · Chlorophyll c pigments · Novel fucoxanthin-related pigments · 31

32 Gyroxanthin diester pigments · Chemotaxonomy· Dinoflagellate chloroplast types· Plastid
33 origin · Oceanography

34

35

INTRODUCTION

Dinoflagellates are a diverse trophic group of alveolate protists with around 50% of autotrophic organisms with a distinct grade of mixotrophy (Jeong et al. 2005). Most photosynthetic species contain a chloroplast surrounded by three membranes with chl c_2 and peridinin as major accessory pigments (Jeffrey et al. 1975).

Several features make autotrophic dinoflagellates unique. First, the presence of a water-40 soluble light-harvesting protein: the extrinsic peridinin-chl a-protein (PCP) located in the 41 chloroplast thylakoid lumen (Hiller 1999, Hoffman et al. 1996), which occurs in several 42 species together with the ubiquitous intrinsic peridinin-chl a-chl c_2 (CAC) membrane-bound 43 light harvesting protein (Macpherson & Hiller 2003). Second, the presence of a 44 proteobacterial form of the key enzyme in photosynthesis, the ribulose bisphosphate 45 carboxylase / oxidase (Rubisco), the so-called form II Rubisco (Morse et al. 1995, Rowan et 46 al. 1996) which is nuclear-encoded. And third, the gain of tertiary plastids in certain 47 autotrophic dinoflagellates (Saldarriaga et al. 2001). 48

Some photosynthetic dinoflagellates are toxin producers, and the monitoring of these 49 species is the main target of harmful algal bloom (HAB) programs around the world (e.g. 50 GEOHAB: http://www.geohab.info/). In consequence, taxonomists and oceanographers have 51 sought procedures for the rapid detection and identification of toxic species (see Hallegraeff et 52 al. 2003). Among these techniques, the use of chloroplast pigments as fingerprints of 53 phytoplankton taxa (Jeffrey & Vesk 1997, Jeffrey et al. 1999) constitutes a useful approach to 54 study the plastid origin and taxonomy of dinoflagellate species. In this context, the presence 55 of peridinin – an allenic trinor carotenoid (i.e., having a C_{37} -squeleton instead of the common 56 C₄₀-xanthophylls) – has been considered a distinctive feature in photosynthetic dinoflagellates 57 (see Bjørnland 1990, Liaaen-Jensen 1998). Allthough the occurrence of peridinin-containing 58

chloroplasts is widespread within autotrophic dinoflagellates, the occurrence of fucoxanthin-59 containing dinoflagellates was observed in earlier studies (see Jeffrey et al. 1975). Later, 60 several dinoflagellates with different pigment patterns were detected: first, a marine 61 dinoflagellate containing 19'-hexanoyloxyfucoxanthin as the main carotenoid (Tangen & 62 Bjørnland 1981); then a chl b-containing "green" dinoflagellate (Watanabe et al. 1987), wich 63 was further described as Lepidodinium viride (Watanabe et al. 1990), and finally autotrophic 64 Dinophysis species with cryptophycean-type phycobiliproteins (see Geider & Gunter 1989, 65 Hewes et al. 1998). Information on chloroplast pigments has usually been reported in new 66 descriptions of dinoflagellates (e.g. Fraga et al. 1995, 2008, 2011, Elbrächter & Schnepf 1996, 67 68 Bolch et al. 1999, Daugbjerg et al. 2000, Montresor et al. 2003, de Salas et al. 2003, 2004, 2005, Garcés et al. 2006, Tillmann et al. 2009, Sampedro et al. 2011). 69

Methodological improvements in high-performance liquid chromatography (HPLC) pigment analysis (revised by Jeffrey et al. 1999, Garrido & Zapata 2006) have enabled us to detect new chl *c* pigments and fucoxanthin acyloxy derivatives and to obtain a more accurate distribution pattern of known pigments. An example of this is the description of 8 pigmentary types in Haptophyta (Zapata et al. 2004).

Here we report the pigment composition of 64 dinoflagellate species (122 strains) obtained by HPLC. Six pigment-based chloroplast types are described and compared with other algal lineages. Pigment diversity found in photosynthetic dinoflagellates provides clues both for inferring phylogenetic relationships and tracing the distribution and abundance of dinoflagellates in coastal and open-ocean waters.

- 80
- 81

MATERIALS AND METHODS

Algal cultures. Dinoflagellate cultures were obtained from the Culture Collection of
Instituto Español de Oceanografía (CCVIEO, Vigo, Spain), the Provasoli-Guillard National

Center for Marine Algae and Microbiota (NCMA -formerly CCMP-, Bigelow Laboratory for 84 85 Ocean Sciences, West Boothbay Harbor, Maine, U.S.A.), and the CSIRO Collection of Living Microalgae (CCLM, Hobart, Australia). Most cultures were grown in L1 medium (Guillard & 86 Hargraves 1993) with the exception of the CSIRO strains which were grown in GSe medium 87 (Blackburn et al. 1989). The species, strain numbers, collection site and isolator are listed in 88 Table S1 (in the supplement). Light irradiances were 60-90 μ mol quanta m⁻² s⁻¹ on 12:12 h 89 light:dark cycles for all strains except *Dinophysis* (150 µmol quanta m⁻² s⁻¹). Cultures of 90 Dinophysis species (D. acuminata, D. acuta, D. caudata and D. tripos) were established in 91 diluted (1/20) L1-Si medium by feeding them the phototrophic ciliate *Mesodinium rubrum* (= 92 Myrionecta rubra), fed with the cryptophyte Teleaulax sp. (Park et al. 2006). 93

Sample preparation. Cultures were examined by light microscopy before HPLC pigment analysis to ensure proper identification and that the cells were healthy and without malformations. Cells were harvested 2-4 h into the light cycle from cultures actively growing a few days after being transferred. Due to the great diversity of species being analyzed, variable volumes of culture (typically 10 ml) depending on the species, were filtered onto Whatman GF/F filters under reduced pressure until some color was observed on the filter.

Pigment extraction. Frozen filters were extracted under 101 low light in polytetrafluoroethylene (PTFE)-lined screw capped tubes with 5 ml 90% acetone using a 102 stainless steel spatula for filter grinding. The tubes were chilled in a beaker of ice and 103 sonicated for 5 minutes in an ultrasonic bath. Extracts were then filtered through 25 mm 104 diameter syringe filters (MFS HP020, 25 mm, and 0.20 µm pore size, hydrophilic PTFE) to 105 remove cell and filter debris. An aliquot (0.5 ml) of acetone extract was mixed with 0.2 ml of 106 water and 200 µl were immediately injected. This procedure avoids peak distortion of early 107

eluting peaks (Zapata & Garrido 1991) and prevents the loss of non-polar pigments prior to
injection (Latasa et al. 2001).

HPLC analysis. Pigments were separated using a Waters Alliance HPLC System 110 (Waters Corporation, Milford, MA) consisting of a 2695 separations module, a Waters 996 111 diode-array detector (1.2 nm optical resolution) and a Waters 474 scanning fluorescence 112 detector. Pigment separation was performed using the HPLC method of Zapata et al. (2000). 113 with a reformulated mobile phase A. The column was a C₈ Waters Symmetry (150 x 4.6 mm, 114 3.5 µm particle-size, 100 Å pore size). Eluent A was methanol: acetonitrile: 0.025 M aqueous 115 116 pyridine (50:25:25 by vol.). Eluent B was methanol: acetonitrile: acetone (20:60:20 by vol.). Elution gradient was as follow: (time(min): %B) t₀: 0%, t₂₂: 40%, t₂₈: 95%, t₃₇: 95%, t₄₀: 0%. 117 Flow rate was 1.0 ml min⁻¹ and column temperature was fixed at 25° C using a Peltier-column 118 thermostat (Jet-Stream Plus). Solvents were HPLC grade (Romil- SpS^{TM}), pyridine was 119 120 reagent grade (Merck, Darmstadt, Germany). CSIRO strains were analysed following the procedure described by Zapata et al. (2004). 121

Pigment identification. Pigments were identified either by co-chromatography with 122 authentic standards obtained from SCOR reference cultures (Jeffrey et al. 1997) and diode-123 array spectroscopy (see Zapata et al. 2000). After checking for peak purity, spectral 124 information was compared with a library of chlorophyll and carotenoid spectra from pigments 125 prepared phytoplankton cultures. Compounds such 4-keto-19'-126 from as hexanoyloxyfucoxanthin and chl c_1 -like Kryptoperidinium-type were isolated as described 127 previously (Garrido & Zapata 1998, Egeland et al. 2000, Zapata et al. 2006). Novel 128 129 carotenoids from Karenia mikimotoi were tentatively identified (Garrido et al. in preparation). Pigment nomenclature and abbreviations were as suggested by SCOR WG 78 (Jeffrey & 130 Mantoura 1997). For monogalactosyl-diacylglicerol (MGDG)-chl c-like pigments whose 131 molecular structures have been elucidated (Garrido et al. 2000), the nomenclature was 132

MGDG-chl c_2 -*Chrysochromulina polylepis*-type (Zapata et al. 2001). For chlorophylls whose molecular structure is unknown, the pigment name includes a reference to the most likely chl c chromophore (chl c_1 - or c_2 -like), and a mention of the species in wich the pigment was initially detected (e.g. chl c_2 -like *Pavlova gyrans*-type, chl c_1 -like *Exanthemachrysis*-type). For tentative identification of unknown pigments, the chromatographic behaviour was studied using 2 HPLC systems: the polymeric C₁₈ method of Garrido & Zapata (1997) and the C₈ method of Zapata et al. (2000) were compared.

Pigment quantification. HPLC calibration by external standards was performed using 140 chlorophyll and carotenoid standards isolated from microalgal cultures (see Zapata et al. 141 2000), as well as pigments supplied by DHI (Denmark). The molar extinction coefficients (ɛ; 142 $1 \text{ mol}^{-1} \text{ cm}^{-1}$) provided by Jeffrey (1997) were used for pigment quantification. For chl *c*-like 143 pigments whose molar extinction coefficients are not available (i.e. chl c_3 , chl c_1 -like 144 *Exanthemachrysis*-type and chl c_2 -like *Pavlova*. gyrans-type) the mean of the extinction 145 coefficients for chl c_1 and c_2 at the blue absorption band (see Jeffrey et al. 1997) was used. 146 The MGDG-chl c_2 were quantified by using the molar extinction coefficient of the chl c_2 147 chromophore. For fucoxanthin-related compounds (i.e. acyloxy and keto derivatives) the 148 molar extinction coefficient for fucoxanthin was used, following the recommendations of 149 Jeffrey et al. (1997), even though the absorption spectra of fucoxanthin-derivatives differ 150 slightly from those of the parent compounds. Thus pigment to chl a ratios are expressed on a 151 molar base ($mol \cdot mol^{-1}$). 152

153

154

RESULTS

155 Chromatographic resolution and pigment identities

The peak number of the pigments together with the retention time and their visible absorption maxima in eluent is shown in Table 1. Of the 63 pigments, 44 were well-known chlorophylls and carotenoids previously compiled by Jeffrey et al. (1997). Structures of chl cpigments not included in the above review may be found in Helfrich et al. (1999) and Zapata et al. (2006), and structures of algal carotenoids in Bjørnland et al. (2000) and Egeland et al. (2000). The rest of pigments were unknown chl c-like compounds and carotenoids present in trace amount.

163

164

Pigment composition: chlorophylls

Thirteen chlorophylls: chls a, b and eleven chl c-type pigments (7 polar chls c and 4 165 non-polar chl c_2 -like) were detected. Chl c_2 (peak 9) together with divinyl protochlorophyllide 166 (MgDVP; peak 8) were always present in chl c-containing dinoflagellates; other chl c 167 pigments showed a heterogeneous distribution in some cases at trace levels. Chl c_1 (peak 10) 168 was detected in several peridinin-containing dinoflagellates (e.g. Peridinium aciculiferum, 169 Gambierdiscus excentricus), as well as in the fucoxanthin-containing dinoflagellates 170 Durinskia baltica and Kryptoperidinium foliaceum. Chl c_3 (peak 4) was only present in the 171 genera Karenia, Karlodinium and Takavama (Family Kareniaceae). The MGDG-chl c2-172 Chrysochromulina polylepis-type (peak 56) was a minor peak in Karenia spp., some 173 Karlodinium species (K. armiger, K. decipiens) and Takayama helix. Two novel non-polar chl 174 c_2 -like pigments were also detected, the first (peak 51) in Karlodinium armiger eluted just 175 before the MGDG-chl c₂ Emiliania huxleyi-type (peak 53), and the second (peak 60) in 176 *Takayama helix* at a higher retention time than the MGDG-chl c_2 -*C polylepis*-type (peak 56). 177 Red-shifted chls c_1 (peak 5) and chl c_2 (peak 3), having absorption spectra and 178

179 chromatographic behaviour similar to those of chl c_1 -like from *Exanthemachrysis gayraliae* 180 (Van Lenning et al. 2003) and chl c_2 -like from *Pavlova gyrans* (Fawley 1989), occurred in *D.* 181 *baltica* and *K. foliaceum*. Blue-shifted chl c_2 -like pigment (peak 6, λ_{max} =450 nm) was 182 detected as traces in several peridinin-containing dinoflagellates. Chlorophyll *b* (peak 50) was 183 restricted to *Lepidodinium* (=*Gymnodinium*) *chlorophorum*.

- 184**Table 1 around here**
- 185 Carotenoid composition

Among the forty-seven carotenoids detected in the dinoflagellates studied (see Table 1), 31 were well-known compounds and 16 were unknown compounds (most of them occurring at minor or trace levels, probably optical or geometrical isomers of known carotenoids). Results from electron visible absorption and chromatographic behaviour in two HPLC systems with distinct selectivity: the C_8 HPLC and the polymeric C_{18} method of Garrido and Zapata (1997) were taken into account for tentative identification (data not shown).

Peridininol (peak 1), the deacetylated derivative of peridinin (peak 11), was the most 192 polar carotenoid detected, it co-occurred with peridinin as well as a minor peridinin-like 193 pigment (peak 12) eluting just after peridinin. Diadinochrome (peak 27), the 5, 8-epoxide 194 rearrangement of diadinoxanthin, diadinoxanthin (peak 28), dinoxanthin (peak 29) and 195 diatoxanthin (peak 37) completed the major carotenoids detected on peridinin-containing 196 dinoflagellates. Other carotenoides that were less abundant or restricted to a few species were: 197 a diadinoxanthin-like pigment (peak 15) detected in Coolia canariensis (VGO775), 198 astaxanthin (peak 21), violaxanthin (peak 24), pyrrhoxanthin (peak 25), trans-neoxanthin 199 (peak 17) and zeaxanthin (peak 39). 200

Carotenoids of the genus *Karenia* included three novel compounds: peaks 13, 14 and 202 22. The visible absorption spectra of these carotenoids isolated from *Karenia mikimotoi* 203 (CCMP429) are shown in Fig. 1; for comparative purposes visible spectra of 19'- butanoyloxyfucoxanthin (peak 16), 19'-hexanoyloxyfucoxanthin (peak 26), and 4-keto-19'hexanoyloxyfucoxanthin (peak 23) are also depicted. A major gyroxanthin diester carotenoid (peak 45) occurred in *Karenia* and *Karlodinium* species; in addition, a second compound (peak 46) with a similar absorption spectrum was detected in *Karlodinium veneficum* strains at variable proportions. A third gyroxanthin diester-like pigment (peak 43), less retained than the previous ones, as well as less abundant, was detected in *Karenia mikimotoi*.

Alloxanthin (peak 35) and crocoxanthin (peak 47) were detected in *Dinophysis acuminata*, *D. acuta*, *D. caudata* and *D. tripos*, monadoxanthin was absent. Carotenoids of the chl *b*-containing dinoflagellate, *Lepidodinium chlorophorum*, included both forms of neoxanthin (*all-trans* neoxanthin (peak 17) and *9-cis* neoxanthin (peak 20)), violaxanthin (peak 24), antheraxanthin (peak 32), zeaxanthin (peak 39) and a major unknown carotenoid (peak 40).

216

217 **Pigment-based chloroplast types in dinoflagellates**

According to the pigment composition of the dinoflagellates analysed, 6 pigment-based chloroplast types (hereafter 'chloroplast types') were defined, and representative chromatograms are shown in Fig. 2. Chlorophyll and carotenoid composition of the 6 chloroplast types are summarised in Table 2.

Most dinoflagellates species were peridinin-containing organisms labeled as chloroplast Type-1 (71% of species, 51% of strains), with chl c_2 (peak 9) as the major accessory chlorophyll and traces of MgDVP (peak 8). Chl c_1 (peak 10) was present in some cases at lower concentration than chl c_2 (e.g. *Gambierdiscus excentricus* VGO790, *Peridinium aciculiferum* PAER-2, *Protoceratium reticulatum* CCMP1720), although chl c_1 was the major chl c pigment in *Gyrodinium uncatenum* CS-289/3. The carotenoids peridinin (peak 11) and dinoxanthin (peak 29) were specific to chloroplast Type-1 dinoflagellates. Other carotenoids were diadinoxanthin (peak 28), diadinochrome (peak 27), diatoxanthin (peak 37) and $\beta\beta$ -car (peak 62). Overall, eleven genera, including 44 species (83 strains) of the dinoflagellates studied belonged to pigment Type-1.

232

Fig 2 around here

Chloroplast Type-2 grouped dinoflagellates with Fuco (peak 19), 19'-233 acyloxyfucoxanthins and their keto derivatives (up to 6 fucoxanthin-related compounds: 234 peaks 13, 14, 16, 22, 23 and 26), and gyroxanthin diesters (up to three compounds: peaks 43, 235 45 and 46). The array of chl c included: chl c_2 (peak 9), chl c_3 (peak 4), MgDVP (peak 8) and 236 237 MGDG-chl c₂-C. polylepis-type (peak 56). Only the genus Karenia (5 species, 8 strains) belonged to chloroplast Type-2. Fucoxanthin (peak 19) was the major carotenoid in K. brevis, 238 K. mikimotoi, and K. selliformis, but Hex-fuco (peak 26) was the most abundant carotenoid in 239 K. papilonacea and K. umbella. Different forms of gyroxanthin diester were tentatively 240 identified: the $C_{12:0}$ (peak 45), the major form described by Bjørnland et al. (2003), and two 241 242 minor components tentatively assigned as the C_{14:0} (peak 46), and a less retained gyroxanthin diester-like pigment (peak 43). The fingerprint of chloroplast Type-2 dinoflagellates with six 243 19'-acyloxyderivatives is unique for the group of 5 Karenia species (8 strains) analysed. 244

The pigment Type-3 resembled Type-2, but it lacked the diverse fucoxanthin pool 245 observed in Karenia species. But-fuco and Hex-fuco were the major acyloxyderivatives 246 detected in Karlodinium spp. with 19'-acyloxyfucoxanthin-like (peak 33) at trace levels 247 (Acyl-fuco-like/chl a = 0.02) and no keto-19'-acyloxyderivatives. The major form of 248 gyroxanthin diester was the $C_{12:0}$ acyl ester at C-19 (peak 45) but the $C_{14:0}$ (peak 46) was also 249 abundant in K. armiger, K. decipiens and K. veneficum. However, Takayama cf. helix 250 (VGO341), witch was also included in chloroplast Type-3, lacked gyroxanthin diesters. Two 251 genera, 4 species (11 strains), of the dinoflagellates studied belonged to chloroplast Type-3. 252

253 **Table 2 around here**

254 Chloroplast Type-4, comprising fucoxanthin-containing dinoflagellates with no 255 acyloxyderivatives, included two species of different genera: *Durinskia baltica* (1 strain) and 256 *Kryptoperidinium foliaceum* (2 strains) A characteristic feature is the occurrence of β , Ψ -257 carotene (peak 58). Chl c_1 (peak 10) was the dominant chl *c*-type pigment, with chl c_2 (peak 258 9) second in importance. Two minor chls *c*: viz. chl c_1 -like *Exanthemachrysis gayraelae*-type 259 (peak 5) and chl c_2 -like *Pavlova gyrans*-type (peak 3) were also detected.

Chloroplast Type-5 included dinoflagellates from the genus *Dinophysis* (4 species and 4 strains) with cryptophyte-like chloroplasts. Acetylenic alloxanthin (peak 35) was the major carotenoid, together with crocoxanthin (peak 47) and chl c_2 (peak 9) and MgDVP (peak 8) as the accessory chlorophylls.

Chloroplast Type-6 has green algae-like chloroplast pigments: i.e. the accessory chl b 264 (peak 50), 9'-cis neoxanthin (peak 20), all-trans neoxanthin isomer (peak 17) and 265 violaxanthin (peak 24). Neither lutein nor free-loroxanthin, siphonaxanthin or its esters were 266 detected. The major carotenoid was an unknown compound (peak 40, λ_{max} : 420, 443, 475 nm; 267 band ratio (%III/II) = 87) eluting after zeaxanthin (peak 39, see Table 1). Using another 268 HPLC method to improve carotenoid separation in *Tetraselmis* species (Garrido et al. 2009) 269 peak 40 eluted before a lutein standard (data not shown). The four strains of Lepidodinium 270 chlorophorum analysed (BAHME100, RCC1488, RCC1489 and Dino16EUH) showed 271 similar carotenoid profile. 272

273

274 Quantitative pigment data: chlorophyll pigments

The abundance of chlorophyll and carotenoid pigments expressed as molar ratios with respect to chl *a* are shown in Tables 3 to 5 (corresponding mass (w:w) ratios are in Tables S2-S4). Chlorophyll c_2 was the most abundant chl *c* pigment in chloroplast Types-1, -2, -3 and -5. Chl c_2 to chl *a* ratio in peridinin-containing dinoflagellates (Table 3) ranged from 0.03

(Prorocentrum levis) to 0.57 (Amphidinium carterae). The occurrence of MgDVP in trace 279 amounts was a general trait in chl c-containing species (ratios not shown in tables). Chl c_1 280 occurred in several peridinin-containing dinoflagellates (Type-1), usually in traces. 281 Intermediate values were observed in *Gambierdiscus excentricus* (chl c_1 /chl a = 0.06) and 282 *Peridinium aciculiferum* (0.16), and the highest in *Gyrodinium uncatenum* (chl c_1 /chl a = 0.41) 283 where chl c_1 was the major chl c pigment (chl $c_1/c_2 = 1.46$). Chloroplast Types-2 and -3 284 (Table 4) showed chls c_2 and c_3 with chl c_3 /chl c_2 ratios varying from 0.29 to 0.58. 285 Chloroplast Type-4 (Table 5) contained higher values of chl c_1 than chl c_2 (chl c_1 /chl $c_2 =$ 286 1.38-2.25). Chl c1-like Exanthemachrysis-type and chl c2-like Pavlova-type were minor 287 pigments in K. foliaceum and D. baltica, respectively, representing $\sim 6\%$ of the chl c pool. 288 MGDG-chl c₂ C. polylepis-type (peak 56) occurred as a minor pigment in pigment Type-2 289 (MGDG-chl c_2 - C. polylepis-type/chl $a \le 0.005$) and certain Karlodinium species (e.g. K. 290 armiger and K. decipiens) included in chloroplast Type-3. 291

Finally, chl *b*:chl *a* ratio (Type-6, Table 5) varied among the *Lepidodinium chlorophorum* strains. The ratio was low (0.08) for the North Sea strain (BAHME100), while the Nervion River isolate (Dino16EUH) showed the highest chl *b*:chl *a* ratio (0.74).

295

296 Quantitative pigment data: carotenoids

Peridinin was the major carotenoid in almost all peridinin-containing dinoflagellates (Table 3). Only in a few cases Diadino/chl *a* ratio surpass Peri/chl *a* ratios, reflecting a high xanthophyll cycle activity. The peri:chl *a* ratio (Table 3) ranged from 0.54 in *Barrufeta bravensis* (VGO864) to 2.06 in *Coolia canariensis* VGO787. If normalised to chl c_2 , the lower values correspond to Gymnodiniales (Peri/chl $c_2 = 1.60-2.91$) and Peridiniales (Peri/chl $c_2 = 1.39-4.87$). Prorocentrales showed higher ratios (Peri/chl $c_2 = 3.51-38.92$), especially the benthic, symmetric species of *Prorocentrum*. Diadinoxanthin was usually the second major 304 carotenoid, with ratios Diadino/chl *a* ranging from 0.28, both in *Alexandrium* 305 *pseudogonyaulax* VGO706 and in *A. catenella* AL96, to 1.09 in *Prorocentrum lima* PL2V. 306 Dinoxanthin:chl *a* ratios were rather constant in most strains (mean \pm SD = 0.18 \pm 0.07) 307 although the ratio ranged from 0.01 (*Neoceratium furca* Nfurca1) to 0.42 (*Barrufeta bravensis* 308 VGO860).

309

Table 3 around here

In chloroplast Type-2 (Table 4), Fuco was the major carotenoid in Karenia brevis, K. 310 *mikimotoi* and *K. selliformis* (Fuco /chl a = 0.24-0.34) whereas Hex-fuco was dominant in *K*. 311 papilonacea (Hex-fuco/chl a = 0.29) and K. umbella (Hex-fuco/chl a = 0.32) (Table 4). The 312 contribution of acyloxyfucoxanthins (6 compounds) to the fucoxanthin total pool varied 313 among strains. The Hex-fuco derivatives were always more abundant than the But-fuco 314 pigments. The fucoxanthin pool in chloroplast Type-3 was formed by fuco, But-fuco and 315 Hex-fuco with no keto-derivatives. Fuco was the major carotenoid (Table 4) in five out of six 316 Karlodinium veneficum strains (Fuco/chl a = 0.30-0.75) and Hex-fuco was the major 317 carotenoid in K. armiger, K. decipiens and K. veneficum VGO870 (Hex-Fuco/chl a = 0.21-318 0.45). Takayama cf. helix showed Fuco as major carotenoid (Fuco/chl a= 1.18) with only a 319 minor contribution of Hex-fuco (Hex-fuco/chl a = 0.06). 320

Table 4 around here

Gyroxanthin diester pigments were present in chloroplast Types-2 and -3 except in *Takayama* cf. *helix* (Table 4). In *Karenia* species, the pigment ratio of the major form (peak 45: GyrE C12:0) was rather constant (GyrE/chl a = 0.11-0.17), a more polar gyroxanthin-like compound (peak 43) was the second most adundant form (GyrE1-like/chl a = 0.01-0.03). In *Karlodinium* species GyrE C12:0 (peak 45) was also the major compound (GyrE / chl a=0.11-0.24), with variable contribution of the more retained GyrE C14:0 (peak 46, GyrE / chl a = 0.02-0.09). Pigment patterns in Dinophyta

Page 14 of 79

Fucoxanthin was the major carotenoid in Type-4 chloroplasts (0.52 to 0.75), while $\beta\psi$ carotene could only be quantified in *K. foliaceum* VGO556 (0.052). Pigment ratios in Type-5 (*Dinophysis* species) were rather constant with Allo/chl *a* = 1.32-1.62, Croco/chl *a* = 0.05-0.08 and $\beta\epsilon$ -car/chl *a* = 0.15-0.20.

Table 5 around here

Chloroplast Type-6, represented by four strains of Lepidodinium chlorophorum, showed 335 marked differences in carotenoids and chl b pigment ratios (Table 5). The North Sea strain 336 (BAH100ME, the type culture) showed violaxanthin as major carotenoid (Viola/chl a = 0.32), 337 with an unknown carotenoid (peak 46) as the second most important carotenoid (Unk car/chl 338 a = 0.18). In both British Channel (RCC1488, RCC 1489) and Nervion River (Dino16EUH) 339 strains, the unknown carotenoid was the major carotenoid (Unk car/chl a = 0.14-0.17) 340 followed by violaxanthin (Viola/chl a = 0.08-0.32). Lutein was detected as traces in the four 341 strains. βε-car was the major carotene in BAH100ME and Dino16EUH strains (βε-car/chla: 342 0.03-0.11). 343

344

345

Occurrence of pigment-based chloroplast types across dinoflagellate taxa

The distribution patterns of pigment-based chloroplast types across dinoflagellate taxa are summarised in Table 6. These examples showed the different specificity of the pigment types across Dinophyta. All orders, except Dinophysiales, include some genera with chloroplast Type-1 chloroplast. Besides representatives of Type-1, Gymnodiniales include other genera of chloroplast Types -2, -3 and -6. Finally, the order Peridiniales encompasses representatives of pigment Type-4 as well as the already mentioned Type-1.

353 Table 6 around here

Three chloroplast types contain a single genus (Type-2 associated to *Karenia*, Type-5 to *Dinophysis* and Type-6 to *Lepidodinium*), while pigment Type-3 is linked to two genera (*Karlodinium* and *Takayama*) and Type-4 is confined to three genera (*Durinskia*, *Galeidinium* and *Kryptoperidinium*).

- 358
- 359

DISCUSSION

360 **Comparison with previous surveys of Dinophyta**

The first comprehensive study of chloroplast pigments in dinoflagellates used thin layer 361 chronomatography to describe the chlorophyll and carotenoid composition of 22 species 362 belonging to the orders Gymnodiniales, Gonyaulacales, Peridiniales and Prorocentrales 363 (Jeffrey et al. 1975). Peridinin was the major carotenoid in 19 of the species, while 364 fucoxanthin was the major carotenoid in 3 peridinin-lacking peridiniales. Since then, 365 dinoflagellates with other pigment composition have been reported (chl b, Watanabe et al. 366 1990; alloxanthin, Meyer-Harms & Pollehne 1998; and acyloxyfucoxanthins, Bjørnland & 367 Tangen 1979, Tengs et al. 2000). 368

We applied HPLC to review the pigment composition of dinoflagellates belonging to six orders of the division Dinophyta (Table S1). Members of the Gonyaulacales, Prorocentrales and Thoracosphaerales analysed contained exclusively the peridinin-containing Type-1 chloroplast (Table 6), which included around two-thirds of the studied species.

Recently, an exception to the common chloroplast Type-1 distribution in Gonyaulacales was observed in *Amylax buxus* and *Amylax triacantha*, where anucleated cryptophyte vestiges (probably *Teleaulax*-related) were detected (Koike & Takishita 2008). The order Dinophysiales comprises mostly heterotrophic dinoflagellates with only a reduced number of autotrophic species belonging to the genus *Dinophysis*. In this case the cryptophyte-Type-5 chloroplast was present, although the presence of a haptophyte-type plastid in *Dinophysis* 379 mitra has been claimed (Koike et al. 2005). Such an important exception should be supported 380 by evidences from HPLC pigment analysis, which has not been yet performed. Peridinincontaining species have never been reported in Dinophysiales. The order Peridiniales includes 381 both peridinin-containing chloroplast Type-1 and the fucoxanthin-containing Type-4. The 382 major pigment-based chloroplast diversity was observed in the Gymnodiniales, with 4 out of 383 6 chloroplast Types defined here (Types-1, -2, -3 and -6). In addition, a few Gymnodiniales 384 species have been reported to harbour endosymbiotic algae belonging to chloroplast Type-4 385 (Gymnodinium quadrilobatum, Horiguchi & Pienaar 1994) and Type-5 (Amphidinium latum, 386 Horiguchi & Pienaar 1992) chloroplasts, but pigment analyses were not detailed in these 387 388 studies. These findings support the description of Gymnodiniales as a heterogeneous order, as previously indicated by Saldarriaga et al. (2001) 389

390

391 Pigment–based chloroplast types and dinophyte phylogeny

Pigmentary groups in phytoplankton have been traditionally based on the occurrence of 392 certain marker pigments (Jeffrey et al. 1999). However, in the present study we define 393 pigment-based chloroplast types to illustrate the fact that dinoflagellates include not only 394 secondary but also tertiary plastids from different algal lineages. Dinoflagellates have 395 396 acquired and lost their chloroplasts multiple times during their evolutionary history. The ability to acquire and maintain other eukaryotic plastids has led to the diversity of 397 dinoflagellate plastids (Koike et al. 2005). Peridinin-pigmented dinoflagellates contain 398 399 secondary plastids that appear to have undergone more plastid genome reduction than other eukaryotes. It is generally accepted that peridinin-containing dinoflagellate plastids are 400 derived from red algae (Zhang et al. 1999), but whether they are secondary plastids equivalent 401 402 to plastids of stramenopiles, haptophytes, or cryptophytes, or they are tertiary plastids derived from one of the other secondary plastids, has not yet been completely resolved (Wang et al. 403

2008). The number of endosymbiotic events in dinoflagellates probably exceeds those in other
known eukaryotes (Takishita et al. 2002).

Saldarriaga et al. (2004) proposed a scheme of the evolutionary history of dinoflagellates based on molecular trees of concatenated nuclear genes, morphological and palaeontological information. If we superimpose on that scheme the pigment-based chloroplast types (Fig. 3), it appears that most of the pigment diversity in dinoflagellates occurs on a certain group of dinoflagellate orders (Peridiniales, Dinophysiales, Gymnodiniales, Thoracosphaerales) sharing a common ancestor.

Peridiniales occupy a central position in the evolution of dinoflagellates and probably gave rise to other thecate taxa and also to Thoracosphaerales and Blastodiniales. Montresor et al. (2003) reported that Suessiales contain peridinin. *Karenia* and *Karlodinium* occupy an early divergent branch in many molecular studies and would represent also the first deviation of the Chloroplast Type-1 (peridinin) among dinoflagellates.

417 Fig 3 around here

418 **Tertiary plastids in dinoflagellates**

419 Karenia – pigment Type-2 chloroplast.

Chloroplast Type-2 are considered tertiary plastids related to Type-7 haptophytes (Zapata et 420 al. 2004): both contain chls c_2 , c_3 and MGDG-chl c_2 (14:0/14:0) Chrysochromulina-type. 421 However, the carotenoid composition of Karenia species detected in our study does not match 422 any of the haptophyte pigment types described to date. In addition to Fuco, Hex-fuco and 4-423 keto-Hex-fuco, three novel pigments were detected. One of these (peak 15) was tentatively 424 identified as 4-keto-But-fuco, the other two pigments (peaks 13 and 22) shared both 425 absorption spectra with the above mentioned 4-keto forms (Garrido et al. in preparation). 426 Pigment Type-2 embraces well-known HAB species belonging to the genera Karenia (i.e., K. 427

brevis, K. mikimotoi, K selliformis). It is noteworthy that the particular fingerprint profile of *Karenia* species could be useful to detect their presence in monitoring programmes (Garrido et al. in preparation).

Gyroxanthin diester was considered a marker pigment for Karlodinium veneficum 431 (=Gymnodinium galatheanum) (see Bjørnland et al. 2000) and also for Karenia brevis 432 (Bjørnland et al. 2003). However, a pigment with similar chromatographic properties has been 433 also detected in the pelagophyceans Pelagomonas calceolata (Bjørnland et al. 2003), and 434 tentatively in Aureococcus anophageferens, Pelagococcus subviridis (Zapata 2005) and 435 several Haptophytes (Zapata 2005). The occurrence of gyroxanthin in Karlodinium and 436 437 Karenia is noticeable for its quantitative relevance, but it is not taxon-specific (Garcés et al. 2006). The genus Karenia currently embraces 13 species (Guiry & Guiry 2010). Thus, the 438 homogeneity in the pigment composition observed in the 4 species here analysed should be 439 confirmed by the analysis of 9 additional species whose original or further description (see 440 Table S5 in the supplement) did not include pigment data. 441

442

443 Karlodinium and Takayama –pigment Type-3 chloroplasts

Chloroplast Type-3 lacks keto forms of acyloxyfucoxanthin-derivatives, and the occurrence of 444 both MGDG-chl c_2 and gyroxanthin diester is not a general trait. Pigment Type-3 groups the 445 well-known HAB species Karlodinium veneficum (=K. micrum, Gymnodinium galatheanum). 446 The genus Karlodinium currently includes 10 species (de Salas et al. 2008). However, the 447 pigment composition of five of them has not yet been analysed (see Table S5). HPLC pigment 448 analysis of K. australe (de Salas et al. 2005) indicates that this species contains Fuco and 449 Hex-fuco as the main carotenoid pigments, with But-fuco present in trace amounts. K. 450 australe did not produce gyroxanthin-diester, a pigment typical of Karlodinium veneficum (K. 451 micrum, Bjørnland et al. 2000) and Karenia species (de Salas et al. 2004). 452

In a recent study Bachvaroff et al. (2009) analysed pigment variability between *Karlodinium veneficum* strains and detected two GyrE compounds sharing its absorption spectra and molecular weight. They were noted as GyrE and *cis* GyrE isomers, not as esters with different fatty acid residues.

The marine dinoflagellate genus Takayama currently comprises 6 species (Table S5). 457 Takavama cf. helix (VGO-341) contains a MGDG-chl c2 pigment previously detected in 458 Emiliania huxleyi (peak 53) and a second one also detected in Prymnesium faveolatum (peak 459 60). A different pigment profile was observed in T. tasmanica which contains a GyrE-like 460 pigment more polar than that detected in Karenia umbella (de Salas et al. 2004). In addition, 461 Takayama tasmanica and T. helix contain a MGDG-chl c2, closely eluting to zeaxanthin, 462 detected also in Haptolina (=Chrysochromulina) hirta and other Chrysochromulina species 463 (Zapata et al. 2001, Seoane et al. 2009) recently reasigned to the new genus Haptolina 464 (Edvardsen et al. 2011). However, the 2 Takayama species differ in the occurrence of GyrE 465 restricted to T. tasmanica, and Hex-fuco only detected in T. helix (de Salas et al. 2003). The 466 other four Takayama species have not yet been analysed for pigment composition: T. 467 acrotrocha, T. cladochroma, T. pulchella (de Salas et al. 2003) and T. tuberculata (de Salas et 468 al. 2008). 469

470

471 Durinskia and Kryptoperidinium – pigment Type-4 chloroplasts

The dinoflagellate species included in this chloroplast type correspond with those described as bearing diatom endosymbionts: *Durinskia baltica* (=*Peridinium balticum*) (Withers et al. 1977, Carty and Cox 1986) and *Kryptoperidinium foliaceum* (Jeffrey & Vesk 1976, Kite et al. 1988). Chlorophyll c_1 is the dominant chl *c*-pigment in *K. foliaceum* and *D. baltica*, such a feature is also characteristic of *Pavlova* spp. (Van Lenning et al. 2003, Zapata et al. 2004) but it is unusual in diatoms (Stauber & Jeffrey 1988).

In addition to fucoxanthin and chls c_1 and c_2 , Type 4-dinoflagellates contain minor chl 478 c-like pigments first detected, respectively, in the Pavlovophyceans Pavlova gyrans (Fawley 479 1989) and Exanthemachrysis gayraliae (Van Lenning et al. 2003). These pigments occur also 480 in several chrysophytes (e.g. synurophyceans and chrysophyceans, Jeffrey & Wright 2006, 481 Zapata 2005). Previous HPLC analysis of K. foliaceum (Kempton et al. 2002, McEwan & 482 Keeling 2004) did not detect these pigments. The presence of β , Ψ -carotene in K. foliaceum 483 and D. baltica is a singular feature with no correspondence in Bacillariophyceae and 484 Pavlovophyceans (haptophytes pigment Type-2). However, β , Ψ -car is a light-sensitive 485 pigment so its potential role as marker pigment is restricted to high light environments. 486 Molecular analyses have traced the chloroplast origin of Peridinium balticum (=Durinskia 487 *baltica*) and *Kryptoperidinium foliaceum* to a pennate diatom (Chesnick et al. 1997). 488

According to Imanian et al (2010) the endosymbiont in these dinoflagellate species 489 would be closely related with the pennate diatom genus Nitzschia. However K. foliaceum 490 seems to have incorporated two exogenous plasmids. These authors proposed the term 491 "dinotom" to refer to the complex cell derived from this tertiary endosymbiosis. The nature of 492 the endosymbiont is similar in Durinskia cappensis (Pienaar et al. 2007). In the 493 dinoflagellates Galeidinium rugatum (Tamura et al. 2005) and Peridinium quinquecorne 494 (Horiguchi & Takano 2006), the diatom plastid seems to be from a centric diatom (Takano et 495 al. 2008) obtained by serial replacement of diatom endosymbionts. Whether this different 496 chloroplast (centric vs. pennate diatom) source is reflected in the pigment composition of G. 497 498 rugatum and P. quinquecorne is still under debate.

499

500 Dinophysis – pigment Type-5 chloroplasts

501 The genus *Dinophysis* includes both photosynthetic and non-photosynthetic (heterotrophic) 502 species, and the former are known to possess cryptophyte-type plastids that contain the 503 phycobilin pigment phycoerythrin (Hewes et al. 1998, Vesk et al. 1996, Hackett et al. 2003).

The origin of the Dinophysis spp. chloroplast was traced to Teleaulax amphioxeia (Janson 504 2004) and closely related to Geminiphera cryophyla in Dinophysis spp. from Greenland Sea 505 (Janson 2004, Minnhagen & Janson 2006). Most species belonging to the genus Dinophysis 506 harbor chloroplasts of cryptophyte origin. Whether these chloroplasts are temporarily 507 sequestered from the prey (kleptoplastids) or permanent is controversial. Considering both 508 molecular and ultrastructural evidence, Garcia-Cuetos et al. (2010) indicated that the plastids 509 510 in D. acuminata are permanent and originate from Teleaulax or another closely related cryptophyte genus. Koike et al. (2005) suggested the presence of haptophyte-type plastid in 511 Dinophysis mitra though HPLC pigment data were not reported. If this is confirmed, it would 512 513 be the first case of an armoured dinoflagellate containing a haptophyte-type chloroplast. The difficulty in culturing *Dinophysis* was a bottleneck for many decades to advance in basic 514 515 studies on its biology (Park et al. 2006). At present, distinct species of Dinophysis have been cultured by different laboratories (Dinophysis acuminata (Park et al. 2006), D. fortii (Nagai 516 2008), D. caudata (Nishitani et al. 2008a), D. infundibulus (Nishitani et al. 2008b), D. tripos 517 (Rodríguez et al. 2012)). However, our study represents the first HPLC pigment data from 518 cultured Dinophysis species. 519

520

521 Lepidodinium chlorophorum – pigment Type-6 chloroplasts

The genus *Lepidodinium* was recently revised (Hansen et al. 2007), and the previously named *Gymnodinium chlorophorum* was renamed as *L. chlorophorum*. The extant plastid in the dinoflagellate *Lepidodinium viride* is most probably acquired by plastid replacement via tertiary endosymbiosis (reviewed by Delwiche 2007). This dinoflagellate possesses a green-

pigmented plastid surrounded by four membranes. First evidence on pigment composition (Dr 526 W.W.C. Gieskes, personal communication to Elbrächter & Schnepf (1996)) pointed out the 527 presence of prasinoxanthin; as a consequence, the prasinophyte-origin of the chloroplast was 528 assumed. Recent results indicate that the green plastids in *Lepidodinium* are derived from an 529 alga belonging to core-chlorophytes (Matsumoto et al. 2011, Minge et al. 2010), distinct from 530 the ancient prasinophyceans. Our results show clearly that L. chlorophorum lacks 531 prasinoxanthin. Moreover, the results obtained (see Table 2) differ also from other pigment 532 patterns so far observed within the prasinophycean algae (Egeland et al. 1995, Garrido et al. 533 2009, Latasa et al. 2004, Yoshi 2006). 534

The absence (or traces) of lutein it is noticeable, as is the occurrence of an unknown carotenoid (peak 42) with similar retention time as lutein in the HPLC system employed. Both differences in UV-vis spectrum (Table 1) and chromatographic retention using a different HPLC method (Garrido et al. 2009) allowed distinction of the unknown pigment from lutein and other major pigments detected in Chlorophyta. The structural elucidation of this carotenoid (peak 42) is currently under investigation (Zapata et al. in preparation).

541

542 Implications of dinoflagellate pigment-types in biological oceanography and 543 chemotaxonomy.

The use of HPLC pigment analysis for inferring phytoplankton assemblages through marker pigments increased the interest for phytoplankton pigments in oceanography (revised by Jeffrey et al. 1997, 1999, Jeffrey & Wright 2006). The use of peridinin to map the contribution of dinoflagellates to total chl *a* is generally accepted due to the prevalence of peridinin-containing chloroplasts in photoautotrophic dinoflagellates. In fact, our study seems to validate this general approach, as peridinin was the characteristic marker pigment in twothirds of the analysed species. However, this approach is prone to error if a single pigment

algorithm is employed. For example, the contribution of dinoflagellates to total chl a has been 551 usually obtained by using a fixed equation: [chl a] DINO = 1.5 [Peri] obtained from a single 552 Amphidinium sp. isolate (see Letelier et al. 1993), which corresponds to Peri/chl a ratios of = 553 0.67 (mass ratio) or 0.65 (molar ratio, where molar ratio is MW chl a /MW Perid = 0.97 x 554 mass ratio). The contribution of dinoflagellates to total chl a assuming such a fixed factor will 555 produce either overestimation or subestimation, assuming the Peri/chl a range obtained in the 556 present paper (0.54-2.06 molar ratio, Table 3). This range for Peri/chl a ratios agrees well 557 with that obtained in field studies using chemical taxonomy programme CHEMTAX (from 558 0.52 to 1.51, Table S6). CHEMTAX (see Mackey et al. 1996) has demonstrated its capacity 559 for reconstructing phytoplankton assemblages from HPLC pigment data (Wright et al. 1996, 560 Mackey et al. 1998, Higgins & Mackey 2000, Wright & van den Enden 2000, Rodríguez et al. 561 2002, 2003, 2006). This program relies upon: (i) a general information of major algal groups 562 present in the study area (ii) an initial pigment to chl a ratio matrix basically obtained from 563 the literature for relevant phytoplankton groups (algal classes), or even user-defined algal 564 pigment classes (Rodriguez et al. 2003). In this sense the values shown in Tables 3 to 5 565 represent improved pigment ratios and define new "chemotaxonomic categories" (i.e.: Dinos 566 Types-1 to -6) which may be incorporated into CHEMTAX analysis. 567

568

The use of peridinin as a single marker pigment for dinoflagellates ignores the potential contribution of species from chloroplast types 2-6, whose contribution to chl *a* would be assigned to other algal groups with similar pigment composition (Table S7). For example, the contribution of Hex-fuco-containing dinoflagellates to total chl *a* might be underestimated due to the presence of haptophytes sharing similar pigment composition. Some bloom-forming dinoflagellates (*Karenia brevis, K. mikimotoi, Karlodinium veneficum*) share several pigment markers with bloom-forming haptophytes (*Chrysochromulina* spp., *Emiliania huxleyi*,

Phaeocystis spp.), but the specificity of chloroplast Type-2 allows us to discriminate Karenia 576 species from hex-fuco-containing haptophytes. Comparing molar pigment ratios of 577 haptophytes from pigmentary groups-6, 7 and 8 (sensu Zapata et al. 2004) with Hex-fuco-578 containing dinoflagellates, the values chl c_3 /chl a, chl c_2 /chl a, chl c_3 /chl c_2 and total chls 579 c/total fuco are consistently higher in haptophytes relative to dinoflagellates of the Types 2-580 and -3 (see Tables 3 and 5 in Zapata et al. 2004). The index MGDG-chl c_2 / chl a in Type-2 581 and -3 dinoflagellates is an order of magnitude lower than the values obtained within Types-6, 582 7 and 8 haptophytes (see Zapata et al. 2001, 2004, Seoane et al. 2009). 583

Type-4 dinoflagellates show a pigment profile closely related to some diatoms (Zapata 584 585 2005) and pavlovophyeans Type-2 (e. g. Pavlova gyrans: chl c2-like P. gyrans type). In addition, Durinskia baltica and Kryptoperidinium foliaceum contain $\beta \psi$ -car which was 586 claimed as the differential pigment in Kryptoperidinium foliaceum (Kempton et al. 2002). 587 However, $\beta \psi$ -car contents have been shown to be dependent of light intensity in *Tetraselmis* 588 suecica (Garrido et al. 2009), so the marker quality of this pigment in other species needs 589 confirmation under different light regimes. Type-5 dinoflagellates share the pigment profile 590 with autotrophic cryptophytes. In consequence, it is not possible to discriminate both algal 591 groups in natural samples. The occurrence of green-dinoflagellates is easily detected by 592 593 pigment analysis, as both the presence of chl b and the singular carotenoid profile are very characteristic. No other chl b-containing organism with similar pigment signature has been 594 595 reported so far.

The importance of dinoflagellates in the picophytoplankton fraction, which have not been cultured yet, has been evidenced. For example, Latasa & Bidigare (1998) found that often more than 50% (and up to 75%) of peridinin appeared in the $< 2 \mu m$ fraction, whereas Wright et al. (2009), on the basis of peridinin concentration, estimated that dinoflagellates accounted for 0–11% of picoplanktonic chl *a* in Antarctic waters. In addition, molecular 601 sequences from many unknown dinoflagellates have been retrieved in open ocean samples 602 (Moon-van der Staay et al. 2001, Lin et al. 2006). All of these facts underscore the necessity 603 to isolate and cultivate new species of small dinoflagellates so that their pigment composition 604 can be characterized, to advance in our knowledge about the diversity of photosynthetic 605 dinoflagellates in natural samples.

606

Acknowledgements. This work was supported by funds from the Xunta de Galicia, Spain
(PGIDIT-06PXIB602143PR) from the Spanish Ministry of Science and Innovation (CSIC
(200930I009) and from Instituto Español de Oceanografía (project CCIEO). This manuscript
is a contribution form the Unidad Asociada IEO/CSIC "Fitoplancton Tóxico". We thank E.
Campaña and N. Sanz for HPLC pigment analyses and I. Ramilo and A. FernándezVillamarín for algal culture technical assistance.

613

614		
	Б	0

LITERATURE CITED

615	Bachvaroff TR, Adolf JE, Place AR (2009) Strain variation in Karlodinium veneficum
616	(Dinophyceae): toxin profiles, pigments, and growth characteristics. J Phycol 45:137-153
617	Bjørnland T (1990) Chromatographic separation and spectrometric characterization of native
618	carotenoids from the marine dinoflagellate Thoracosphaera heimii. Biochem Syst Ecol
619	18:307-316
620	Bjørnland T, Tangen K (1979) Pigmentation and morphology of a marine Gyrodinium
621	(Dinophyceae) with a major carotenoid different from peridinin and fucoxanthin. J Phycol
622	15:457-463
623	Bjørnland T, Fiksdahl A, Skjetne T, Krane J, Liaaen-Jensen S (2000) Gyroxanthin - the first
624	allenic acetylenic carotenoid. Tetrahedron 56:9047-9056
625	Bjørnland T, Haxo FT, Liaaen-Jensen S (2003) Carotenoids of the Florida red tide Karenia
626	brevis. Biochem Syst Ecol 31:1147-1162
627	Blackburn SI, Hallegraeff GM, Bolch CJ (1989) Vegetative reproduction and sexual life cycle
628	of the toxic dinoflagellate Gymnodinium catenatum from Tasmania, Australia. J Phycol
629	25:577-590
630	Bolch CJS, Negri AP, Hallegraeff GM (1999) Gymnodinium microreticulatum sp. nov.
631	(Dinophyceae): a naked, microreticulate cyst-producing dinoflagellate, distinct from
632	Gymnodinium catenatum and Gymnodinium nolleri. Phycologia 38:301-313
633	Carty S, Cox ER (1986) Kansodinium gen. nov. and Durinskia gen. nov.: two genera of
634	freshwater dinoflagellates (Pyrrhophyta). Phycologia 25:197-204
635	Chesnick JM, Kooistra WHCF, Wellbbrock U, Medlin LK (1997) Ribosomal RNA analysis
636	indicates a benthic pennate diatom ancestry for the endosymbionts of the dinoflagellates
637	Peridinium foliaceum and Peridinium balticum (Pyrrhophyta). J Eukaryot Microbiol

638 44:314-320

639	Daugbjerg N, Hansen G, Larsen J, Moestrup Ø (2000) Phylogeny of some of the major genera
640	of dinoflagellates based on ultrastructure and partial LSU rDNA sequence data, including
641	the erection of three new genera of unarmoured dinoflagellates. Phycologia 39:302-317
642	De Salas MF, Bolch CJS, Botes L, Nash G, Wright SW, Hallegraeff GM (2003) Takayama
643	gen. nov. (Gymnodiniales, Dinophyceae), a new genus of unarmed dinoflagellates with
644	sigmoid apical grooves, including the description of two new species. J Phycol 39:1233-
645	1246
646	De Salas MF, Bolch CJS, Hallegraeff GM (2004) Karenia umbella sp. nov. (Gymnodiniales,
647	Dinophyceae), a new potentially ichthyotoxic dinoflagellate species from Tasmania,
648	Australia. Phycologia 43:166-175
649	De Salas MF, Bolch CJS, Hallegraeff GM (2005) Karlodinium australe sp. nov.
650	(Gymnodiniales, Dinophyceae), a new potentially ichthyotoxic unarmoured dinoflagellate
651	from lagoonal habitats of south-eastern Australia. Phycologia 44:640-650
652	De Salas MF, Laza-Martínez A, Hallegraeff GM (2008) Novel unarmored dinoflagellates
653	from the toxigenic family Kareniaceae (Gymnodiniales): five new species of Karlodinium
654	and one new Takayama from the Australian sector of the Southern Ocean. J Phycol
655	44:241-257
656	Delwiche CF (2007) The origin and evolution of dinoflagellates. In: Falkowski PG, Knoll AH
657	(eds) Evolution of primary producers in the sea. Elsevier, Boston, p 191-205
658	Dodge J (1989) Phylogenetic relationships of dinoflagellates and their plastids. In: The
659	Chromophyte Algae: Problems and Perspectives. Green JC, Leadbeater BSC, Diver WI
660	(eds) Oxford, UK: Claredon Press, pp 207-227
661	Edvardsen B, Eikrem W, Throndsen J, Saez AG, Probert I, MedlinLK (2011). DNA
662	phylogenies and a morphological revision provide the basis for a revised taxonomy of the
663	Prymnesiales (Haptophyta). Eur. J. Phycol. 46: 202–228

- Egeland ES, Eikrem W, Throndsen J, Wilhelm C, Zapata M, Liaaen-Jensen S (1995)
 Carotenoids from further prasinophytes. Biochem Syst Ecol 23:745-755
- 666 Egeland ES, Garrido JL, Zapata M, Maestro MA, Liaaen-Jensen S (2000) Algal carotenoids.
- Part 64. Structure and chemistry of 4-keto-19'-hexanoyloxyfucoxanthin with a novel
 carotenoid end group. J Chem Soc Perkin Trans 1, 2000-8:1223-1230
- 669 Elbrächter M, Schnepf E (1996) Gymnodinium chlorophorum, a new, green, bloom-forming
- dinoflagellate (Gymnodiniales, Dinophyceae) with a vestigial prasinophyte endosymbiont.
 Phycologia 35:381-393
- Fawley MW (1989) A new form of chlorophyll *c* involved in light harvesting. Plant Physiol
 91:727-732
- Fraga S, Bravo I, Delgado M, Franco JM, Zapata M (1995) *Gyrodinium impudicum* sp. nov.
 (Dinophyceae), a non toxic, chain-forming, red tide dinoflagellate. Phycologia 34:514-521
- Fraga S, Penna A, Bianconi I, Paz B, Zapata M (2008) *Coolia canariensis* sp. nov.
 (Dinophyceae), a new nontoxic epiphytic benthic dinoflagellate from the Canary Islands. J
 Phycol 44:1060-1070
- Fraga S, Rodríguez F, Caillaud A, Diogène J, Raho N, Zapata M (2011) *Gambierdiscus excentricus* sp. nov (Dinophyceae), a benthic toxic dinoflagellate from the Canary Islands
 (NE Atlantic Ocean). Harmful Algae 11:10-22.
- Garcés E, Fernández M, Penna A, Van Lenning K, Gutierrez A, Camp J, Zapata M (2006)
 Characterization of NW Mediterranean *Karlodinium* spp. (Dinophyceae) strains using
 morphological, molecular, chemical, and physiological methodologies. J Phycol 42:10961112
- Garcia-Cuetos L, Moestrup Ø, Hansen PJ, Niels Daugbjerg N (2010) The toxic dinoflagellate
 Dinophysis acuminata harbors permanent chloroplasts of cryptomonad origin, not
 kleptochloroplasts. Harmful Algae 9:25-38

- Garrido JL, Zapata M (1997) Reversed-phase high-performance liquid chromatography of
 mono- and divinyl chlorophyll forms using pyridine-containing mobile phases and
 polymeric octadecylsilica. Chromatographia 44:43-49
- Garrido JL, Zapata M (1998) Detection of new pigments from *Emiliania huxleyi* (Prymnesiophyceae) by high-performance liquid chromatography, liquid chromatography mass spectrometry, visible spectroscopy, and fast atom bombardment mass spectrometry. J
 Phycol 34:70-78
- Garrido JL, Zapata M (2006) Chlorophyll analysis by new HPLC methods. In: Advances in
 Photosynthesis and Respiration, Vol 25, Grimm B, Porra RJ, Rüdige W, Scheer U (eds)
 Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions and
 applications. Springer, Dordrecht, p 109-121
- Garrido JL, Otero J, Maestro MA, Zapata M (2000) The main non-polar chlorophyll *c* from
 Emiliania huxleyi (Prymnesiophyceae) is a chlorophyll *c*₂-monogalactosyldiacylglyceride
 ester: a mass spectrometry study. J Phycol 36:497-505
- Garrido JL, Rodríguez F, Zapata M (2009) Occurrence of loroxanthin, loroxanthin decenoate,
 and loroxanthin dodecenoate in *Tetraselmis* species (Prasinophyceae, Chlorophyta). J
 Phycol 45:366-374
- Gast RJ, Moran DM, Beaudoin DJ, Blythe JN, Dennett MR, Caron DA (2006) Abundance of
 a novel dinoflagellate phylotype in the Ross Sea, Antarctica. J Phycol 42:233-242
- Gast RJ, Moran DM, Dennett MR, Caron DA (2007) Kleptoplasty in an Antarctic
 dinoflagellate: caught in evolutionary transition? Environ Microbiol 9:39-45
- Geider R, Gunter PA (1989) Evidence for the presence of phycoerythrin in *Dinophysis norvegica*, a pink dinoflagellate. Br Phycol J 24:195-198
- Guillard RRL, Hargraves PE (1993) Stichochrysis immobilis is a diatom not a chrysophyte.
- 713 Phycologia 32:234-236

- Guiry MD, Guiry GM (2010) AlgaeBase. World-wide electronic publication, National
 University of Ireland, Galway [updated: 05 June 2010; verified 28 January 2010].
 Available at URL: http://www.algaebase.org/
- 717 Hackett JD, Maranda L, Yoon HS, Bhattacharya D (2003) Phylogenetic evidence for the
- cryptophyte origin of the plastid of *Dinophysis* (Dinophysiales, Dinophyceae). J Phycol
- 719 39:440-448
- Hallegraeff GM, Anderson, DM, Cembella AD (2003) Manual of harmful marine microalgae.
 UNESCO, Paris, 793 p
- Hansen G, Daugbjerg N, Henriksen P (2000) Comparative study of *Gymnodinium mikimotoi*
- and *Gymnodinium aureolum* comb. nov. (= *Gyrodinium aureolum*) based on morphology,
- pigment composition, and molecular data. J Phycol 36:394-410
- Hansen G, Botes L, De Salas M (2007) Ultrastructure and large subunit rDNA sequences of
 Lepidodinium viride reveal a close relationship to *Lepidodinium chlorophorum* comb. nov.
 (= *Gymnodinium chlorophorum*). Phycol Res 55:25-41
- Helfrich M, Ross A, King GC, Turner AG, Larkum AWD (1999) Identification of [8-vinyl] protochlorophyllide *a* in phototrophic prokaryotes and algae: chemical and spectroscopic
 properties. Biochim Biophys Acta 1410:262-272
- Hewes CD, Mitchell BG., Moissan TA, Vernet M, Reid FMH (1998) The phycobilin
 signatures of chloroplasts from three dinoflagellate species: a microanalytical study of *Dinophysis caudata*, *D. fortii*, and *D. acuminata* (Dinophysiales, Dinophyceae). J Phycol
 34:945-951
- Higgins HW, Mackey DJ (2000) Algal class abundances, estimated from chlorophyll and
 carotenoid pigments, in the western Equatorial Pacific under El Niño and non-El Niño
 conditions. Deep-Sea Res I 47:1461-1483

- Hiller RG (1999) Carotenoid as components of the light-harvesting proteins of eukaryotic
- algae. In: Frank HA, Young AJ, Britton G, Cogdell RJ (eds) The photochemistry of
 carotenoids. Kluwer Academic Publishers, Dordrecht, p 81-98
- 741 Hofmann E, Wrench PM, Sharples FP, Hiller RG, Welte W, Diderichs K (1996) Structural
- basis of light harvesting by carotenoids: peridinin-chlorophyll-protein from *Amphidinium*
- 743 *carterae*. Science 272:1788-1791
- Horiguchi T, Pienaar RN (1992) *Amphidinium latum* Lebour (Dinophyceae), a sand-dwelling
 dinoflagellate feeding on cryptomonads. Jpn J Phycol 40:353-363
- Horiguchi T, Pienaar RN (1994) Ultrastructure of a new marine sand-dwelling dinoflagellate,
- *Gymnodinium quadrilobatum* sp. nov. (Dinophyceae) with special reference to its
 endosymbiotic alga. Eur J Phycol 29:237-245
- Horiguchi T, Takano Y (2006) Serial replacement of a diatom endosymbiont in the marine
 dinoflagellate *Peridinium quinquecorne* (Peridiniales, Dinophyceae). Phycol Res 54:193200
- Imanian B, Pomber J-F, Keeling PJ (2010) The complete plastid genomes of the two
 'Dinotoms' *Durinskia baltica* and *Kryptoperidinium foliaceum*. PLoS One 5:1-9
- Janson S (2004) Molecular evidence that plastid in the toxin-producing dinoflagellate genus
 Dinophysis originate from the free-living cryptophyte *Teleaulax amphioxeia*. Environ
 Microbiol 6:1102-1106
- Jeffrey SW (1997a) Chlorophyll and carotenoid extinction coefficients. In: Jeffrey SW,
 Mantoura RFC, Wright SW (eds) Phytoplankton pigments in oceanography: guidelines to
 modern methods. UNESCO Publishing, Paris, p 595-596
- 760 Jeffrey SW (1997b) Structural relationships between algal chlorophylls. In: Jeffrey SW,
- 761 Mantoura RFC, Wright SW (eds) Phytoplankton pigments in oceanography: guidelines to
- modern methods. UNESCO Publishing, Paris, p 566-571

- 763 Jeffrey SW, Mantoura RFC (1997) Pigment abbreviations used by SCOR WG 78. In: Jeffrey
- SW, Mantoura RFC, Wright SW (eds) Phytoplankton pigments in oceanography:
 guidelines to modern methods. UNESCO Publishing, Paris, p 564-565
- JeffreySW, Vesk M (1976). Further evidence for a membrane-bound endosymbiont within the
 dinoflagellate *Peridinium foliaceum*. J Phycol 12:450-455
- Jeffrey SW, Vesk M (1997) Introduction to marine phytoplankton and their pigment
 signatures. In: Jeffrey SW, Mantoura RFC, Wright SW (eds) Phytoplankton pigments in
 oceanography: guidelines to modern methods, UNESCO Publishing, Paris, p 37-84
- Jeffrey SW, Wright SW (2006) Photosynthetic pigments in marine microalgae: insights from
 cultures and the sea. In: Subba Rao DV (ed) Algal cultures, analogues of blooms and
- applications. Science Publishers, Plymouth, p 33-90
- Jeffrey SW, Sielicki M, Haxo FT (1975) Chloroplast pigment patterns in dinoflagellates. J
 Phycol 11:374-384
- Jeffrey SW, Mantoura RFC, Bjørnland T (1997) Data for the identification of 47 key
 phytoplankton pigments. In: Jeffrey SW, Mantoura RFC, Wright SW (eds) Phytoplankton
 pigments in oceanography: guidelines to modern methods. UNESCO Publishing, Paris, p
- 449-559
- Jeffrey SW, Wright SW, Zapata M (1999) Recent advances in HPLC pigment analysis of
 phytoplankton. Mar Freshwater Res 50:879-896
- Jeong HJ, Yoo YD, Park JY, Song JY, Kim ST, Lee SH, Kim KY, Yih WH (2005) Feeding
- by phototrophic red-tide dinoflagellates: five species newly revealed and six species
 previously known to be mixotrophic. Aquat Microb Ecol 40:133-150
- 785 Kempton JW, Wolny J, Tengs T, Rizzo P, Morris R, Tunnell J, Scott P, Steidinger K, Hymel
- 786 SN, Lewitus AJ (2002) Kryptoperidinium foliaceum blooms in South Carolina: a multi-
- analytical approach to identification. Harmful Algae 1:383-392

Kite GC, Rothschild LJ, Dodge JD (1988) Nuclear and plastid DNAs from the binucleate
 dinoflagellates *Glenodinium (Peridinium) foliaceum* and *Peridinium balticum*. Biosystems
 21:151-163

21.131-103

- 791 Koike K, Sekiguchi H, Kobiyama A, Takishita K, Kawachi M, Koike K, Ogata T (2005) A
- novel type of kleptoplastidity in *Dinophysis* (Dinophyceae): presence of haptophyte-type
 plastid in *Dinophysis mitra*. Protist 156:225-237
- Koike K, Takishita K (2008) A nucleated cryptophyte vestiges in the gonyaulacalean
 dinoflagellates *Amylax buxus* and *Amylax triacantha* (Dinophyceae). Phycol Res 56:301311
- Latasa M, Bidigare RR (1998) A comparison of phytoplankton populations of the Arabian
 Sea during the Spring intermonsoon and Southwest monsoon of 1995 as described by
 HPLC-analyzed pigments. Deep-Sea Res II 45:2133-2170
- Latasa M, Van Lenning K, Garrido JL, Scharek R, Estrada M, Rodríguez F, Zapata M (2001)
 Losses of chlorophylls and carotenoids in aqueous acetone and methanol extracts prepared

for RPHPLC analysis of pigments. Chromatographia 53:385-391

- Latasa M, Scharek R, Le Gall F, Guillou L (2004) Pigment suites and taxonomic groups in
 Prasinophyceae. J Phycol 40:1149-1155
- Lauridsen TL, Schlüter L, Johansson LS (2011) Determining algal assemblages in oligotrophic lakes and streams: comparing information from newly developed pigment/chlorophyll a ratios with direct microscopy. Freshwater Biol 56:1638-1651
- Letelier RM, Bidigare RR, Hebel DV, Ondrusek M, Winn CD, Karl DM (1993) Temporal
 variability of phytoplankton community structure based on pigment analysis. Limnol
 Oceanogr 38:1420-1437
- 811 Liaaen-Jensen S (1998) Carotenoids in chemosystematics. In: Britton G, Liaaen-Jensen S,
- Pfander H (eds) Carotenoids. Biosynthesis and metabolism, Vol 3. Birkhäuser Verlag,

813 Basel, p 217-247

- Lin S, Zhang H, Hou Y, Miranda L, Bhattacharya D (2006) Development of a dinoflagellate-
- 815 oriented PCR primer set leads to detection of picoplanktonic dinoflagellates from Long
 816 Island Sound. Appl Environ Microbiol 72:5626-5630
- 817 Mackey MD, Mackey DJ, Higgins HW, Wright SW (1996) CHEMTAX a program for
- 818 estimating class abundances from chemical markers: application to HPLC measurements
- of phytoplankton. Mar Ecol Prog Ser 144:265-283
- 820 Mackey DJ, Higgins HW, Mackey MD, Holdsworth D (1998) Algal class abundances in the
- 821 western equatorial Pacific: estimation from HPLC measurements of chloroplast pigments
- using CHEMTAX. Deep-Sea Res I 45:1441-1468
- 823 Macpherson AN, Hiller RG (2003) Light-harvesting systems in chlorophyll c-containing
- algae. In: Green BR, Parson WW (eds) Light-harvesting antennas in photosynthesis.
 Kluwer Academic Publishers, Dordrecht, p 323-352
- 826 Matsumoto T, Shinozaki F, Chikuni T, Yubuki A, Takishita K, Kawachi M, Nakayama T,
- Inouye I, Hashimoto T, Inagaki Y (2011) Green-colored plastids in the dinoflagellate genus *Lepidodinium* are of core cloropyhyte origin. Protist 162:268-276
- Mayer-Harms B, Pollehne F (1998) Alloxanthin in *Dinophysis norvegica* (Dinophysiales,
 Dinophyceae) from the Baltic Sea. J Phycol 34:280-285
- McEwan ML, Keeling PJ (2004) HSP90, tubulin and actin are retained in the tertiary
 endosymbiont genome of *Kryptoperidinium foliaceum*. J Eukaryot Microbiol 51:651-659
- 833 Minge MA, Shalchian-Tabrizi K, Tørresen OK, Takishita K, Probert I, Inagaki Y, Klaveness
- D, Jakobsen KS (2010) A phylogenetic mosaic plastid proteome and unusual plastid-
- targeting signals in the green colored dinoflagellate *Lepidodinium chlorophorum*. BMC
 Evol Biol 10:191
- 837 Minnhagen S, Janson S (2006) Genetic analyses of *Dinophysis* spp. support kleptoplastidy.

- FEMS Microbiol Ecol 57:47-54
- Moon-van der Staay SY, De Wachter R, Vaulot D (2001) Oceanic 18S rDNA sequences from
 picoplankton reveal unsuspected eukaryotic diversity. Nature 409:607-610
- Montresor M, Lovejoy C, Orsini L, Procaccini G, Roy S (2003) Bipolar distribution of the cyst-forming dinoflagellate *Polarella glacilis*. Polar Biol 26:186-194
- Morse D, Salois P, Markovic P, Hastings JW (1995) A nuclear-encoded form II RuBisCO in
 dinoflagellates. Science 268:1622-1624
- Nagai S, Nishitani G, Tomaru Y, Sakiyama S, Kamiyama T (2008) Predation by the toxic
 dinoflagellate *Dinophysis fortii* on the ciliate *Myrionecta rubra* and observation of
 sequestration of ciliate chloroplasts. J Phycol 44:909-922
- Nishitani G, Nagai S, Sakiyama S, Kamiyama T (2008a) Successful cultivation of the toxic
 dinoflagellate *Dinophysis caudata* (Dinophyceae). Plankton Benthos Res 3:78-85
- Nishitani G, Nagai S, Takano Y, Sakiyama S, Baba K, Kamiyama T (2008b) Growth
 characteristics and phylogenetic analysis of the marine dinoflagellate *Dinophysis infundibulus* (Dinophyceae). Aquat Microb Ecol 52: 209-221
- Park MG, Kim S, Kim HS, Myung G, Kang YG, Yih W (2006) First successful culture of the
 marine dinoflagellate *Dinophysis acuminata*. Aquat Microb Ecol 45:101-106
- Pienaar RN, Sakai H, HoriguchiT (2007) Description of a new dinoflagellate with a diatom
- endosymbiont, *Durinskia capensis* sp. nov. (Peridiniales, Dinophyceae) from South Africa.
- 857 J Plant Res 120:247-258
- 858 Reñé A, Satta CT, Garcés E, Massana R, Zapata M, Silvia Anglès S, Jordi Camp J (2011)
- *Gymnodinium litoralis* sp. nov. (Dinophyceae), a new bloom-forming dinoflagellate from
 the NW Mediterranean Sea. Harmful Algae 12:11-25
- Reyes-Prieto A, Weber PM, Bhattacharya D (2007) The origin and establishment of the
 plastid in algae and plants. Annu Rev Genet 41:147-168

- Rodríguez F, Pazos Y, Maneiro J, Zapata M (2003) Temporal variation in phytoplankton
 assemblages and pigment composition at a fixed station of the Ría of Pontevedra (NW
 Spain). Estuar Coast Shelf Sci 58:499-515
- Rodríguez F, Chauton M, Johnsen G, Andresen K, Olsen LM, Zapata M (2006)
 Photoacclimation in phytoplankton: implications for biomass estimates, pigment
 functionality and chemotaxonomy. Mar Biol 148:963-971
- Rodríguez F, Escalera L, Reguera B, Rial P, Riobó P, de Jesús T (2012) Morphological
 variability, toxinology and genetics of the dinoflagellate *Dinophysis tripos*(Dinophysiaceae, Dinophysiales) Harmful Algae 13:26-33
- Rowan R, Whitney SM, Fowler A, Yellowlees D (1996) Rubisco in marine symbiotic
 dinoflagellates: form II enzymes in eukaryotic oxygenic phototrophs encoded by a nuclear
 multigene family. Plant Cell 8:539-553
- Saldarriaga JF, Taylor FJR, Keeling PJ, Cavalier-Smith T (2001) Dinoflagellate nuclear SSU
 rRNA phylogeny suggests multiple plastid losses and replacements. J Mol Evol 53:204213
- Saldarriaga JF, Taylor FJR, Cavalier-Smith T, Menden-Deuer S, Keeling PJ (2004) Molecular
 data and the evolutionary history of dinoflagellates. Eur J Protistol 40:85-111
- 880 Sampedro N, Fraga S, Penna A, Casabianca S, Zapata M, Fuentes Grünewald C, Riobó P,
- Camp J (2011) *Barrufeta bravensis* gen. nov. sp. nov. (Dinophyceae) a new bloom forming
- species from NW Mediterranean Sea. J Phycol 47:375-392
- Schlüter L, Peter Henriksen P, Nielsen TG, Jakobsen HH (2011) Phytoplankton composition
 and biomass across the southern Indian Ocean. Deep-Sea Res I 58:546-556
- Seoane S, Zapata M, Orive E (2009) Growth rates and pigment patterns of haptophytes
 isolated from estuarine waters. J Sea Res 62:286-294
- 887 Stauber JL, Jeffrey SW (1988) Photosynthetic pigments in fifty-one species of marine
- diatoms. J Phycol 24:158-172
- Takano Y, Hansen G, Fujita D, Horiguchi T (2008) Serial replacement of diatom
 endosymbionts in two freshwater dinoflagellates, *Peridiniopsis* spp.. Phycologia 47:41-53
- Takishita K, Koike K, Maruyama T, Ogata T (2002) Molecular evidence for plastid robbery
 (Kleptoplastidy) in *Dinophysis*, a dinoflagellate causing diarrhetic shellfish poisoning.
 Protist 153:293-302
- Tamura M, Shimada S, Horiguchi T (2005) *Galeidiniium rugatum* gen. et sp nov
 (Dinophyceae), a new coccoid dinoflagellate with a diatom endosymbiont. J Phycol
 41:658-671
- Tangen K, Bjørnland T (1981) Observations on pigments and morphology of *Gyrodinium aureolum* Hulburt, a marine dinoflagellate containing 19'-hexanoyloxyfucoxanthin as the
 main carotenoid. J Plankton Res 3:389-401
- Tengs T, Dahlberg OJ, Shalchian-Tabrizi K, Klaveness D, Rudi K, Delwiche CF, Jakobsen
 KS (2000) Phylogenetic analyses indicate that the 19' hexanoyloxyfucoxanthin-containing
 dinoflagellates have tertiary plastids of haptophyte origin. Mol Biol Evol 17:718-729
- 703 Tillmann U, Elbrächter M, Krock B.; John U, Cembella A (2009) *Azadinium spinosum* gen. et
- sp. nov. (Dinophyceae) identified as a primary producer of azaspiracid toxins. Eur J Phycol
 44:63-79
- Van Lenning K, Latasa M, Estrada M, Saez AG, Medlin L, Probert I, Véron B, Young J
 (2003) Pigments signatures and phylogenetic relationships of the Pavlophyceae
 (Haptophyta). J Phycol 39:379-389
- Vesk M, Dibbayawan TP, Vesk PA (1996) Immunogold localization of phycoerythrin in
 chloroplasts of *Dinophysis acuminata* and *D. fortii* (Dinophysiales, Dinophyta).
- 911 Phycologia 35:234-238

912	Wang Y, Joly S, Morse D (2008) Phylogeny of dinoflagellate genes recently transferred to the
913	nucleus supports a common ancestry with red algal plastid. J Mol Evol 66: 175-184
914	Watanabe MM, Takeda Y., Sasa T, Inouye I, Suda, S, Sawaguchi T, Chihara M (1987) A
915	green dinoflagellate with a chlorophylls a and b : morphology, fine structure of the
916	chloroplast and chlorophyll composition. J Phycol 23:382-389
917	Watanabe MM, Suda S, Inouye I, Sawaguchi T, Chihara M (1990) Lepidodinium viride gen.
918	et sp. nov. (Gymnodiales, Dinophyta), a green dinoflagellate with a chlorophyll a- and b-
919	containing endosymbiont. J Phycol 26:741-751
920	Withers NW, Cox ER, Tomas R, Haxo FT (1977) Pigments of the dinoflagellate Peridinium
921	balticum and its photosynthetic endosymbiont. J Phycol 13:354-358
922	Wright SW, Thomas DP, Marchant HJ, Higgins HW, Mackey MD, Mackey DJ (1996)
923	Analysis of phytoplankton of the Australian sector of the Southern Ocean: comparisons of
924	microscopy and size frequency data with interpretations of pigment HPLC data using the
925	"CHEMTAX" matrix factorisation program. Mar Ecol Prog Ser 144:285-298
926	Wright SW, van den Enden RL (2000) Phytoplankton community structure and stocks in the
927	East Australian marginal ice zone (BROKE survey, January-March 1996) determined by
928	CHEMTAX analysis of HPLC pigment signatures. Deep-Sea Res II 47:2363-2400
929	Wright SW, Ishikawa A, Marchant HJ, Davidson AT, van den Enden RL, Nash GV (2009)
930	Composition and significance of picophytoplankton in Antarctic waters. Polar Biol 32:797-
931	808
932	Yoon HS, Hackett JD, Van Dolah FM, Nosenko T, Lidie KL, Bhattacharya D (2005) Tertiary
933	endosymbiosis driven evolution in dinoflagellate algae. Mol Biol Evol 22:1299-1308
934	Yoshi Y (2006) Diversity and evolution of photosynthetic antenna systems in green plants.
935	Phycol Res 54:220-229

- Zapata M (2005) Recent advances in pigment analysis as applied to picophytoplankton. Vie
 Milieu 55:233-248
- Zapata M, Garrido JL (1991) Influence of injection conditions in reversed-phase high performance liquid chromatography of chlorophylls and carotenoids. Chromatographia
 31:589-594
- Zapata M, Rodríguez F, Garrido JL (2000) Separation of chlorophylls and carotenoids from
 marine phytoplankton: a new HPLC method using a reversed phase C₈ column and
 pyridine-containing mobile phases. Mar Ecol Prog Ser 195:29-45
- Zapata M, Edvardsen B, Rodríguez F, Maestro MA, Garrido JL (2001) Chlorophyll c₂
 monogalactosyldiacylglyceride ester (chl c₂-MGDG). A novel marker pigment for
 Chrysochromulina species (Haptophyta). Mar Ecol Prog Ser 219:85-98
- Zapata M, Jeffrey SW, Wright SW, Rodríguez F, Garrido JL, Clementson L (2004)
 Photosynthetic pigments in 37 species (65 Strains) of Haptophyta: implications for
 oceanography and chemotaxonomy. Mar Ecol Prog Ser 270:83-102
- 250 Zapata M, Garrido JL, Jeffrey SW (2006) Chlorophyll c pigments: current status. In:
- Advances in Photosynthesis and Respiration, Vol. 25, Grimm B, Porra RJ, Rüdige W,
- Scheer U (eds) Chlorophylls and bacteriochlorophylls: biochemistry, biophysics, functions
 and applications, Springer, Dordrecht, p 39-53
- Zhang Z, Green BR, Cavalier-Smith T (1999) Single gene circles in dinoflagellate chloroplast
 genomes. Nature 400:155-159
- 956 Zhang Z, Cavalier-Smith T, Green BR (2002) Evolution of dinoflagellate unigenic minicircles
- and the partially concerted divergence of their putative replicon origins Mol Biol Evol19:489-500

0 = 0	
959	

FIGURE LEGENDS

960 Fig. 1. (A) HPLC chromatogram from a massive culture of Karenia mikimotoi (CCMP429). (B) Enlarged section showing the visible absorption spectra of three novel compounds (peaks 961 13, 14 and 22). For comparative purposes visible spectra of But-fuco (peak 16), Hex-fuco 962 (peak 26) and 4k-Hex-fuco (peak 23) are also depicted. Pigment proportions cannot be 963 compared with those in Fig. 2 because growth conditions were different in massive cultures (4 964 liters) due to self-shading and longer harvesting periods (10-15 days). 965 Fig. 2. HPLC chromatograms of dinoflagellates belonging to major pigment types. Type 1: 966 Alexandrium margalefi (VGO661), Type 2: Karenia mikimotoi (CCMP429), Type 3: 967 Karlodinium veneficum (CCMP415), Type 4: Kryptoperidinium foliaceum (VGO556), Type 968 5: Dinophysis caudata (VGO1064) and Type 6: Lepidodinium chlorophorum (RCC1489). 969 Detection by absorbance at 440 nm. Peak identifications as in Table 1. 970 971 Fig. 3. Pigment-type chloroplasts and evolutionary history of dinoflagellates. Modified from

972 Saldarriaga et al. (2004). Molecular data and the evolutionary history of dinoflagellates.

973 Pigment-type chloroplasts (1-6) and evolutionary history of dinoflagellates based on molecular data.

974

Table 1. Elution order and visible absorption characteristics of pigments in eluent from

dinophyte cultures. Wavelengths given in parenthesis denote shoulders. Occurrence

accross the six chloroplast-pigment types (T1-T6) is indicated.

Peak	Pigment /present in chloroplast pigment Type(s)	Abbreviation	Time	λ maxima in eluent		
no.			(min)	(nm)		
	(Solvent front)					
1	Peridininol / T1	Perid-ol	5.66		477	
2	Unk peridinin-like λ_{max} 465 nm / T1	Unk-car465	7.28		465	
3	Chlorophyll c ₂ -like Pavlova gyrans-type / T4	Chl c ₂ -like Pg	7.69	457	586	634
4	Chlorophyll c_3 / T2-3	$Chl c_3$	8.02	458	591	(629)
5	Chlorophyll c ₁ -like <i>Exanthemachrysis</i> -type / T4	Chl c_1 -like Eg	8.31	453	585	635
6	Unk chlorophyll c_2 -like / T1	Chl c_2 -like 450	8.86	450	583	631
7	Chlorophyllide <i>a</i> / T1-6	Chlide <i>a</i>	10.47	430	619	663
8	Divinyl Protochlorophyllide <i>a</i> / T1-6	MgDVP	10.83	440	574	628
9	Chlorophyll c_2 / T1-5	$\operatorname{Chl} c_2$	11.75	453	585	634
10	Chlorophyll c_1 / T1, T4	Chl c_1	12.34	448	583	632
11	Peridinin / T1	Perid	13.85		475	
12	Peridinin-like / T1	Perid-like	14.33		478	
13	Keto-19'-butanoyloxyfucoxanthin-like / T2	But-fuco-like-1	15.68		448	471
14	4-keto-19'-butanoyloxyfucoxanthin / T2	But-fuco-like-2	16.29		448	470
15	Unk carotenoid λ_{max} 447 / T1	Unk-car447Cc	16.39	(424)	447	477
16	19'-butanoyloxyfucoxanthin / T2-3	But-fuco	17.21	. ,	447	470
17	all-trans neoxanthin / T6	<i>t</i> -neo	17.52	416	442	470
18	Heteroxanthin-like /T3	Het-likeTh	17.77	419	443	471
19	Fucoxanthin / T2-4	Fuco	18.27		451	
20	9'-cis neoxanthin /T6	Neo	19.46	413	439	466
21	Astaxanthin / T1	Asta	19.58		480	
22	Keto-hexanoyloxyfucoxanthin-like /T 2	4k-hex-fuco-like	19.61		448	472
23	4-keto-19'-hexanoyloxyfucoxanthin / T2	4k-hex-fuco	20.34		448	472
24	Violaxanthin / T1, T6	Viola	20.80	415	441	470
25	Pyrrhoxanthin / T1	Pyrrho	21.12		471	
26	19'-hexanoyloxyfucoxanthin / T2-3	Hex-fuco	21.22		447	471
27	Diadinochrome / T1	Diadchr	22.90	(410)	430	458
28	Diadinoxanthin / T1-4	Diadino	23.77	(422)	448	477
29	Dinoxanthin / T1	Dino	24.93	418	442	471
30	Unk carotenoid λ_{max} 463 / T4	Unk-car463-Kf	24.12		463	
31	cis-fucoxanthin / T2-4	<i>c</i> -fuco	24.61		442	
32	Antheraxanthin / T6	Anth	24.77	(422)	447	475
33	19'-acyloxyfucoxanthin-like / T3	Acyl-fuco-like	25.26	. /	448	471
34	Unk carotenoid $\lambda_{max}453 / T4$	Unk-car453-Kf	25.42	(428)	453	(482)
35	Alloxanthin / T5	Allo	26.06	(428)	454	483
36	Lvcopene-like / T1	Lvco-like-1	26.30	451	476	509
37	Diatoxanthin / T1-4	Diato	26.62	(426)	453	481
38	Unk carotenoid λ_{max} 447 / T4	Unk-car447-Kf	27.10	(420)	447	(472)
39	Zeaxanthin / T1-4, T6	Zea	27.45	(429)	454	480
40	Unk carotenoid from L. chlorophorum / T6	Unk-car-Lc	27.65	420	443	472
41	Lycopene-like / T1.2	lyco-like-2	28.00	(452)	476	507
42	Unk carotenoid from L. chlorophorum / T6	Unk-car-Lc	28.12	420	443	472
43	Gyroxanthin diester-like / T2-3	GyrE-like	28.58	(418)	445	472
44	Canthaxanthin / T1, T3	Cantha	29.30	<u> </u>	472	
45	Gyroxanthin diester-2 / T2-3	GyrE (12:0)	29.56	(418)	445	472

46	Gyroxanthin diester-3 / T2-3	GyrE (14:0)	30.46	(419)	445	471
47	Crocoxanthin / T5	Croco	30.93	(431)	447	476
48	Hydroxyl echinenone / T4	Hydro-echin	31.26		468	
49	β-cryptoxanthin / T1	β-crypto	31.41	(426)	454	480
50	Chlorophyll <i>b</i> / T6	Chl b	31.67	461	597	647
51	Chlorophyll c ₂ MGDG from K. armiger / T3	MGDG-chl c ₂ -Ka	32.17	454	584	634
52	Chlorophyll a allomer / T1-6	Chl a allomer	32.74	420	615	662
53	Chlorophyll c ₂ MGDG from E. huxleyi / T3	MGDG-chl c ₂ -Eh	32.98	454	584	634
54	Chlorophyll <i>a</i> / T1-6	Chl a	33.29	431	617	662
55	Chlorophyll a epimer / T1-6	Chl a'	33.51	431	617	662
56	Chlorophyll <i>c</i> ₂ MGDG from <i>C. polylepis</i> / T2-3	MGDG-chl c_2 - Cp	33.74	454	584	634
57	β , ψ -carotene-like / T4	βψ-car-like	34.28	(437)	463	492
58	β,ψ -carotene / T4	β ψ-ca r	34.48	(437)	463	493
59	Pheophytin a / T1-6	Pheo a	35.32	409	609	665
60	Chlorophyll c_2 MGDG from T. helix / T3	MGDG-chl c_2 -Th	35.45	455	583	634
61	β , ϵ -carotene / T2-6	βε-car	35.49	(422)	447	475
62	β,β-carotene / T1-5	ββ-car	35.67	(426)	454	480
63	<i>cis</i> -β,β-carotene / T4	<i>c</i> -ββ-car	35.94	(426)	452	478

Table 2. Distribution of chlorophylls and carotenoids among pigment-based chloroplast types in Dinophyta. $\pm =$ occasional

occurrence.

Pigments			Pigment	t-based of	chloroplast t	ypes
	1	2	3	4	5	6
Chlorophylls		Ch	nl c-cont	aining		Chl <i>b</i> -containing
Chl c ₂ -like <i>P. gyrans</i> -type				•		
Chl <i>c</i> ₁ -like <i>K</i> . <i>foliaceum</i> -type				•		
Chl <i>c</i> ₃		•	•			
MgDVP	•	•	•	•	•	•
Chl c_2	•	٠	•	•	•	
Chl c_1	±			•		
Chl b						•
Chl a	•	٠	٠	•	•	•
MGDG-chl c ₂		٠	±			
Carotenoids	Per-type		Fuco-ty	vpe	Allo-type	Vio/Neo-type
Peridininol	•					
Unk 1/Unk 2	•					
Peridinin	•					
cis-Peridinin	•					
Keto-19'-but-fuco-like		٠				
4-keto-19'-but-fuco		•				
19'-but-fuco		٠	٠			
Fucoxanthin		•	•	•		
Keto-19'-hex-fuco-like		•				
4-keto-19'-hex-fuco		•	±			
19'-hex-fuco		٠	٠			
Violaxanthin				±		•
Diadinochrome	•					
Diadinoxanthin	•	•	٠	•	•	

Dinoxanthin	•					
Alloxanthin					•	
Diatoxanthin	±	±	±	±	±	
Zeaxanthin	±	±	±	±		±
Unknown carotenoid Lc						•
Lycopene-like	±	±	±	±		±
Gyroxanthin diester 1		•	•			
Gyroxanthin diester 2		•	•			
Gyroxanthin diester 3		•	•			
<u>β</u> Ψ-carotene				•		•
β,ε-carotene		•	•	•	•	•
β,β-carotene	•	•	•	•	±	•

Order, species	Strain code	Perid/	Perid/	Chl c_2	Chl $c_1/$	Diadino/	Dino/
		chl c_2	chl a	/chl a	chl a	chl a	chl a
GONYAULACALES							
Alexandrium affine	PA2V	4.08	1.08	0.27	0.00	0.52	0.22
A. andersonii	CCMP1718	3.36	1.14	0.34	0.00	0.60	0.17
A. andersonii	VGO664	4.48	1.39	0.31	0.00	0.64	0.09
A. andersonii	SZN-12	3.19	0.61	0.19	0.00	0.41	0.18
A. catenella	AT02	3.05	0.85	0.28	0.00	0.63	0.24
A. catenella	VGO609	3.00	0.84	0.28	0.00	0.43	0.39
A. catenella	AL96	2.90	0.64	0.22	0.00	0.28	0.14
A. insuetum	ICMB218	3.16	1.02	0.32	0.00	0.38	0.11
A. margalefii	ICMB	3.47	1.11	0.32	0.00	0.41	0.14
A. margalefii	VGO661	2.94	0.90	0.31	0.00	0.30	0.15
A.minutum	AL1V	5.05	1.34	0.27	0.00	0.40	0.17
A. minutum	AMAD01	3.31	1.36	0.41	0.00	0.46	0.17
A. minutum	CLONE4	2.68	1.07	0.40	0.00	0.43	0.20
A. minutum	VGO577	3.14	1.11	0.35	0.00	0.47	0.16
A. ostenfeldii	AOTV-A1A	3.29	0.98	0.30	0.02	0.84	0.20
A. ostenfeldii	AOTV-A4A	3.04	0.89	0.29	0.01	0.80	0.16
A. peruvianum	AM10C	4.94	1.24	0.25	0.00	0.63	0.14
A. pseudogonyaulax	VGO706	3.41	1.28	0.38	0.00	0.28	0.07
A. tamarense	CCMP1493	3.24	0.95	0.29	0.00	0.40	0.17
A. tamarense	MDQ1096	3.30	1.14	0.34	0.00	0.50	0.18
A. tamarense	PE1V	2.81	0.95	0.34	0.00	0.38	0.16
A. tamarense	VGO553	3.59	1.11	0.31	0.00	0.44	0.16
A. tamutum	VGO617	3.30	1.21	0.37	0.00	0.59	0.17
A. taylori	AM8V	2.16	0.55	0.27	0.00	0.67	0.25
A. taylori	VGO703	2.36	0.63	0.27	0.00	0.37	0.23
Coolia canariensis	VG0775	4.11	1.56	0.38	0.00	0.63	0.15

Table 3. Molar pigment ratios to chl *a* and its variability in pigment type-1.

C. canariensis	VGO787	4.00	2.06	0.52	0.00	0.57	0.13
C. monotis	CM2V	3.14	1.02	0.33	0.00	0.58	0.16
C. monotis	CM6V	3.01	1.11	0.37	0.00	0.65	0.17
C. monotis	RIKZ4	2.49	1.08	0.43	0.00	0.59	0.18
C. monotis	CCMP1345	2.65	1.15	0.43	0.00	0.47	0.19
<i>Coolia</i> sp.	VGO923	3.00	1.05	0.35	0.00	0.42	0.13
Coolia tropicalis	CCMP1744	2.23	1.14	0.52	0.07	0.60	0.17
Fragilidium sp.	VGO692	3.05	0.96	0.31	0.00	0.68	0.19
Fragilidium sp.	IO 91-01	2.84	1.03	0.36	0.00	0.52	0.20
Gambierdiscus excentricus	VGO790	3.39	1.52	0.45	0.06	0.62	0.20
Gambierdiscus sp.	VGO920	2.72	0.91	0.33	0.04	0.53	0.18
Gambierdiscus sp.	KC81G1	2.72	1.10	0.41	0.07	0.62	0.16
Lingulodinium polyedrum	LP4V	3.85	1.11	0.29	0.00	0.37	0.20
L. polyedrium	LP9V	4.12	1.10	0.27	0.00	0.37	0.19
Neoceratium furca	Nfurca1	2.81	0.72	0.26	0.00	0.38	0.01
Ostreopsis ovata	OS01BR	3.00	1.19	0.40	0.00	0.76	0.14
O. cf. ovata	VGO611	2.95	1.18	0.40	0.00	0.47	0.13
Ostreopsis cf. siamensis	OS3V	3.42	1.43	0.42	0.00	1.01	0.12
O. cf. siamensis	VGO613	3.49	1.37	0.39	0.00	0.74	0.14
O. cf. siamensis	VGO883	3.35	1.22	0.37	0.00	0.60	0.14
Protoceratium reticulatum	GG1AM	2.84	1.02	0.36	0.01	0.40	0.16
P. reticulatum	CCMP404	3.88	0.94	0.24	0.04	0.62	0.19
P. reticulatum	CCMP1720	4.26	1.02	0.24	0.03	0.64	0.15
GYMNODINIALES							
Akashiwo sanguinea	VGO138	2.20	0.68	0.31	0.00	0.68	0.20
A. sanguinea	VGO626	2.91	0.75	0.25	0.00	0.41	0.20
Amphidinium carterae	A01BR	2.04	1.17	0.57	0.00	0.90	0.10
A. carterae	ACMK03	1.60	0.87	0.54	0.00	0.77	0.19

Order, species	Strain code	Perid/	Perid/	Chl c_2	Chl $c_1/$	Diadino/	Dino/
		chl c_2	Chl a	/chl a	chl a	chl a	chl a
A. carterae	ACRN02	1.81	1.09	0.60	0.00	0.70	0.07
A. cf. carterae	A1V	2.29	0.94	0.41	0.00	0.56	0.09
Barrufeta bravensis	VGO859	1.85	0.61	0.34	0.00	0.75	0.18
B. bravensis	VGO860	1.93	0.79	0.41	0.00	0.81	0.42
B. bravensis	VGO864	1.92	0.54	0.29	0.00	0.89	0.32
Gymnodinium catenatum	GC11V	2.40	0.72	0.30	0.00	0.62	0.28
G. catenatum	GC31AM	1.93	0.58	0.30	0.00	0.51	0.28
G. catenatum	CS-302	1.84	0.82	0.44	0.00	0.64	0.24
G. impudicum	GY1VA	1.94	0.66	0.35	0.00	0.59	0.29
G. instriatum	VGO642	2.51	0.84	0.34	0.00	0.73	0.15
<i>G.</i> cf. <i>microreticulatum</i>	VGO581	1.93	0.59	0.30	0.02	0.55	0.20
G. nolleri	DK5	2.89	1.02	0.35	0.00	0.42	0.32
Gyrodinium uncatenum	CS289-3	2.54	0.71	0.28	0.41	0.75	0.12
PERIDINIALES							
Heterocapsa niei	VGO399	1.39	0.79	0.56	0.12	0.52	0.18
Heterocapsa triquetra	VGO1053	1.40	0.70	0.50	0.00	0.73	0.16
Peridinium aciculiferum	PAER-1	2.62	0.81	0.31	0.14	0.43	0.10
Peridinium aciculiferum	PAER-2	2.75	0.88	0.32	0.16	0.44	0.10
Scrippsiella hangoei	STHV-1	1.95	0.89	0.45	0.02	0.51	0.11
Scrippsiella hangoei	STHV-2	1.94	0.92	0.46	0.02	0.53	0.10
Scrippsiella hangoei	STHV-5	2.04	0.81	0.38	0.02	0.44	0.09
Scrippsiella hangoei	STHV-6	1.96	0.85	0.43	0.03	0.52	0.11
Scrippsiella sp.	S3V	4.87	1.18	0.24	0.00	0.54	0.10
PROROCENTRALES							
P. arenarium	VGO776	7.17	0.95	0.13	0.03	0.59	0.27
P. belizeanum	PBMA01	19.11	1.65	0.09	0.00	0.80	0.25
P. belizeanum	VGO867	24.54	1.43	0.06	0.01	0.75	0.22
P. compressum	VGO621	4.59	1.17	0.26	0.00	0.45	0.12

P. cf. faustiae	VGO894	7.13	1.16	0.16	0.00	0.50	0.26
P. levis	VGO777	38.92	1.20	0.03	0.01	0.62	0.24
P. levis	VGO957	15.04	0.97	0.07	0.00	0.61	0.30
P. lima	PL2V	11.66	1.54	0.13	0.00	1.09	0.30
P. cf. lima	VGO620	3.68	1.32	0.36	0.01	0.82	0.30
P. micans	PM1V	7.66	1.24	0.16	0.00	0.62	0.13
P. minimum	VGO365	4.59	1.21	0.27	0.00	0.53	0.07
P. minimum	VGO367	10.31	1.65	0.16	0.00	0.43	0.08
P.nux	UTEX1008	3.51	1.51	0.43	0.00	0.73	0.11
P. rathymum	VGO893	9.94	1.59	0.16	0.00	0.64	0.16
P. rostratum	PR1V	18.00	1.69	0.09	0.00	0.46	0.12
P. triestinum	PT2V	4.13	1.35	0.33	0.00	0.64	0.14
THORACOSPHAERALES							
Thoracosphaera heimii	CCMP1069	2.35	1.13	0.48	0.00	0.89	0.05
Mean		4.57	1.07	0.33	0.01	0.57	0.18
SD		5.35	0.29	0.12	0.02	0.16	0.07
N		90	90	90	21	90	90

Table 4. Molar pigment ratios (accessory chls/chl a) in pigment types-2 & 3. MGDG-chl c stands for monogalactosyl-diacylglicerol-

chl c compounds.

Pigment type-2	Chl	<i>c</i> ₃ /	Chl $c_2/$	MGDG-chl c_2	MGDG-chl c_2	MGDG-chl c_2	$Chlc_3/chlc_2$	\sum Chls <i>c</i>
Species and strain code	chl a		chl a	/chl a	/chl a	/chl a		/chl a
Species and strain code				Peak 51	Peak 56	Peak 60		/ enr u
Karenia brevis CCMP718	0.07		0.12	_	0.005	_	0.58	0.20
K. brevis CCMP2281	0.07		0.15	_	0.004	_	0.47	0.22
Karenia mikimotoi CCMP429	0.08		0.16	_	0.002	-	0.47	0.24
K. papilonacea VGO679	0.05		0.13	_	0.005	-	0.44	0.19
K. selliformis VGO875	0.08		0.16	_	0.003	-	0.51	0.24
K. umbella Gy2DE	0.07		0.16		0.002	_	0.58	0.23
Pigment type-3								
Karlodinium armiger GC-7	0.08		0.15	0.010	0.010	0.002	0.55	0.25
K. decipiens Nervión34	0.07		0.22		0.002	_	0.33	0.29
K. veneficum CCMP415	0.08		0.22	_	_	-	0.38	0.30
K. veneficum CCMP1974	0.08		0.22			_	0.35	0.30
K. veneficum CS-310	0.10		0.23	_	_	-	0.38	0.33
K. veneficum GC-4	0.06		0.18	_	_	_	0.29	0.30
K. veneficum VGO691	0.07		0.19	_	_	_	0.38	0.26
K. veneficum VGO870	0.07		0.21	_	_	_	0.31	0.28
Takayama cf. helix VGO341	0.07		0.21	0.005	0.013	0.007	0.33	0.31

Table 4 (cont.) Molar pigment ratios (carotenoids/chl *a*) in pigment types-2 & 3.

Pigment type-2	But-	But-	But-	Fuco	4k-Hex-fuco	4k-Hex-fuco	Hex-fuco	GyrE1	GyrE2	GyrE3		
	fuco	fuco	fuco		–like			-like	C12:0	C14:0		
Species and strain code	like-1	like-2										
Karenia brevis	0.04	0.07	0.08	0.34	0.05	0.11	0.07	—	0.11	-		
CCMP718												
K. brevis CCMP2281	0.06	0.06	0.08	0.24	0.09	0.10	0.09	_	0.14	_		
K.mikimotoi CCMP429	0.07	0.07	0.10	0.33	0.11	0.11	0.09	0.02	0.11	-		
K. papilonacea VGO679	0.02	0.04	0.13	0.14	0.09	0.09	0.29	0.03	0.17	0.01		
K. selliformis VGO875	0.08	0.09	0.08	0.27	0.10	0.12	0.08	0.01	0.12	0.01		
K. umbella Gy2DE	0.01	0.01	0.13	0.27	0.10	0.08	0.32	_	0.16	-		
Pigment type-3												
Karlodinium armiger	-	-	0.01	0.34	_	_	0.45	-	0.11	0.05		
GC-7												
K. decipiens Nervión34	-	-	0.25	0.22	_	_	0.44	-	0.14	0.09		
K. veneficum CCMP 415	_	-	0.13	0.56	-	-	0.31	_	0.24	0.02		
K. veneficum CCMP	-	-	0.16	0.44	_	_	0.28	-	0.16	0.09		
1974												
K. veneficum CS-310	_	-	0.18	0.75	-	-	0.33	_	0.20	0.04		
K. veneficum GC-4	_	-	0.08	0.72	_	_	0.21	_	0.19	0.04		
K. veneficum VGO691	-	-	0.10	0.58	-	-	0.25	-	0.20	0.03		
K. veneficum VGO870	-	-	0.19	0.30	-	-	0.39	-	0.20	0.02		
Takayama cf. helix	-	-	-	1.18	-	-	0.06	-	-	-		
VGO341												

Table 5. Molar pigment ratios to chl *a* in pigment types-4, 5 & 6. (tr.: trace amounts).

Pigment type 4	Chl <i>c</i> ₂	Chl c ₁ –like Eg.	MgDVP	Chl c_1	Fuco	β,ψ–car		
Peridinium balticum CS-33	0.04	0.005	-	0.09	0.54		tr.	
Kryptoperidinium foliaceum CS-37	0.06	0.009	0.002	0.11	0.52		tr.	
K. foliaceum VGO556	0.08	0.01	0.004	0.11	0.75 0.05		0.05	
Pigment type 5	Chl c_2	Alloxanthin	Crocoxanthin	β,ε–car				
Dinophysis acuminata VGO1063	0.07	1.62	0.08	0.20				
Dinophysis acuta VGO1065	0.09	1.35	0.07	0.18				
Dinophysis caudata VGO1064	0.07	1.38	0.05	0.19				
Dinophysis tripos VGO1062	0.09	1.32	0.05	0.15				
Pigment type 6	Neo	Viola	Anth	Zea	Unk443	βε-car	ββ-car	chl b
L. chlorophorum Dino16EUH	0.09	0.08	0.01	0.01	0.17	0.04	0.04	0.73
L. chlorophorum RCC1488	0.14	0.16	0.01	0.05	0.16	0.03	0.05	0.56
L. chlorophorum RCC1489	0.14	0.12	0.02	0.06	0.14	0.03	0.05	0.57
L. chlorophorum BAH100ME	0.09	0.32	0.03	0.02	0.18	0.11	0.05	0.08

CLASS DINOPHYCEAE Pigment types Order Representative species 2 3 4 5 6 1 Dinophysiales Dinophysis acuminate • Gonyaulacales Alexandrium minutum • Gymnodiniales Gymnodinium catenatum • Karenia mikimotoi ۲ Karlodinium veneficum Takayama helix Lepidodinium chlorophorum • Peridiniales *Heterocapsa* sp. • Durinskia baltica *Galeidinium rugatum** Kryptoperidinium foliaceum Prorocentrales Prorocentrum lima • Thoracosphaera heimii Thoracosphaerales •

Table 6. Distribution of pigment-based chloroplast types across Dinophyta taxa. (*Tamura et al. 2005)

Table S1. Cultures used in this study. (Na: not available).

Order, species	Strain code	Origin/isolation year	Isolator
DINOPHYSIALES			
Dinophysis acuminata Claparède et Lachmann	VGO1063	Ría de Vigo, NW Spain, 2009	F. Rodríguez
D. acuta Ehrenberger	VGO1065	Ría de Pontevedra, Spain, 2010	F. Rodríguez
D. caudata Saville-Kent	VGO1064	Ría de Pontevedra, Spain, 2010	F. Rodríguez
Dinophysis tripos Gourret	VGO1062	Ría de Vigo, NW Spain, 2009	F. Rodríguez
GONYAULACALES		X · · · · · · · · · · · · · · · · · · ·	
Alexandrium affine (Inoue et Fukuyo) Balech	PA2V	Ría de Vigo, NW Spain, 1985	I. Bravo
A. andersonii Balech	CCMP1718	Town Cove, Eastham, MA, USA, 1987	S. Marquis
A. andersonii	SZN-12	Tyrrhenian Sea, Naples, Italy, na	M. Montresor
A. andersonii	VGO664	Saronikos Gulf, Greece, Mediterranen Sea, 2003	S. Fraga
A. catenella (Whedon et Kofoid) Balech	AT02	Thau Lagoon, France, Mediterranean Sea, 1998	D. Kulis
A. catenella	VGO609	Tarragona, Mediterranean Sea, 2002	S. Fraga
A. catenella	AL96	Monterey Bay, California, Pacific Ocean	R. Gester
A. insuetum Balech	ICMB218	Puerto Arenys de Mar, Mediterranean Sea, 2006	N. Sampedro
A. margalefi Balech	VGO661	Els Alfacs, Tarragona, Mediterranean Sea, 2003	I. Bravo
A. minutum Halim	AL1V	Ría de Vigo, NW Spain, 1987	I. Bravo
A. minutum	AMAD01	Port River, S. Australia, Ocean Pacific, 1988	S. Blackburn
A. minutum	GHmin04	Denmark, Atlantic Ocean, 2001	G. Hansen
A. minutum	VGO577	La Fosca, Girona, Mediterranean Sea, 2002	S. Fraga
A. ostenfeldii (Paulsen) Balech et Tangen	AOTV-A1A	Föglö/Åland, Finland, Baltic Sea, 2004	A. Kemp
A. ostenfeldii	AOTV-A4A	Föglö/Åland, Finland, Baltic Sea, 2004	A. Kemp
A.peruvianum (Balech & Mendiola) Balech et Tangen	AM10C	Costa Brava, Mediterranean Sea, 2002	I. Bravo
A. pseudogonyaulax (Biecheler) Horoguchi	VGO706	Alfacs Bay, Ebro Delta, Mediterranean Sea, 2003	I. Bravo
A tamarense (Lebour) Balech	CCMP1493	Da Yia Bay, China, Pacific Ocean, 1991	G. Usup
A. tamarense	MDQ1096	Mar del Plata, Argentina, Atlantic Ocean, 1996	I. Carreto
A. tamarense	PE1V	Ría de Vigo, NW Spain, 1984	I. Bravo
A. tamarense	VGO553	Kavala Harbor, Greece, Mediterranean Sea, 2002	S. Fraga
A tamutum Montresor, Beran et John	VGO617	Els Alfacs, Tarragona, Mediterranean Sea, 2002	I. Bravo
A. taylori Balech	AM8V	Costa Brava, Mediterranean Sea, 1994	S. Fraga
A. taylori	VGO703	Alfacs Bay, Ebro Delta, Mediterranean Sea, 2003	I. Bravo
Coolia canariensis Fraga	VGO775	Tenerife, Canary Islands, Spain, 2004	S. Fraga
C. canariensis	VGO787	Tenerife, Canary Islands, Spain, 2004	S. Fraga

C. monotis Meunier	CM2V	Ría de Vigo, NW Spain, 1985	I. Bravo
C. monotis	CM6V	Almería, Spain, Mediterranean Sea, 1999	S. Fraga
C. monotis	RIKZ4	Yerseke, The Netherlands, Atlantic Ocean, 2000	L. Peperzak
C. monotis	SZN43	Naples, Italy, Mediterranean Sea, 1991	M. Montresor
C. cf. monotis	CCMP1345	Florida, USA, 1986	J. Bomber
C. tropicalis Faust	CCMP1744	Twin Cay, Belize, 1994	S. L. Morton
<i>C</i> . cf. <i>tropicalis</i>	VGO923	Manado, Indonesia, 2007	S. Fraga
Fragilidium sp.	IO 91-01	Cascais, Portugal, 2007	S. Fraga
Fragilidium sp.	VGO692	Elefsis Bay, Saronikos Gulf, Grece, 2003	S. Fraga
Gambierdiscus excentricus Fraga	VGO790	Tenerife, Canary Islands, Spain, 2004	S. Fraga
Gambierdiscus sp.	VGO920	Manado, Indonesia, Pacific Ocean, 2007	S. Fraga
Gambierdiscus sp.	KC81G1	Crete, Greece, Mediterranean Sea, 2007	K. Aligizaki
Lingulodinium polyedrum (Stein) Dodge	LP4V	Ría de Lorbé, NW Spain, 2000	S. Fraga
L. polyedrum	LP9V	Ría de Ares, NW Spain, 2002	S. Fraga
Neoceratium furca (Ehrenberg) Gómez, Moreira et Lopez-García	Nfurca1	Baiona, Ría de Vigo, NW Spain, 2009	F. Rodríguez
Ostreopsis cf. ovata Fukuyo	OS01BR	Rio de Janeiro, Brazil, Atlantic Ocean, 2000	S. Fraga
O. cf. ovata	VGO883	Lanzarote, Canary Islands, Atlantic Ocean, 2006	S. Fraga
O. cf. ovata	VGO613	Bahía de Abra, Isl. Madeira, Atlantic Ocean, 2002	S. Fraga
O. cf. siamensis Schmidt	OS3V	Almería, Spain, Mediterranean Sea, 1999	S. Fraga
Protoceratium reticulatum (Claparède et Lachmann) Bütschli	GG1AM	La Atunara, Cadiz, Mediterranean Sea, 1999	S. Fraga
P. reticulatum	CCMP404	Salton Lake, CA, USA, 1966	A. Dodson
P. reticulatum	CCMP1720	Biscayne Bay, Miami, USA, 1994	P. Hargraves
GYMNODINIALES			
Akashiwo sanguinea (Hirasaka) Hansen et Moestrup	VGO138	Catalonian Coast, Mediterranean Sea, na	M. Delgado
	(=G.spl)		-
A.sanguinea	VGO626	Greece, Mediterranean Sea, 2002	S. Fraga
Amphidinium carterae Hulburt	A01BR	Brazil, Atlantic Ocean, 2000	S. O. Lourenço
A. carterae	ACMK03	Maurice Isl., Indian Ocean, 1996	J. Diogène
A. carterae	ACRN02	Reunion Isl., Indian Ocean, 1992	J. Diogène
A. carterae	CS-212	Falmouth, Massachusetts, Atlantic Ocean, 1954	R. Gillard
A. cf. carterae	A1V	Ría de Pontevedra, NW Spain, 1985	I. Bravo
Barrufeta bravensis Sampedro et Fraga	VGO859	La Fosca, Girona, Mediterranean Sea, 2005	S. Fraga
B. bravensis	VGO860	La Fosca, Girona, Mediterranean Sea, 2005	S. Fraga
B. bravensis	VGO864	La Fosca, Girona, Mediterranean Sea, 2005	S. Fraga
Gymnodinium catenatum Graham	GC11V	Ría de Vigo, Spain, NW Spain, 1993	I. Bravo

G. catenatum	GC31AM	La Atunara, Cádiz, Spain, 1999	S. Fraga
<i>G. catenatum</i>	CS-302	Hastings Bay, Tasmania, Australia, 1990	
G.impudicum (Fraga et Bravo) Hansen et Moestrup	GY1VA	Valencia, Mediterranean Sea, 1992	I. Bravo
G. instriatum (Freudenthal et Lee) Coats	VGO642	Vilanova, Barcelona, Mediterranean Sea, 2003	S. Fraga
G. litoralis René			
G.cf. microreticulatum Bolch et Hallegraeff	VGO581	La Fosca, Girona, Mediterranean Sea, 2002	S. Fraga
G. nolleri Ellegaard et Moestrup	DK5	Øresund, Denmark, Atlantic Ocean, 1998	M. Ellegaard
Gyrodinium uncatenum Hulburt	CS-289/3	Bathurst Harbor, Tasmania, Australia, 1988	S. Blackburn
Karenia brevis (Davis) Hansen et Moestrup	CCMP718	Florida, USA, North Atlantic Ocean, 1960	Wilson
K. brevis	CCMP2281	Pensacola Beach, Florida, North Atlantic, 2003	J. Rogers
K. mikimotoi (Miyake et Kominami ex Oda) Hansen et Moestrup	CCMP429	Sutton Harbour, Plymouth, Atlantic Ocean, 1980	D. Harbor
K. papilonacea Haywood et Steidinger	VGO679	Sant Cast, Bryttany, Atlantic Ocean, 2003	S. Fraga
K. selliformis Haywood, Steidinger et MacKenzie	VGO876	Boughrara, Tunisia, Mediterranean Sea, 2006	S. Fraga
K. selliformis	VGO877	Boughrara, Tunisia, Mediterranean Sea, 2006	S. Fraga
K. selliformis	VGO901	Boughrara, Tunisia, Mediterranean Sea, 2006	S. Fraga
K. umbella de Salas, Bolch et Hallegraeff	Gy2DE	Derwent River, Tasmania, Australia, 1997	C. Bolch
Karlodinium armiger Bergholtz, Daugberg et. Moestrup	GC-2 IRTA	Alfacs Bay, Ebro Delta, Mediterranean Sea, 2000	M. Fernández
K. armiger	GC-3 IRTA	Alfacs Bay, Ebro Delta, Mediterranean Sea. 2000	M. Fernández
K. armiger	VGO260	Delta del Ebro, Tarragona, Mediterranean Sea, na	M. Delgado
K. decipiens de Salas, Bolch et Hallegraeff	Nervión34	Nervión Estuary, Biscay Bay, 2004	A. Laza-Martinez
K. veneficum (Ballantine) Larsen	CCMP415	59.3, 10.36E, Norway, Atlantic Ocean, NA, 1976	W. Thomas
K. veneficum	CCMP1974	Chesapeake Bay, USA, Atlantic Ocean, 1995	L. Aishao
K. veneficum	CS-310	Illawarra Lake, NSW, Australia, na	C. Bolch
K. veneficum	GC-4 IRTA	Alfacs Bay, Ebro Delta, Mediterranean Sea, 2000	M. Fernández
K. veneficum	VGO691	Bretagne, France, Atlantic Ocean, 2003	S. Fraga
K. veneficum	VGO870	Boughrara, Tunez, Mediterranean Sea, 2006	S. Fraga
Lepidodinium chlorophorum (Elbrächter et Schnepf) Hansen, Botes	BAHME100	List / Sylt 55°01.30'N, 08°27.10'E, 1990	M. Elbraechter
et de Salas			
L. chlorophorum	Dino16EUH	Nervion River, Biscay Bay, Atlantic Ocean, 2003	A. Laza-Martinez
L. chlorophorum	RCC1488	English Channel, Normandy Coast, Atlantic Ocean	I. Probert
L. chlorophorum	RCC1489	English Channel, Normandy Coast, Atlantic Ocean	I. Probert
Takayama cf. helix de Salas, Bolch et Hallegraeff	VGO 341	Ría de Vigo, NW Spain, 2001	S. Fraga
PERIDINIALES		· ·	-
Durinskia baltica (=Peridinium balticum Levis) Lemm	CS-38	Salton Sea, CA, USA, na	A. Loeblich
Heterocapsa niei (Loeblich III, 1968) Morrill & Loeblich III	VGO399	Ría de Lorbé, NW Spain, 2002	S. Fraga

H. triquetra (Ehrenberg) Stein	VGO1053	Bahía de Fangar, Ebro Delta, Mediterranean Sea, 2005	I. Bravo
Kryptoperidinium foliaceum (Stein) Lindemann	CS-37	La Parguera, Puerto Rico, Atlantic Ocean, 1965	P. R. Burkholder
K. foliaceum	VGO556	Catoira, Ría de Arousa, NW Spain, 2002	F. Rodríguez
Peridinium aciculiferum Lemmermann	PAER-1	Lake Erken, Sweden, 1995	K. Rengefors
P. aciculiferum	PAER-2	Lake Erken, Sweden, 2004	K. Rengefors
Scrippsiella hangoei (Schiller) Larsen	STHV-1	Baltic Sea, near Tvarminne, Finland, 2002	A. Kremp
S. hangoei	STHV-4	Baltic Sea, near Tvarminne, Finland, 2002	A. Kremp
S. hangoei	STHV-6	Baltic Sea, near Tvarminne, Finland, 2002	A. Kremp
Scrippsiella sp.	S3V	Ría de Vigo, NW Spain, 1989	S. Fraga
PROROCENTRALES			
Prorocentrum arenarium Faust	VGO776	Tenerife, Canary Islands, Spain, 2004	S. Fraga
P. belizeanum Faust	PBMA01	Mayotte Island, Indian Ocean, 1992	J. Diogène
P. belizeanum	VGO867	La Gomera, Canary Islands, Spain, 2005	S. Fraga
P. compressum (Bailey) Abé ex Dodge	VGO621	Greece, Mediterranean Sea, 2002	S. Fraga
P. cf. faustiae Morton	VGO894	Malaysia, na	N. Noor
P. levis Faust, Kibler, Vandersea, Tester et Litaker	VG0777	Tenerife, Canary Islands, Spain, 2004	S. Fraga
P. levis	VGO957	Ebro Delta, Mediterranean Sea, na	J. Diogène
P. lima (Ehrenberg) Dodge	PL2V	Isl. Cies, Ría de Vigo, NW Spain, 1985	I. Bravo
P. lima	VGO620	Torre Mora, Spain, Mediterranean Sea, 2002	S. Fraga
P. micans Ehrenberg	PM1V	Ría de Vigo, NW Spain, 1985	I. Bravo
P. minimum (Pavillard) Schliller	VGO365	Ría de Vigo, NW Spain, 2001	S. Fraga
P. minimum	VGO367	Ría de Vigo, NW Spain, 2001	S. Fraga
P. nux Puigserver et Zingone	UTEX1008	England, North Sea, Atlantic Ocean, 1957	I. Adams
Prorocentrum rathymum Loeblich, Shirley et Schmidt	VGO893	Malaysia, na	Norma
P. rostratum Stein	PR1V	Ría de Vigo, NW Spain, 1990	I. Bravo
P. triestinum Schliller	PT2V	Ría de Vigo, NW Spain, 1989	S. Fraga
THORACOSPHAERALES			
Thoracosphaera heimii (Lohm.) Kamptner	CCMP1069	23°48.9'N89°45.7'W, Gulf of Mexico, 1989	L. Brand

			F 0 -				
Order, species	Strain code	Perid/	Perid/	Chl c_2	Chl c_1 /	Diadino/	Dino/
		chl c_2	chl a	/chl a	chl a	chl a	chl a
GONYAULACALES							
Alexandrium affine	PA2V	4.23	0.76	0.18	0.00	0.34	0.16
A. andersonii	CCMP1718	3.48	0.80	0.23	0.00	0.39	0.12
A. andersonii	VGO664	4.64	0.98	0.21	0.00	0.42	0.06
A. andersonii	SZN-12	3.30	0.43	0.13	0.00	0.27	0.13
A. catenella	AT02	3.16	0.60	0.19	0.00	0.41	0.17
A. catenella	VGO609	3.11	0.59	0.19	0.00	0.28	0.28
A. catenella	AL96	3.00	0.45	0.15	0.00	0.18	0.10
A. insuetum	ICMB218	3.27	0.72	0.22	0.00	0.25	0.08
A. margalefii	ICMB	3.59	0.78	0.22	0.00	0.27	0.10
A. margalefii	VGO661	3.05	0.64	0.21	0.00	0.20	0.11
A.minutum	AL1V	5.23	0.95	0.18	0.00	0.26	0.12
A. minutum	AMAD01	3.43	0.96	0.28	0.00	0.30	0.12
A. minutum	CLONE4	2.78	0.76	0.27	0.00	0.28	0.14
A. minutum	VGO577	3.25	0.78	0.24	0.00	0.31	0.12
A. ostenfeldii	AOTV-A1A	3.41	0.69	0.20	0.01	0.55	0.14
A. ostenfeldii	AOTV-A4A	3.15	0.63	0.20	0.01	0.52	0.12
A. peruvianum	AM10C	5.12	0.88	0.17	0.00	0.41	0.10
A. pseudogonyaulax	VGO706	3.53	0.90	0.26	0.00	0.18	0.05
A. tamarense	CCMP1493	3.36	0.67	0.20	0.00	0.26	0.12
A. tamarense	MDQ1096	3.42	0.80	0.23	0.00	0.33	0.13
A. tamarense	PE1V	2.91	0.67	0.23	0.00	0.25	0.12
A. tamarense	VGO553	3.72	0.78	0.21	0.00	0.29	0.12
A. tamutum	VGO617	3.42	0.85	0.25	0.00	0.38	0.12
A. taylori	AM8V	2.24	0.39	0.18	0.00	0.44	0.18
A. taylori	VGO703	2.44	0.44	0.18	0.00	0.24	0.17

Table S2. Mass (w:w) pigment ratios to chl *a* and its variability in pigment type-1.

Pigment patterns in Dinophyta

Coolia canariensis	VGO775	4.26	1.10	0.26	0.00	0.41	0.11
C. canariensis	VGO787	4.14	1.45	0.35	0.00	0.37	0.09
<i>C. monotis</i>	CM2V	3.25	0.72	0.22	0.00	0.38	0.12
C. monotis	CM6V	3.12	0.78	0.25	0.00	0.42	0.12
C. monotis	RIKZ4	2.58	0.76	0.29	0.00	0.38	0.13
C. monotis	CCMP1345	2.75	0.81	0.29	0.00	0.31	0.14
<i>Coolia</i> sp.	VGO923	3.11	0.74	0.24	0.00	0.27	0.09
Coolia tropicalis	CCMP1744	2.31	0.80	0.35	0.05	0.39	0.12
Fragilidium sp.	VGO692	3.16	0.68	0.21	0.00	0.44	0.14
Fragilidium sp.	IO 91-01	2.94	0.73	0.25	0.00	0.34	0.14
Gambierdiscus excentricus	VGO790	3.51	1.07	0.31	0.04	0.40	0.14
Gambierdiscus sp.	VGO920	2.82	0.64	0.22	0.03	0.35	0.13
Gambierdiscus sp.	KC81G1	2.82	0.78	0.28	0.05	0.40	0.12
Lingulodinium polyedrum	LP4V	3.99	0.78	0.20	0.00	0.24	0.14
L. polyedrium	LP9V	4.27	0.78	0.18	0.00	0.24	0.14
Neoceratium furca	Nfurca1	2.91	0.51	0.18	0.00	0.25	0.01
Ostreopsis ovata	OS01BR	3.11	0.84	0.27	0.00	0.50	0.10
O. cf. ovata	VGO611	3.06	0.83	0.27	0.00	0.31	0.09
Ostreopsis cf. siamensis	OS3V	3.54	1.01	0.29	0.00	0.66	0.09
O. cf. siamensis	VGO613	3.62	0.97	0.27	0.00	0.48	0.10
O. cf. siamensis	VGO883	3.47	0.86	0.25	0.00	0.39	0.10
Protoceratium reticulatum	GG1AM	2.94	0.72	0.25	0.01	0.26	0.12
P. reticulatum	CCMP404	4.02	0.66	0.16	0.03	0.40	0.14
P. reticulatum	CCMP1720	4.41	0.72	0.16	0.02	0.42	0.11
GYMNODINIALES							
Akashiwo sanguinea	VGO138	2.28	0.48	0.21	0.00	0.44	0.14
A. sanguinea	VGO626	3.01	0.53	0.17	0.00	0.27	0.14
Amphidinium carterae	A01BR	2.11	0.83	0.39	0.00	0.59	0.07
A. carterae	ACMK03	1.66	0.61	0.37	0.00	0.50	0.14

Order, species	Strain code	Perid/	Perid/	Chl c_2	Chl $c_1/$	Diadino/	Dino/
		chl c_2	Chl a	/chl a	chl a	chl a	chl a
A. carterae	ACRN02	1.88	0.77	0.41	0.00	0.46	0.05
A. cf. carterae	A1V	2.37	0.66	0.28	0.00	0.37	0.06
Barrufeta bravensis	VGO859	1.92	0.43	0.23	0.00	0.49	0.13
B. bravensis	VGO860	2.00	0.56	0.28	0.00	0.53	0.30
B. bravensis	VGO864	1.99	0.38	0.20	0.00	0.58	0.23
Gymnodinium catenatum	GC11V	2.49	0.51	0.20	0.00	0.40	0.20
G. catenatum	GC31AM	2.00	0.41	0.20	0.00	0.33	0.20
G. catenatum	CS-302	1.91	0.58	0.30	0.00	0.42	0.17
G. impudicum	GY1VA	2.01	0.47	0.24	0.00	0.38	0.21
G. instriatum	VGO642	2.60	0.59	0.23	0.00	0.48	0.11
G. cf. microreticulatum	VGO581	2.00	0.42	0.20	0.01	0.36	0.14
G. nolleri	DK5	2.99	0.72	0.24	0.00	0.27	0.23
Gyrodinium uncatenum	CS289-3	2.63	0.50	0.19	0.28	0.49	0.09
PERIDINIALES							
Heterocapsa niei	VGO399	1.44	0.56	0.38	0.08	0.34	0.13
Heterocapsa triquetra	VGO1053	1.45	0.49	0.34	0.00	0.48	0.12
Peridinium aciculiferum	PAER-1	2.71	0.57	0.21	0.10	0.28	0.07
Peridinium aciculiferum	PAER-2	2.85	0.62	0.22	0.11	0.29	0.07
Scrippsiella hangoei	STHV-1	2.02	0.63	0.31	0.01	0.33	0.08
Scrippsiella hangoei	STHV-2	2.01	0.65	0.31	0.01	0.35	0.07
Scrippsiella hangoei	STHV-5	2.11	0.57	0.26	0.01	0.29	0.06
Scrippsiella hangoei	STHV-6	2.03	0.60	0.29	0.02	0.34	0.08
<i>Scrippsiella</i> sp.	S3V	5.04	0.83	0.16	0.00	0.35	0.07
PROROCENTRALES							
P. arenarium	VGO776	7.43	0.67	0.09	0.02	0.38	0.19
P. belizeanum	PBMA01	19.80	1.16	0.06	0.00	0.52	0.18
P. belizeanum	VGO867	25.42	1.01	0.04	0.01	0.49	0.16

Pigment patterns in Dinophyta

P. compressum	VGO621	4.75	0.83	0.18	0.00	0.29	0.09
P. cf. faustiae	VGO894	7.39	0.82	0.11	0.00	0.33	0.19
P. levis	VG0777	40.32	0.85	0.02	0.01	0.40	0.17
P. levis	VGO957	15.58	0.68	0.05	0.00	0.40	0.22
P. lima	PL2V	12.08	1.09	0.09	0.00	0.71	0.22
P. cf. lima	VGO620	3.81	0.93	0.25	0.01	0.53	0.22
P. micans	PM1V	7.94	0.88	0.11	0.00	0.40	0.09
P. minimum	VGO365	4.75	0.85	0.18	0.00	0.35	0.05
P. minimum	VGO367	10.68	1.16	0.11	0.00	0.28	0.06
P.nux	UTEX1008	3.64	1.07	0.29	0.00	0.48	0.08
P. rathymum	VGO893	10.30	1.12	0.11	0.00	0.42	0.12
P. rostratum	PR1V	18.65	1.19	0.06	0.00	0.30	0.09
P. triestinum	PT2V	4.28	0.95	0.22	0.00	0.42	0.10
THORACOSPHAERALES							
Thoracosphaera heimii	CCMP1069	2.43	0.80	0.33	0.00	0.58	0.04
Mean		4.52	0.73	0.22	0.01	0.37	0.12
SD		5.39	0.23	0.08	0.03	0.12	0.05
N		90	90	90	21	90	90

Table S3. Mass pigment ratios (w:w, accessory chls/chl *a*) in pigment types-2 and 3.

Pigment type-2	Chl $c_3/$	Chl $c_2/$	MGDG-chlc ₂	MGDG-chlc ₂	MGDG-chl c_2	$Chlc_3/chlc_2$	Σ Chls <i>c</i>
Species and strain code	chl a	chl a	/chl a	/chl a	/chl a		/chl a
Species and strain code			Peak 51	Peak 56	Peak 60		
Karenia brevis CCMP718	0.05	0.08	0.00	0.01	0.00	0.62	0.14
K. brevis CCMP2281	0.05	0.10	0.00	0.01	0.00	0.50	0.16
Karenia mikimotoi CCMP429	0.06	0.11	0.00	0.00	0.00	0.50	0.17
K. papilonacea VGO679	0.04	0.09	0.00	0.01	0.00	0.47	0.13
K. selliformis VGO875	0.06	0.11	0.00	0.00	0.00	0.55	0.17
K. umbella Gy2DE	0.05	0.11	0.00	0.00	0.00	0.62	0.16
Pigment type-3							
Karlodinium armiger GC-7	0.06	0.10	0.01	0.01	0.00	0.59	0.19
K. decipiens Nervión34	0.05	0.15	0.00	0.00	0.00	0.35	0.20
K. veneficum CCMP415	0.06	0.15	0.00	0.00	0.00	0.41	0.21
K. veneficum CCMP1974	0.06	0.15	0.00	0.00	0.00	0.38	0.21
K. veneficum CS-310	0.07	0.16	0.00	0.00	0.00	0.41	0.23
K. veneficum GC-4	0.04	0.12	0.00	0.00	0.00	0.31	0.17
K. veneficum VGO691	0.05	0.13	0.00	0.00	0.00	0.41	0.18
K. veneficum VGO870	0.05	0.14	0.00	0.00	0.00	0.33	0.19
Takayama cf. helix VGO341	0.05	0.14	0.01	0.02	0.01	0.35	0.23

Table S3 (cont.). Mass pigment ratios (w:w, carotenoids/chl *a*) in pigment types-2 and 3.

Pigment type-2	But-	But-	But-	Fuco	4k-Hex-	4k-Hex-	Hex-	GyrE1	GyrE2	GyrE3
	fuco	fuco	fuco		fuco –like	fuco	fuco	-like	C12:0	C14:0
Species and strain code	like-1	like-2								
Karenia brevis CCMP718	0.03	0.06	0.07	0.25	0.04	0.10	0.06	0.00	0.10	0.00
K. brevis CCMP2281	0.05	0.05	0.07	0.18	0.08	0.09	0.08	0.00	0.13	0.00
K.mikimotoi CCMP429	0.06	0.06	0.08	0.24	0.10	0.10	0.08	0.02	0.10	0.00
K. papilonacea VGO679	0.02	0.03	0.11	0.10	0.08	0.08	0.25	0.03	0.16	0.01
K. selliformis VGO875	0.07	0.08	0.07	0.20	0.09	0.11	0.07	0.01	0.11	0.01
K. umbella Gy2DE	0.01	0.01	0.11	0.20	0.09	0.07	0.28	0.00	0.15	0.00
Pigment type-3	1			1				1		
Karlodinium armiger GC-7	0.00	0.00	0.01	0.25	0.00	0.00	0.39	0.00	0.10	0.05
K. decipiens Nervión34	0.00	0.00	0.21	0.16	0.00	0.00	0.38	0.00	0.13	0.09
K. veneficum CCMP 415	0.00	0.00	0.11	0.41	0.00	0.00	0.27	0.00	0.23	0.02
K. veneficum CCMP 1974	0.00	0.00	0.13	0.32	0.00	0.00	0.24	0.00	0.15	0.09
K. veneficum CS-310	0.00	0.00	0.15	0.55	0.00	0.00	0.29	0.00	0.19	0.04
K. veneficum GC-4	0.00	0.00	0.07	0.53	0.00	0.00	0.18	0.00	0.18	0.04
K. veneficum VGO691	0.00	0.00	0.08	0.43	0.00	0.00	0.22	0.00	0.19	0.03
K. veneficum VGO870	0.00	0.00	0.16	0.22	0.00	0.00	0.34	0.00	0.19	0.02
<i>Takayama</i> cf. <i>helix</i> VGO341	0.00	0.00	0.00	0.87	0.00	0.00	0.05	0.00	0.00	0.00

Pigment type 4	$\operatorname{Chl} c_2$	Chl c ₁ –like Eg.	MgDVP	Chl c_1	Fuco	β,γ	v–car	
Peridinium balticum CS-33	0.03	0.003	0.000	0.06	0.40		tr.	
Kryptoperidinium foliaceum CS-37	0.04	0.006	0.001	0.07	0.38		tr.	
K. foliaceum VGO556	0.05	0.007	0.003	0.08	0.55	0	0.03	
Pigment type 5	Chl c_2	Alloxanthin	Crocoxanthin	β,ε–car				
Dinophysis acuminata VGO1063	0.05	1.02	0.05	0.12				
Dinophysis acuta VGO1065	0.06	0.85	0.04	0.11				
Dinophysis caudata VGO1064	0.05	0.87	0.03	0.12				
Dinophysis tripos VGO1062	0.06	0.84	0.03	0.09				
Pigment type 6	Neo	Viola	Anth	Zea	Unk443	βε-car	ββ-car	chl b
L. chlorophorum Dino16EUH	0.06	0.05	0.007	0.006	0.11	0.02	0.02	0.74
L. chlorophorum RCC1488	0.09	0.11	0.007	0.03	0.10	0.02	0.03	0.58
L. chlorophorum RCC1489	0.09	0.08	0.01	0.04	0.09	0.02	0.03	0.57
L. chlorophorum BAH100ME	0.06	0.22	0.02	0.01	0.12	0.07	0.03	0.08

Table S4. Mass pigment ratios to chl *a* (w:w) in pigment types-4, 5 and 6. (tr.: trace amounts).

<i>Karenia</i> spp.	Species description	HPLC pigment data
K. asterichroma	de Salas et al. 2004b	-
K. bicuneiformis	Botes et al. 2003	-
K. bidigitata	Haywood et al. 2004	-
K. brevis	(C.C. Davis) Hansen & Moestrup, in Daugbjerg et al. 2000	Millie et al. 1997, Örnólfsdóttir et al. 2003
K. brevisulcata	Chang & Ryan, 2004	-
K. concordia	Chang & Ryan, 2004] -
K. cristata	Botes et al. 2003] -
K. digitata	Yang et al. 2000	
K. longicanalis	Yang et al. 2001	_
K. mikimotoi	(Miyake et Kominami ex Oda) Hansen & Moestrup, in	Suzuki & Ishimaru 1992,
	Daugbjerg et al. 2000	Johnsen & Sakshaug 1993, this paper
K. papilonaceae	Haywood et al. 2004	Laza et al. 2007
K. selliformis	Haywood et al. 2004	This paper

Table S5. Species of Karenia,	<i>Karlodinium</i> and	Takayama so fa	r described and	the pigment	information av	ailable
-------------------------------	------------------------	----------------	-----------------	-------------	----------------	---------

Pigment patterns in Dinophyta

K. umbella	de Salas et al. 2004a	de Salas et al. 2004a, this paper
Karlodinium spp.		
K. antarcticum	de Salas et al. 2008	-
K. armiger	Bergholtz et al. 2006	Bergholtz et al. 2006, Garcés et al. 2006, this paper
K. australe	de Salas et al. 2005	de Salas et al. 2005
K. ballantinum	de Salas et al. 2008	
K. conicum	de Salas et al. 2008	
K. corrugatum	de Salas et al. 2008	-
K. corsicum	Siano et al. 2009	_
K. decipiens	de Salas et al. 2008	Laza et al. 2007, this paper
K. veneficum	(Ballantine) Larsen, in Daugbjerg et al. 2000	Johnsen & Sakshaug 1993, Kempton et al. 2002,
		Bergholtz et al. 2006, Garcés et al. 2006, Bachvaroff
		et al. 2009, this paper
Takayama spp.		
T. acrotrocha	Siano et al. 2009	-

Pigment patterns in Dinophyta

T. cladochroma	(Larsen) de Salas, Bolch & Hallegraeff,	-
	in de Salas et al. 2003	
Takayama helix	de Salas et al. 2003	de Salas et al. 2003, this paper
T. tasmanica	de Salas et al. 2003	de Salas et al. 2003
T. tuberculata	de Salas et al. 2008	-
T. pulchella	Steidinger et al. 1998	-

Table S6. Peridinin to chl *a* molar ratios used in CHEMTAX analysis of pigment data. Original data were in mass (w:w) ratios; present data are showed into molar ratio by multiplying the ratio of chl *a* MW (894) to MW of peridinin (631) = 1.42

Peridinin to chl <i>a</i> ratio	Reference	
(mole: mole)		
0.75	Mackey et al. 1996	
0.75	Wright et al. 1996	
0.86-1.42	Mackey et al. 1998	
0.61, 0.94	Schlüter et al. 2000	
1.51	Wright & van den Enden 2000	
0.71; 0.94	Descy et al. 2000	
0.77, 1.09	Suzuki et al. 2002	
1.51	Ishikawa et al. 2002	
0.85	DiTullio et al. 2003	
0.76	Örnólfsdóttir et al. 2003	
0.76	Rodríguez et al. 2003	
0.71	Buchaca et al. 2005	

Page 68 of 79

1.51	Llewellyn et al. 2005
1.12	Lewitus et al. 2005
0.88	DiTullio et al. 2005
0.56-0.65	Rodríguez et al. 2006b
0.52-0.88	Schlüter et al. 2006
0.60	Develi et al. 2008
1.10	Lionard et al. 2008
0.92	Wright et al. 2009
1.16	Wright et al. 2010
0.59-0.63	Lauridsen et al. 2011
0.56-0.62	Laviale & Neveux 2011
0.50-0.89	Ruivo et al. 2011
0.99-1.06	Schlüter et al. 2011
0.75	Suzuki et al. 2011

Table S7. Pigment-based chloroplast types in Dinophyceae and its distribution in other algal taxa.

Dinophyceae	Representative species	Algal taxa with similar	Representative species
pigment type		pigment-based chloroplast	
Type-1	Alexandrium minutum	-	_
Туре-2	Karenia mikimotoi	-	-
Туре-3	Karlodinium veneficum	Haptophyta Type-8*	Phaeocystis spp.?
Type-4	Durinskia baltica,	Bacillariophyceae/	Pseudo-nitzschia
	Kryptoperidinium	Haptophyta-Type 2*	australis/ Pavlova
	foliaceum		gyrans
Type-5	Dinophysis acuminata	Cryptophyceae	<i>Teleaulax</i> spp.
Туре-6	Lepidodinium	Chlorophyceae/Ulvophyceae	_
	chlorophorum	Trebouxiophyceae	

*Haptophyte pigment types as defined in Zapata et al. (2004)

LITERATURE CITED IN THE SUPPLEMENT

- Bachvaroff TR, Adolf JE, Place AR (2009) Strain variation in *Karlodinium veneficum* (Dinophyceae): toxin profiles, pigments, and growth characteristics. J Phycol 45:137-153
- Bergholtz T, Daugbjerg N, Moestrup O, Fernández-Tejedor M. (2006) On the identity of *Karlodinium veneficum* and description of *Karlodinium armiger* sp. nov. (Dinophyceae), based on light and electron microscopy, nuclear encoded LSU rDNA and pigment composition. J Phycol 42:170-193
- Botes L, Sym SD, Pitcher GC (2003) *Karenia cristata* sp. nov. and *Karenia bicuneiformis* sp. nov. (Gymnodiniales, Dinophyceae): two *Karenia* species from South African coast. Phycologia 42:563-571
- Buchaca T, Felip M, Catalan J (2005) A comparison of HPLC pigment analyses and biovolume estimates of phytoplankton groups in an oligotrophic lake. J Plankton Res 27:91-101
- Chang FH, Ryan KG (2004) *Karenia concordia* sp. nov. (Gymnodiniales, Dinophyceae), a new non-thecate dinoflagellate isolated from the New Zealand northeast coast during the 2002 harmful algal bloom events. Phycologia 43:552-562
- Daugbjerg N, Hansen G, Larsen J, Moestrup Ø (2000) Phylogeny of some of the major genera of dinoflagellates based on ultrastructure and partial LSU rDNA sequence data, including the erection of three new genera of unarmoured dinoflagellates. Phycologia 39:302-317
- De Salas MF, Bolch CJS, Botes L, Nash G, Wright SW, Hallegraeff GM (2003) *Takayama* gen. nov. (Gymnodiniales, Dinophyceae), a new genus of unarmed dinoflagellates with sigmoid apical grooves, including the description of two new species. J Phycol 39:1233-1246

- De Salas MF, Bolch CJS, Hallegraeff GM (2004a) Karenia umbella sp. nov. (Gymnodiniales, Dinophyceae), a new potentially ichthyotoxic dinoflagellate species from Tasmania, Australia. Phycologia 43:166-175
- De Salas MF, Bolch CJS, Hallegraeff GM (2004b) *Karenia asteriochroma* sp. nov. (Gymnodiniales, Dinophyceae), a new dinoflagellate species associated with finfish aquaculture mortalities in Tasmania, Australia. Phycologia 43:624-631
- De Salas MF, Bolch CJS, Hallegraeff GM (2005) *Karlodinium australe* sp. nov. (Gymnodiniales, Dinophyceae), a new potentially ichthyotoxic unarmoured dinoflagellate from lagoonal habitats of south-eastern Australia. Phycologia 44:640-650
- De Salas MF, Laza-Martínez A, Hallegraeff GM (2008) Novel unarmored dinoflagellates from the toxigenic family Kareniaceae (Gymnodiniales): five new species of *Karlodinium* and one new *Takayama* from the Australian sector of the Southern Ocean. J Phycol 44:241-257
- Descy J-P, Higgins HW, Mackey DJ, Hurley JP, Frost TM (2000) Pigment ratios and phytoplankton assessment in Northern Wisconsin lakes. J Phycol 36:274-286
- Develi EE, Berthon J-F, van der Linde D (2008) Phytoplankton class determination by microscopic and HPLC-CHEMTAX analyses in the southern Baltic Sea. Mar Ecol Prog Ser 359:69–87
- DiTullio GR, Geesey ME, Jones DR, Daly KL, Campbell L, Smith Jr WO (2003) Phytoplankton assemblage structure and primary productivity along 170°W in the South Pacific Ocean. Mar Ecol Prog Ser 255:55-80
- DiTullio GR, Geesey ME, Maucher JM, Alm MB, Riseman SF, Bruland KW (2005) Influence of iron on algal community composition and physiological status in the Peru upwelling system. Limnol Oceanogr 50:1887-1907

- Garcés E, Fernández M, Penna A, Van Lenning K, Gutierrez A, Camp J, Zapata M (2006) Characterization of NW Mediterranean *Karlodinium* spp. (Dinophyceae) strains using morphological, molecular, chemical, and physiological methodologies. J Phycol 42:1096-1112
- Haywood AJ, Steidinger KA, Truby EW, Bergquist PR, Bergquist PL, Adamson J, MacKenzie L (2004) Comparative morphology and molecular phylogenetic analysis of three new species of the genus *Karenia* (Dinophyceae) from New Zealand. J Phycol 40:165-179
- Ishikawa A, W. Wright SW, van den Enden R, Davidson AT, Marchant HJ (2002) Abundance, size structure and community composition of phytoplankton in the Southern Ocean in the austral summer 1999/2000. Polar Biosci 15:11-26
- Johnsen G, Sakshaug E (1993) Bio-optical characteristics and photoadaptive responses in the toxic and bloom-forming dinoflagellates *Gyrodinium aureolum*, *Gymnodinium galatheanum*, and two strains of *Prorocentrum minimum*. J Phycol 29:627-642
- Kempton JW, Lewitus AJ, Deeds JR, Law JM, Place AR (2002) Toxicity of *Karlodinium micrum* (Dinophyceae) associated with a fish kill in a South Carolina brackish retention pond. Harmful Algae 1:233-241
- Lauridsen TL, Schlüter L, Johansson LS (2011) Determining algal assemblages in oligotrophic lakes and streams: comparing information from newly developed pigment/chlorophyll a ratios with direct microscopy. Freshwater Biol 56:1638-1651
- Laviale M, Neveux L (2011) Relationships between pigment ratios and growth irradiance in 11 marine phytoplankton species. Mar Ecol Prog Ser 425:63-77
- Laza-Martinez A, Seoane S, Zapata M, Orive E (2007) Phytoplankton pigment patterns in a temperate estuary: from unialgal cultures to natural assemblages. J Plankton Res 29:913-929
- Lionard M, Muylaert K, Tackx M, Vyverman W (2008) Evaluation of the performance of HPLC–CHEMTAX analysis for determining phytoplankton biomass and composition in a turbid estuary (Schelde, Belgium). Estuar Coast Shelf Sci 76:809-817
- Llewellyn CA, Fishwick JR, Blackford JC (2005) Phytoplankton community assemblage in the English Channel: a comparison using chl *a* derived from HPLC-CHEMTAX and carbon derived from microscopy cell counts. J Plankton Res 27:103-119
- Lewitus AJ, White DL, Tymowski RG, Geesey ME, Hymel SN, Noble PA (2005) Adapting the CHEMTAX method for assessing phytoplankton taxonomic composition in Southeastern U.S. estuaries. Estuaries 28:160-172
- Mackey MD, Mackey DJ, Higgins HW, Wright SW (1996) CHEMTAX a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Mar Ecol Prog Ser 144:265-283
- Mackey DJ, Higgins HW, Mackey MD, Holdsworth D (1998) Algal class abundances in the western equatorial Pacific: estimation from HPLC measurements of chloroplast pigments using CHEMTAX. Deep-Sea Res I 45:1441-1468
- Millie DF, Schofield OM, Kirkpatrick GJ, Johnsen G, Tester PA, Vinyard BT (1997) Detection of harmful algal blooms using photopigments and absorption signatures: A case study of the Florida red tide dinoflagellate, *Gymnodinium breve*. Limnol Oceanogr 42:1240-1251

- Örnólfsdóttir EB, Pinckney JL, Tester PA (2003) Quantification of the relative abundance of the toxic dinoflagellate *Karenia brevis* (Dinophyta), using unique photopigments. J Phycol 39:449-457
- Rodríguez F, Pazos Y, Maneiro J, Zapata M (2003) Temporal variation in phytoplankton assemblages and pigment composition at a fixed station of the Ría of Pontevedra (NW Spain). Estuar Coast Shelf Sci 58:499-515
- Rodríguez F, Garrido JL, Crespo B G, Arbones B, Figueiras FG (2006) Size-fractionated phytoplankton pigment groups in the NW Iberian upwelling system: impact of the Iberian Poleward Current. Mar Ecol Prog Ser 323:59-73
- Ruivo M, Amorim A, Cartaxana P (2011) Effects of growth phase and irradiance on phytoplankton pigment ratios: implications for chemotaxonomy in coastal waters. J Plankton Res 33:1012-1022
- Schlüter L, Møhlenberg F, Havskum H, Larsen S (2000) The use of phytoplankton pigments for identifying and quantifying phytoplankton groups in coastal areas: testing the influence of light and nutrients on pigment/chorophyll *a* ratios. Mar Ecol Prog Ser 192:49-63
- Schlüter L, Lauridsen TL, Krogh G, Jørgensen T (2006) Identification and quantification of phytoplankton groups in lakes using new pigment ratios a comparison between pigment analysis by HPLC and microscopy. Freshwater Biol 51:1474-1485
- Siano R, Kooistra WHCF, Montresor M, Zingone A (2009) Unarmoured and thin-walled dinoflagellates from the Gulf of Naples, with the description of *Woloszynskia cincta* sp. nov. (Dinophyceae, Suessiales). Phycologia 48:44-65
- Steidinger KA, Landsberg JH, Truby EW, Roberts BS (1998) First report of *Gymnodinium pulchellum* (Dinophyceae) in North America and associated fish kills in the Indian River, Florida. J Phycol 34:431-437

- Suzuki R, Ishimaru T (1992) Characteristics of photosynthetic pigment composition of *Gymnodinium mikimotoi* Miyake et Kominami ex Oda. J Oceanogr 48:367-375
- Suzuki K, Minami C, Liu H, Saino T (2002) Temporal and spatial patterns of chemotaxonomic algal pigments in the subarctic Pacific and the Bering Sea during the early summer of 1999. Deep Sea Res II 49:5685-5704
- Suzuki K, Kuwata A, Yoshie N, Shibata A, Kawanobe K, Saito H (2011) Population dynamics of phytoplankton, heterotrophicbacteria, and viruses during the spring bloom in the western subarctic Pacific. Deep-Sea Res I 58:575-589
- Wright SW, Thomas DP, Marchant HJ, Higgins HW, Mackey MD, Mackey DJ (1996)
 Analysis of phytoplankton of the Australian sector of the Southern Ocean: comparisons of
 microscopy and size frequency data with interpretations of pigment HPLC data using the
 "CHEMTAX" matrix factorisation program. Mar Ecol Prog Ser 144:285-298
- Wright SW, van den Enden RL (2000) Phytoplankton community structure and stocks in the East Australian marginal ice zone (BROKE survey, January-March 1996) determined by CHEMTAX analysis of HPLC pigment signatures. Deep-Sea Res II 47:2363-2400
- Wright SW, Ishikawa A, Marchant HJ, Davidson AT, van den Enden RL, Nash GV (2009)
 Composition and significance of picophytoplankton in Antarctic waters. Polar Biol 32:797-808
- Wright SW, van den Enden RL, Pearce I, Davidson AT, Scott FJ, Westwood KJ (2010)
 Phytoplankton community structure and stocks in the Southern Ocean (30–80°E)
 determined by CHEMTAX analysis of HPLC pigment signatures. Deep-Sea Res II 57:758-778

- Yang ZB, Takayama H, Matsuoka K, Hodgkiss IJ (2000) Karenia digitata sp. nov. (Gymnodiniales, Dinophyceae), a new harmful algal bloom species from the coastal water of west Japan and Hong Kong. Phycologia 39:463-470
- Yang ZB, Hodgkiss IJ, Hansen G (2001) *Karenia longicanalis* sp. nov. (Dinophyceae): a new bloom-forming species isolated from Hong Kong, May 1998. Bot Mar 44:67-74
- Zapata M, Jeffrey SW, Wright SW, Rodríguez F, Garrido JL, Clementson L (2004) Photosynthetic pigments in 37 species (65 Strains) of Haptophyta: implications for oceanography and chemotaxonomy. Mar Ecol Prog Ser 270:83-102

IN MEMORIAM

While this paper was being reviewed, our colleague and friend Manuel Zapata passed away. He contributed greatly to the present state of knowledge of algal pigments (on their structures, methods of analysis, taxonomical distribution and use as signatures for characterizing natural phytoplankton communities). His HPLC method for algal pigments [Zapata, M; Rodríguez, F., Garrido JL (2000) Mar Ecol Prog Ser 195: 29-45] has become a standard procedure in marine laboratories along the world. "Zapa", as his family and friends called him affectionately, left us an important body of knowledge and a special way to observe nature. We will always remember him.

The following supplement accompanies the article

Pigment-based chloroplast types in dinoflagellates

Manuel Zapata^{1,†}, Santiago Fraga², Francisco Rodríguez^{2,*}, José L. Garrido¹

¹Instituto de Investigaciones Marinas, CSIC, c/ Eduardo Cabello 6, 36208 Vigo, Spain ²Instituto Español de Oceanografía, Subida a Radio Faro 50, 36390 Vigo, Spain

> *Corresponding author. Email: francisco.rodriguez@vi.ieo.es [†]Deceased (see In Memoriam at the end of the main article)

Marine Ecology Progress Series 465: 33–52 (2012)

Supplement. This supplement includes basic information about the strains used in the present study, and mass pigment to chl a ratios

Table S1. Cultures used in this study; na: strain not available

Order and species	Strain code	Origin and isolation year	Isolator
DINOPHYSIALES			
Dinophysis acuminata Claparède et Lachmann	VGO1063	Ría de Vigo, NW Spain, 2009	F. Rodríguez
D. acuta Ehrenberger	VGO1065	Ría de Pontevedra, Spain, 2010	F. Rodríguez
D. caudata Saville-Kent	VGO1064	Ría de Pontevedra, Spain, 2010	F. Rodríguez
Dinophysis tripos Gourret	VGO1062	Ría de Vigo, NW Spain, 2009	F. Rodríguez
GONYAULACALES			
Alexandrium affine (Inoue et Fukuyo) Balech	PA2V	Ría de Vigo, NW Spain, 1985	I. Bravo
A. andersonii Balech	CCMP1718	Town Cove, Eastham, MA, USA, 1987	S. Marquis
A. andersonii	SZN-12	Tyrrhenian Sea, Naples, Italy, na	M. Montresor
A. andersonii	VGO664	Saronikos Gulf, Greece, Mediterranean Sea, 2003	S. Fraga
A. catenella (Whedon et Kofoid) Balech	AT02	Thau Lagoon, France, Mediterranean Sea, 1998	D. Kulis
A. catenella	VGO609	Tarragona, Mediterranean Sea, 2002	S. Fraga
A. catenella	AL96	Monterey Bay, CA, USA, Pacific Ocean, year unknown	R. Gester
A. insuetum Balech	ICMB218	Puerto Arenys de Mar, Mediterranean Sea, 2006	N. Sampedro
A. margalefi Balech	VGO661	Els Alfacs, Tarragona, Mediterranean Sea, 2003	I. Bravo
A. minutum Halim	AL1V	Ría de Vigo, NW Spain, 1987	I. Bravo
A. minutum	AMAD01	Port River, S. Australia, Pacific Ocean, 1988	S. Blackburn
A. minutum	GHmin04	Denmark, Atlantic Ocean, 2001	G. Hansen
A. minutum	VGO577	La Fosca, Girona, Mediterranean Sea, 2002	S. Fraga

A. ostenfeldii (Paulsen) Balech et Tangen	AOTV-A1A	Föglö/Åland, Finland, Baltic Sea, 2004	A. Kemp
A. ostenfeldii	AOTV-A4A	Föglö/Åland, Finland, Baltic Sea, 2004	A. Kemp
A. peruvianum (Balech & Mendiola) Balech et Tangen	AM10C	Costa Brava, Mediterranean Sea, 2002	I. Bravo
A. pseudogonyaulax (Biecheler) Horoguchi	VGO706	Alfacs Bay, Ebro Delta, Mediterranean Sea, 2003	I. Bravo
A tamarense (Lebour) Balech	CCMP1493	Da Yia Bay, China, Pacific Ocean, 1991	G. Usup
A. tamarense	MDQ1096	Mar del Plata, Argentina, Atlantic Ocean, 1996	I. Carreto
A. tamarense	PE1V	Ría de Vigo, NW Spain, 1984	I. Bravo
A. tamarense	VGO553	Kavala Harbour, Greece, Mediterranean Sea, 2002	S. Fraga
A tamutum Montresor, Beran et John	VGO617	Els Alfacs, Tarragona, Mediterranean Sea, 2002	I. Bravo
A. taylori Balech	AM8V	Costa Brava, Mediterranean Sea, 1994	S. Fraga
A. taylori	VGO703	Alfacs Bay, Ebro Delta, Mediterranean Sea, 2003	I. Bravo
Coolia canariensis Fraga	VGO775	Tenerife, Canary Islands, Spain, 2004	S. Fraga
C. canariensis	VGO787	Tenerife, Canary Islands, Spain, 2004	S. Fraga
C. monotis Meunier	CM2V	Ría de Vigo, NW Spain, 1985	I. Bravo
C. monotis	CM6V	Almería, Spain, Mediterranean Sea, 1999	S. Fraga
C. monotis	RIKZ4	Yerseke, The Netherlands, Atlantic Ocean, 2000	L. Peperzak
C. monotis	SZN43	Naples, Italy, Mediterranean Sea, 1991	M. Montresor
C. cf. monotis	CCMP1345	Florida, USA, 1986	J. Bomber
C. tropicalis Faust	CCMP1744	Twin Cay, Belize, 1994	S. L. Morton
C. cf. tropicalis	VGO923	Manado, Indonesia, 2007	S. Fraga
Fragilidium sp.	IO 91-01	Cascais, Portugal, 2007	S. Fraga
Fragilidium sp.	VGO692	Elefsis Bay, Saronikos Gulf, Greece, 2003	S. Fraga
Gambierdiscus excentricus Fraga	VGO790	Tenerife, Canary Islands, Spain, 2004	S. Fraga
Gambierdiscus sp.	VGO920	Manado, Indonesia, Pacific Ocean, 2007	S. Fraga
Gambierdiscus sp.	KC81G1	Crete, Greece, Mediterranean Sea, 2007	K. Aligizaki
Lingulodinium polyedrum (Stein) Dodge	LP4V	Ría de Lorbé, NW Spain, 2000	S. Fraga
L. polyedrum	LP9V	Ría de Ares, NW Spain, 2002	S. Fraga
Neoceratium furca (Ehrenberg) Gómez, Moreira et Lopez-García	Nfurca1	Baiona, Ría de Vigo, NW Spain, 2009	F. Rodríguez
Ostreopsis cf. ovata Fukuyo	OS01BR	Rio de Janeiro, Brazil, Atlantic Ocean, 2000	S. Fraga
O. cf. ovata	VGO883	Lanzarote, Canary Islands, Atlantic Ocean, 2006	S. Fraga
O. cf. ovata	VGO613	Bahía de Abra, Madeira, Atlantic Ocean, 2002	S. Fraga
O. cf. siamensis Schmidt	OS3V	Almería, Spain, Mediterranean Sea, 1999	S. Fraga
Protoceratium reticulatum (Claparède et Lachmann) Bütschli	GG1AM	La Atunara, Cadiz, Mediterranean Sea, 1999	S. Fraga
P. reticulatum	CCMP404	Salton Lake, CA, USA, 1966	A. Dodson
P. reticulatum	CCMP1720	Biscayne Bay, Miami, FL, USA, 1994	P. Hargraves
GYMNODINIALES			
Akashiwo sanguinea (Hirasaka) Hansen et Moestrup	VGO138	Catalonian Coast, Mediterranean Sea, na	M. Delgado
A. sanguinea	VGO626	Greece, Mediterranean Sea, 2002	S. Fraga

Amphidinium carterae Hulburt	A01BR	Brazil, Atlantic Ocean, 2000	S. O. Lourenço
A. carterae	ACMK03	Maurice Island, Indian Ocean, 1996	J. Diogène
A. carterae	ACRN02	Reunion Island, Indian Ocean, 1992	J. Diogène
A. carterae	CS-212	Falmouth, MA, USA, Atlantic Ocean, 1954	R. Gillard
A. cf. carterae	A1V	Ría de Pontevedra, NW Spain, 1985	I. Bravo
Barrufeta bravensis Sampedro et Fraga	VGO859	La Fosca, Girona, Mediterranean Sea, 2005	S. Fraga
B. bravensis	VGO860	La Fosca, Girona, Mediterranean Sea, 2005	S. Fraga
B. bravensis	VGO864	La Fosca, Girona, Mediterranean Sea, 2005	S. Fraga
<i>Gymnodinium catenatum</i> Graham	GC11V	Ría de Vigo, Spain, NW Spain, 1993	I. Bravo
<i>G. catenatum</i>	GC31AM	La Atunara, Cádiz, Spain, 1999	S. Fraga
<i>G. catenatum</i>	CS-302	Hastings Bay, Tasmania, Australia, 1990	
G.impudicum (Fraga et Bravo) Hansen et Moestrup	GY1VA	Valencia, Mediterranean Sea, 1992	I. Bravo
G. instriatum (Freudenthal et Lee) Coats	VGO642	Vilanova, Barcelona, Mediterranean Sea, 2003	S. Fraga
G. litoralis René			~
G.cf. microreticulatum Bolch et Hallegraeff	VGO581	La Fosca, Girona, Mediterranean Sea, 2002	S. Fraga
G. nolleri Ellegaard et Moestrup	DK5	Øresund, Denmark, Atlantic Ocean, 1998	M. Ellegaard
<i>Gyrodinium uncatenum</i> Hulburt	CS-289/3	Bathurst Harbor, Tasmania, Australia, 1988	S. Blackburn
Karenia brevis (Davis) Hansen et Moestrup	CCMP718	Florida, USA, North Atlantic Ocean, 1960	W. B. Wilson
K. brevis	CCMP2281	Pensacola Beach, FL, USA, North Atlantic, 2003	J. Rogers
K. mikimotoi (Miyake et Kominami ex Oda) Hansen et Moestrup	CCMP429	Sutton Harbour, Plymouth, UK, Atlantic Ocean, 1980	D. Harbor
K. papilonacea Haywood et Steidinger	VGO679	Sant Cast, Brittany, Atlantic Ocean, 2003	S. Fraga
K. selliformis Haywood, Steidinger et MacKenzie	VGO876	Boughrara, Tunisia, Mediterranean Sea, 2006	S. Fraga
K. selliformis	VGO877	Boughrara, Tunisia, Mediterranean Sea, 2006	S. Fraga
K. selliformis	VGO901	Boughrara, Tunisia, Mediterranean Sea, 2006	S. Fraga
K. umbella de Salas, Bolch et Hallegraeff	Gy2DE	Derwent River, Tasmania, Australia, 1997	C. Bolch
Karlodinium armiger Bergholtz, Daugberg et Moestrup	GC-2 IRTA	Alfacs Bay, Ebro Delta, Mediterranean Sea, 2000	M. Fernández
K. armiger	GC-3 IRTA	Alfacs Bay, Ebro Delta, Mediterranean Sea. 2000	M. Fernández
K. armiger	VGO260	Delta del Ebro, Tarragona, Mediterranean Sea, na	M. Delgado
K. decipiens de Salas, Bolch et Hallegraeff	Nervión34	Nervión Estuary, Biscay Bay, 2004	A. Laza-Martinez
K. veneficum (Ballantine) Larsen	CCMP415	59.3° N, 10.36° E, Norway, Atlantic Ocean, 1976	W. Thomas
K. veneficum	CCMP1974	Chesapeake Bay, USA, Atlantic Ocean, 1995	L. Aishao
K. veneficum	CS-310	Illawarra Lake, NSW, Australia, na	C. Bolch
K. veneficum	GC-4 IRTA	Alfacs Bay, Ebro Delta, Mediterranean Sea, 2000	M. Fernández
K. veneficum	VGO691	Bretagne, France, Atlantic Ocean, 2003	S. Fraga
K. veneficum	VGO870	Boughrara, Tunez, Mediterranean Sea, 2006	S. Fraga
Lepidodinium chlorophorum (Elbrächter et Schnepf) Hansen,	BAHME100	List / Sylt 55° 01.30' N, 08° 27.10' E, 1990	M. Elbrächter
Botes et de Salas			
L. chlorophorum	Dino16EUH	Nervion River, Biscay Bay, Atlantic Ocean, 2003	A. Laza-Martinez

L. chlorophorum	RCC1488	English Channel, Normandy Coast, Atlantic Ocean, year unknown	I. Probert
L. chlorophorum	RCC1489	English Channel, Normandy Coast, Atlantic Ocean, year unknown	I. Probert
<i>Takayama</i> cf. <i>helix</i> de Salas, Bolch et Hallegraeff	VGO 341	Ría de Vigo, NW Spain, 2001	S. Fraga
PERIDINIALES			
Durinskia baltica (= Peridinium balticum Levis) Lemm	CS-38	Salton Sea, CA, USA, na	A. Loeblich
Heterocapsa niei (Loeblich III, 1968) Morrill & Loeblich III	VGO399	Ría de Lorbé, NW Spain, 2002	S. Fraga
H. triquetra (Ehrenberg) Stein	VGO1053	Bahía de Fangar, Ebro Delta, Mediterranean Sea, 2005	I. Bravo
Kryptoperidinium foliaceum (Stein) Lindemann	CS-37	La Parguera, Puerto Rico, Atlantic Ocean, 1965	P. R. Burkholder
K. foliaceum	VGO556	Catoira, Ría de Arousa, NW Spain, 2002	F. Rodríguez
Peridinium aciculiferum Lemmermann	PAER-1	Lake Erken, Sweden, 1995	K. Rengefors
P. aciculiferum	PAER-2	Lake Erken, Sweden, 2004	K. Rengefors
Scrippsiella hangoei (Schiller) Larsen	STHV-1	Baltic Sea, near Tvarminne, Finland, 2002	A. Kremp
S. hangoei	STHV-4	Baltic Sea, near Tvarminne, Finland, 2002	A. Kremp
S. hangoei	STHV-6	Baltic Sea, near Tvarminne, Finland, 2002	A. Kremp
Scrippsiella sp.	S3V	Ría de Vigo, NW Spain, 1989	S. Fraga
PROROCENTRALES			
Prorocentrum arenarium Faust	VGO776	Tenerife, Canary Islands, Spain, 2004	S. Fraga
P. belizeanum Faust	PBMA01	Mayotte Island, Indian Ocean, 1992	J. Diogène
P. belizeanum	VGO867	La Gomera, Canary Islands, Spain, 2005	S. Fraga
P. compressum (Bailey) Abé ex Dodge	VGO621	Greece, Mediterranean Sea, 2002	S. Fraga
P. cf. faustiae Morton	VGO894	Malaysia, na	N. Noor
P. levis Faust, Kibler, Vandersea, Tester et Litaker	VG0777	Tenerife, Canary Islands, Spain, 2004	S. Fraga
P. levis	VGO957	Ebro Delta, Mediterranean Sea, na	J. Diogène
P. lima (Ehrenberg) Dodge	PL2V	Isl. Cies, Ría de Vigo, NW Spain, 1985	I. Bravo
P. lima	VGO620	Torre Mora, Spain, Mediterranean Sea, 2002	S. Fraga
P. micans Ehrenberg	PM1V	Ría de Vigo, NW Spain, 1985	I. Bravo
P. minimum (Pavillard) Schliller	VGO365	Ría de Vigo, NW Spain, 2001	S. Fraga
P. minimum	VGO367	Ría de Vigo, NW Spain, 2001	S. Fraga
P. nux Puigserver et Zingone	UTEX1008	England, North Sea, Atlantic Ocean, 1957	I. Adams
P. rathymum Loeblich, Shirley et Schmidt	VGO893	Malaysia, na	Norma
P. rostratum Stein	PR1V	Ría de Vigo, NW Spain, 1990	I. Bravo
P. triestinum Schliller	PT2V	Ría de Vigo, NW Spain, 1989	S. Fraga
THORACOSPHAERALES			
Thoracosphaera heimii (Lohm.) Kamptner	CCMP1069	23° 48.9' N, 89° 45.7' W, Gulf of Mexico, 1989	L. Brand

Order and species	Strain code	Peri:chl c_2	Peri:chl a	Chl c_2 :chl a	Chl c_1 :chl a	Diadino:chl a	Dino:chl a
GONYAULACALES							
Alexandrium affine	PA2V	4.23	0.76	0.18	0.00	0.34	0.16
A. andersonii	CCMP1718	3.48	0.80	0.23	0.00	0.39	0.12
A. andersonii	VGO664	4.64	0.98	0.21	0.00	0.42	0.06
A. andersonii	SZN-12	3.30	0.43	0.13	0.00	0.27	0.13
A. catenella	AT02	3.16	0.60	0.19	0.00	0.41	0.17
A. catenella	VGO609	3.11	0.59	0.19	0.00	0.28	0.28
A. catenella	AL96	3.00	0.45	0.15	0.00	0.18	0.10
A. insuetum	ICMB218	3.27	0.72	0.22	0.00	0.25	0.08
A. margalefii	ICMB	3.59	0.78	0.22	0.00	0.27	0.10
A. margalefii	VGO661	3.05	0.64	0.21	0.00	0.20	0.11
A. minutum	AL1V	5.23	0.95	0.18	0.00	0.26	0.12
A. minutum	AMAD01	3.43	0.96	0.28	0.00	0.30	0.12
A. minutum	CLONE4	2.78	0.76	0.27	0.00	0.28	0.14
A. minutum	VGO577	3.25	0.78	0.24	0.00	0.31	0.12
A. ostenfeldii	AOTV-A1A	3.41	0.69	0.20	0.01	0.55	0.14
A. ostenfeldii	AOTV-A4A	3.15	0.63	0.20	0.01	0.52	0.12
A. peruvianum	AM10C	5.12	0.88	0.17	0.00	0.41	0.10
A. pseudogonyaulax	VGO706	3.53	0.90	0.26	0.00	0.18	0.05
A. tamarense	CCMP1493	3.36	0.67	0.20	0.00	0.26	0.12
A. tamarense	MDQ1096	3.42	0.80	0.23	0.00	0.33	0.13
A. tamarense	PE1V	2.91	0.67	0.23	0.00	0.25	0.12
A. tamarense	VGO553	3.72	0.78	0.21	0.00	0.29	0.12
A. tamutum	VGO617	3.42	0.85	0.25	0.00	0.38	0.12
A. taylori	AM8V	2.24	0.39	0.18	0.00	0.44	0.18
A. taylori	VGO703	2.44	0.44	0.18	0.00	0.24	0.17
Coolia canariensis	VG0775	4.26	1.10	0.26	0.00	0.41	0.11
C. canariensis	VGO787	4.14	1.45	0.35	0.00	0.37	0.09
C. monotis	CM2V	3.25	0.72	0.22	0.00	0.38	0.12
C. monotis	CM6V	3.12	0.78	0.25	0.00	0.42	0.12
C. monotis	RIKZ4	2.58	0.76	0.29	0.00	0.38	0.13
C. monotis	CCMP1345	2.75	0.81	0.29	0.00	0.31	0.14
<i>Coolia</i> sp.	VGO923	3.11	0.74	0.24	0.00	0.27	0.09
C. tropicalis	CCMP1744	2.31	0.80	0.35	0.05	0.39	0.12

Table S2. Mass (w:w) pigment to chlorophyll (chl) *a* ratios and their variability in pigment-based chloroplast Type 1. Abbreviations as in Table 1 of the main text

Fragilidium sp.	VGO692	3.16	0.68	0.21	0.00	0.44	0.14
Fragilidium sp.	IO 91-01	2.94	0.73	0.25	0.00	0.34	0.14
Gambierdiscus excentricus	VGO790	3.51	1.07	0.31	0.04	0.40	0.14
Gambierdiscus sp.	VGO920	2.82	0.64	0.22	0.03	0.35	0.13
Gambierdiscus sp.	KC81G1	2.82	0.78	0.28	0.05	0.40	0.12
Lingulodinium polyedrum	LP4V	3.99	0.78	0.20	0.00	0.24	0.14
L. polyedrium	LP9V	4.27	0.78	0.18	0.00	0.24	0.14
Neoceratium furca	Nfurca1	2.91	0.51	0.18	0.00	0.25	0.01
Ostreopsis ovata	OS01BR	3.11	0.84	0.27	0.00	0.50	0.10
O. cf. ovata	VGO611	3.06	0.83	0.27	0.00	0.31	0.09
<i>O</i> . cf. <i>siamensis</i>	OS3V	3.54	1.01	0.29	0.00	0.66	0.09
<i>O</i> . cf. <i>siamensis</i>	VGO613	3.62	0.97	0.27	0.00	0.48	0.10
<i>O</i> . cf. <i>siamensis</i>	VGO883	3.47	0.86	0.25	0.00	0.39	0.10
Protoceratium reticulatum	GG1AM	2.94	0.72	0.25	0.01	0.26	0.12
P. reticulatum	CCMP404	4.02	0.66	0.16	0.03	0.40	0.14
P. reticulatum	CCMP1720	4.41	0.72	0.16	0.02	0.42	0.11
GYMNODINIALES							
Akashiwo sanguinea	VGO138	2.28	0.48	0.21	0.00	0.44	0.14
A. sanguinea	VGO626	3.01	0.53	0.17	0.00	0.27	0.14
Amphidinium carterae	A01BR	2.11	0.83	0.39	0.00	0.59	0.07
A. carterae	ACMK03	1.66	0.61	0.37	0.00	0.50	0.14
A. carterae	ACRN02	1.88	0.77	0.41	0.00	0.46	0.05
<i>A</i> . cf. <i>carterae</i>	A1V	2.37	0.66	0.28	0.00	0.37	0.06
Barrufeta bravensis	VG0859	1.92	0.43	0.23	0.00	0.49	0.13
B. bravensis	VGO860	2.00	0.56	0.28	0.00	0.53	0.30
B. bravensis	VGO864	1.99	0.38	0.20	0.00	0.58	0.23
Gymnodinium catenatum	GC11V	2.49	0.51	0.20	0.00	0.40	0.20
G. catenatum	GC31AM	2.00	0.41	0.20	0.00	0.33	0.20
G. catenatum	CS-302	1.91	0.58	0.30	0.00	0.42	0.17
G. impudicum	GY1VA	2.01	0.47	0.24	0.00	0.38	0.21
G. instriatum	VGO642	2.60	0.59	0.23	0.00	0.48	0.11
<i>G.</i> cf. <i>microreticulatum</i>	VGO581	2.00	0.42	0.20	0.01	0.36	0.14
G. nolleri	DK5	2.99	0.72	0.24	0.00	0.27	0.23
Gyrodinium uncatenum	CS289-3	2.63	0.50	0.19	0.28	0.49	0.09
PERIDINIALES							
Heterocapsa niei	VGO399	1.44	0.56	0.38	0.08	0.34	0.13
H. triquetra	VGO1053	1.45	0.49	0.34	0.00	0.48	0.12
Peridinium aciculiferum	PAER-1	2.71	0.57	0.21	0.10	0.28	0.07

P.aciculiferum	PAER-2	2.85	0.62	0.22	0.11	0.29	0.07
Scrippsiella hangoei	STHV-1	2.02	0.63	0.31	0.01	0.33	0.08
S. hangoei	STHV-2	2.01	0.65	0.31	0.01	0.35	0.07
S. hangoei	STHV-5	2.11	0.57	0.26	0.01	0.29	0.06
S. hangoei	STHV-6	2.03	0.60	0.29	0.02	0.34	0.08
Scrippsiella sp.	S3V	5.04	0.83	0.16	0.00	0.35	0.07
PROROCENTRALES							
Prorocentrum arenarium	VGO776	7.43	0.67	0.09	0.02	0.38	0.19
P. belizeanum	PBMA01	19.80	1.16	0.06	0.00	0.52	0.18
P. belizeanum	VGO867	25.42	1.01	0.04	0.01	0.49	0.16
P. compressum	VGO621	4.75	0.83	0.18	0.00	0.29	0.09
P. cf. faustiae	VGO894	7.39	0.82	0.11	0.00	0.33	0.19
P. levis	VGO777	40.32	0.85	0.02	0.01	0.40	0.17
P. levis	VGO957	15.58	0.68	0.05	0.00	0.40	0.22
P. lima	PL2V	12.08	1.09	0.09	0.00	0.71	0.22
P. cf. lima	VGO620	3.81	0.93	0.25	0.01	0.53	0.22
P. micans	PM1V	7.94	0.88	0.11	0.00	0.40	0.09
P. minimum	VGO365	4.75	0.85	0.18	0.00	0.35	0.05
P. minimum	VGO367	10.68	1.16	0.11	0.00	0.28	0.06
P. nux	UTEX1008	3.64	1.07	0.29	0.00	0.48	0.08
P. rathymum	VGO893	10.30	1.12	0.11	0.00	0.42	0.12
P. rostratum	PR1V	18.65	1.19	0.06	0.00	0.30	0.09
P. triestinum	PT2V	4.28	0.95	0.22	0.00	0.42	0.10
THORACOSPHAERALES							
Thoracosphaera heimii	CCMP1069	2.43	0.80	0.33	0.00	0.58	0.04
Mean		4.52	0.73	0.22	0.01	0.37	0.12
SD		5.39	0.23	0.08	0.03	0.12	0.05
Ν		90	90	90	21	90	90

Chloroplast Type 2	Chl c_3 :chl a	Chl c_2 :chl a	MGDG-chlc ₂ :chl a	MGDG-chlc2:chl a	MGDG-chlc ₂ :chl a	$Chlc_3:chlc_2$	\sum chl <i>c</i> :chl <i>a</i>
Species and strain code			Peak 51	Peak 56	Peak 60		
Karenia brevis CCMP718	0.05	0.08	0.00	0.01	0.00	0.62	0.14
K. brevis CCMP2281	0.05	0.10	0.00	0.01	0.00	0.50	0.16
K. mikimotoi CCMP429	0.06	0.11	0.00	0.00	0.00	0.50	0.17
K. papilonacea VGO679	0.04	0.09	0.00	0.01	0.00	0.47	0.13
K. selliformis VGO875	0.06	0.11	0.00	0.00	0.00	0.55	0.17
K. umbella Gy2DE	0.05	0.11	0.00	0.00	0.00	0.62	0.16
Chloroplast Type 3							
Karlodinium armiger GC-7	0.06	0.10	0.01	0.01	0.00	0.59	0.19
K. decipiens Nervión34	0.05	0.15	0.00	0.00	0.00	0.35	0.20
K. veneficum CCMP415	0.06	0.15	0.00	0.00	0.00	0.41	0.21
K. veneficum CCMP1974	0.06	0.15	0.00	0.00	0.00	0.38	0.21
K. veneficum CS-310	0.07	0.16	0.00	0.00	0.00	0.41	0.23
K. veneficum GC-4	0.04	0.12	0.00	0.00	0.00	0.31	0.17
K. veneficum VGO691	0.05	0.13	0.00	0.00	0.00	0.41	0.18
K. veneficum VGO870	0.05	0.14	0.00	0.00	0.00	0.33	0.19
Takayama cf. helix VGO341	0.05	0.14	0.01	0.02	0.01	0.35	0.23

Table S3. Mass pigment ratios (w:w, accessory chls:chl *a*) in pigment-based chloroplast Types 2 and 3. Abbreviations as in Table 1 of the main text

Table S3 (cont.)

Chloroplast Type 2	But-fuco	But-fuco	But-	Fuco	4k-hex-	4k-hex-	Hex-	GyrE1	GyrE2	GyrE3
Species and strain code	like-1	like-2	fuco		fuco-like	fuco	fuco	-like	C12:0	C14:0
Karenia brevis CCMP718	0.03	0.06	0.07	0.25	0.04	0.10	0.06	0.00	0.10	0.00
<i>K. brevis</i> CCMP2281	0.05	0.05	0.07	0.18	0.08	0.09	0.08	0.00	0.13	0.00
K. mikimotoi CCMP429	0.06	0.06	0.08	0.24	0.10	0.10	0.08	0.02	0.10	0.00
K. papilonacea VGO679	0.02	0.03	0.11	0.10	0.08	0.08	0.25	0.03	0.16	0.01
K. selliformis VGO875	0.07	0.08	0.07	0.20	0.09	0.11	0.07	0.01	0.11	0.01
<i>K. umbella</i> Gy2DE	0.01	0.01	0.11	0.20	0.09	0.07	0.28	0.00	0.15	0.00
Chloroplast Type 3										
Karlodinium armiger GC-7	0.00	0.00	0.01	0.25	0.00	0.00	0.39	0.00	0.10	0.05
K. decipiens Nervión34	0.00	0.00	0.21	0.16	0.00	0.00	0.38	0.00	0.13	0.09
K. veneficum CCMP 415	0.00	0.00	0.11	0.41	0.00	0.00	0.27	0.00	0.23	0.02
K. veneficum CCMP 1974	0.00	0.00	0.13	0.32	0.00	0.00	0.24	0.00	0.15	0.09
K. veneficum CS-310	0.00	0.00	0.15	0.55	0.00	0.00	0.29	0.00	0.19	0.04
K. veneficum GC-4	0.00	0.00	0.07	0.53	0.00	0.00	0.18	0.00	0.18	0.04
K. veneficum VGO691	0.00	0.00	0.08	0.43	0.00	0.00	0.22	0.00	0.19	0.03
K. veneficum VGO870	0.00	0.00	0.16	0.22	0.00	0.00	0.34	0.00	0.19	0.02
Takayama cf. helix VGO341	0.00	0.00	0.00	0.87	0.00	0.00	0.05	0.00	0.00	0.00

Chloroplast Type 4	Chl c_2	Chl c_1 -like Eg.	MgDVP	Chl c_1	Fuco	βγ	√-car	
Peridinium balticum CS-33	0.03	0.003	0.000	0.06	0.40		tr.	
Kryptoperidinium foliaceum CS-37	0.04	0.006	0.001	0.07	0.38		tr.	
K. foliaceum VGO556	0.05	0.007	0.003	0.08	0.55	0	0.03	
Chloroplast Type 5	Chl c_2	Alloxanthin	Crocoxanthin	βε-car				
Dinophysis acuminata VGO1063	0.05	1.02	0.05	0.12				
D. acuta VGO1065	0.06	0.85	0.04	0.11				
D. caudata VGO1064	0.05	0.87	0.03	0.12				
D. tripos VGO1062	0.06	0.84	0.03	0.09				
Chloroplast Type 6	Neo	Viola	Anth	Zea	Unk443	βε-car	ββ-car	Chl b
<i>Lepidodinium chlorophorum</i> Dino16EUH	0.06	0.05	0.007	0.006	0.11	0.02	0.02	0.74
L. chlorophorum RCC1488	0.09	0.11	0.007	0.03	0.10	0.02	0.03	0.58
L. chlorophorum RCC1489	0.09	0.08	0.01	0.04	0.09	0.02	0.03	0.57
L. chlorophorum BAH100ME	0.06	0.22	0.02	0.01	0.12	0.07	0.03	0.08

Table S4. Mass pigment to chlorophyll (chl) *a* ratios (w:w) in pigment-based chloroplast Types 4, 5 and 6; tr.: trace amounts; other abbreviations as in Table 1 of the main text

Karenia spp.	Species description	HPLC pigment data
K. asterichroma	de Salas et al. (2004b)	-
K. bicuneiformis	Botes et al. (2003)	-
K. bidigitata	Haywood et al. (2004)	-
K. brevis	(C.C. Davis) Hansen & Moestrup, in Daugbjerg et al. (2000)	Millie et al. (1997), Örnólfsdóttir et al. (2003)
K. brevisulcata	Chang & Ryan (2004)	-
K. concordia	Chang & Ryan (2004)	_
K. cristata	Botes et al. (2003)	_
K. digitata	Yang et al. (2000)	-
K. longicanalis	Yang et al. 2001	-
K. mikimotoi	(Miyake et Kominami ex Oda) Hansen & Moestrup, in	Suzuki & Ishimaru (1992), Johnsen & Sakshaug (1993), this study
	Daugbjerg et al. (2000)	
K. papilonaceae	Haywood et al. (2004)	Laza-Martinez et al. (2007)
K. selliformis	Haywood et al. (2004)	This study
K. umbella	de Salas et al. (2004a)	de Salas et al. (2004a), this study
Karlodinium spp.		
K. antarcticum	de Salas et al. (2008)	-
K. armiger	Bergholtz et al. (2006)	Bergholtz et al. (2006), Garcés et al. (2006), this study
K. australe	de Salas et al. (2005)	de Salas et al. (2005)
K. ballantinum	de Salas et al. (2008)	-
K. conicum	de Salas et al. (2008)	-
K. corrugatum	de Salas et al. (2008)	-
K. corsicum	Siano et al. (2009)	_
K. decipiens	de Salas et al. (2008)	Laza-Martinez et al. (2007), this study
K. veneficum	(Ballantine) Larsen, in Daugbjerg et al. (2000)	Johnsen & Sakshaug (1993), Kempton et al. (2002), Bergholtz et
		al. (2006), Garcés et al. (2006), Bachvaroff et al. (2009), this study
<i>Takayama</i> spp.		
T. acrotrocha	Siano et al. (2009)	-
T. cladochroma	(Larsen) de Salas, Bolch & Hallegraeff,	-
	in de Salas et al. (2003)	
T. helix	de Salas et al. (2003)	de Salas et al. (2003), this study
T. tasmanica	de Salas et al. (2003)	de Salas et al. (2003)
T. tuberculata	de Salas et al. (2008)	-
T. pulchella	Steidinger et al. (1998)	-

Table S5. Species of Karenia, Karlodinium and Takayama described to date and the available pigment information

Table S6. Peridinin to chlorophyll (chl) *a* molar ratios used in CHEMTAX analysis of pigment data. Original data were in mass (w:w) ratios; here data are shown as molar ratios by multiplying the ratio of chl *a* MW (894) to MW of peridinin (631) = 1.42

Peridinin to chl <i>a</i> ratio	Source
0.75	Mackey et al. (1996)
0.75	Wright et al. (1996)
0.86-1.42	Mackey et al. (1998)
0.61, 0.94	Schlüter et al. (2000)
1.51	Wright & van den Enden (2000)
0.71; 0.94	Descy et al. (2000)
0.77, 1.09	Suzuki et al. (2002)
1.51	Ishikawa et al. (2002)
0.85	DiTullio et al. (2003)
0.76	Örnólfsdóttir et al. (2003)
0.76	Rodríguez et al. (2003)
0.71	Buchaca et al. (2005)
1.51	Llewellyn et al. (2005)
1.12	Lewitus et al. (2005)
0.88	DiTullio et al. (2005)
0.56-0.65	Rodríguez et al. (2006)
0.52-0.88	Schlüter et al. (2006)
0.60	Eker-Develi et al. (2008)
1.10	Lionard et al. (2008)
0.92	Wright et al. (2009)
1.16	Wright et al. (2010)
0.59–0.63	Lauridsen et al. (2011)
0.56-0.62	Laviale & Neveux (2011)
0.50-0.89	Ruivo et al. (2011)
0.99–1.06	Schlüter et al. (2011)
0.75	Suzuki et al. (2011)

Table S7. Pigment-based chloroplast types in Dinophyceae and their distribution in other algal taxa

		-	
Dinophyceae	Representative species	Algal taxa with similar	Representative species
chloroplast type		pigment-based chloroplast	
Type 1	Alexandrium minutum	—	—
Type 2	Karenia mikimotoi	_	_
Type 3	Karlodinium veneficum	Haptophyta Type-8 ^a	Phaeocystis spp.?
Type 4	Durinskia baltica,	Bacillariophyceae/ Haptophyta-	Pseudo-nitzschia australis/
	Kryptoperidinium foliaceum	Type 2 ^a	Pavlova gyrans
Type 5	Dinophysis acuminata	Cryptophyceae	<i>Teleaulax</i> spp.
Type 6	Lepidodinium chlorophorum	Chlorophyceae/Ulvophyceae	_
		Trebouxiophyceae	

^aHaptophyte pigment types as defined in Zapata et al. (2004)

LITERATURE CITED

- Bachvaroff TR, Adolf JE, Place AR (2009) Strain variation in *Karlodinium veneficum* (Dinophyceae): toxin profiles, pigments, and growth characteristics. J Phycol 45:137–153
- Bergholtz T, Daugbjerg N, Moestrup O, Fernández-Tejedor M (2006) On the identity of *Karlodinium veneficum* and description of *Karlodinium armiger* sp. nov. (Dinophyceae), based on light and electron microscopy, nuclear encoded LSU rDNA and pigment composition. J Phycol 42:170–193
- Botes L, Sym SD, Pitcher GC (2003) *Karenia cristata* sp. nov. and *Karenia bicuneiformis* sp. nov. (Gymnodiniales, Dinophyceae): two *Karenia* species from the South African coast. Phycologia 42:563–571
- Buchaca T, Felip M, Catalan J (2005) A comparison of HPLC pigment analyses and biovolume estimates of phytoplankton groups in an oligotrophic lake. J Plankton Res 27:91–101
- Chang FH, Ryan KG (2004) *Karenia concordia* sp. nov. (Gymnodiniales, Dinophyceae), a new non-thecate dinoflagellate isolated from the New Zealand northeast coast during the 2002 harmful algal bloom events. Phycologia 43:552–562
- Daugbjerg N, Hansen G, Larsen J, Moestrup Ø (2000) Phylogeny of some of the major genera of dinoflagellates based on ultrastructure and partial LSU rDNA sequence data, including the erection of three new genera of unarmoured dinoflagellates. Phycologia 39:302–317
- De Salas MF, Bolch CJS, Botes L, Nash G, Wright SW, Hallegraeff GM (2003) *Takayama* gen. nov. (Gymnodiniales, Dinophyceae), a new genus of unarmed dinoflagellates with sigmoid apical grooves, including the description of two new species. J Phycol 39:1233–1246
- De Salas MF, Bolch CJS, Hallegraeff GM (2004a) *Karenia umbella* sp. nov. (Gymnodiniales, Dinophyceae), a new potentially ichthyotoxic dinoflagellate species from Tasmania, Australia. Phycologia 43:166–175
- De Salas MF, Bolch CJS, Hallegraeff GM (2004b) *Karenia asteriochroma* sp. nov. (Gymnodiniales, Dinophyceae), a new dinoflagellate species associated with finfish aquaculture mortalities in Tasmania, Australia. Phycologia 43:624–631
- De Salas MF, Bolch CJS, Hallegraeff GM (2005) *Karlodinium australe* sp. nov. (Gymnodiniales, Dinophyceae), a new potentially ichthyotoxic unarmoured dinoflagellate from lagoonal habitats of south-eastern Australia. Phycologia 44:640–650
- De Salas MF, Laza-Martínez A, Hallegraeff GM (2008) Novel unarmored dinoflagellates from the toxigenic family Kareniaceae (Gymnodiniales): five new species of *Karlodinium* and one new *Takayama* from the Australian sector of the Southern Ocean. J Phycol 44:241–257
- Descy JP, Higgins HW, Mackey DJ, Hurley JP, Frost TM (2000) Pigment ratios and phytoplankton assessment in northern Wisconsin lakes. J Phycol 36:274–286
- DiTullio GR, Geesey ME, Jones DR, Daly KL, Campbell L, Smith WO Jr (2003) Phytoplankton assemblage structure and primary productivity along 170°W in the South Pacific Ocean. Mar Ecol Prog Ser 255:55–80
- DiTullio GR, Geesey ME, Maucher JM, Alm MB, Riseman SF, Bruland KW (2005) Influence of iron on algal community composition and physiological status in the Peru upwelling system. Limnol Oceanogr 50:1887–1907
- Eker-Develi E, Berthon JF, van der Linde D (2008) Phytoplankton class determination by microscopic and HPLC-CHEMTAX analyses in the southern Baltic Sea. Mar Ecol Prog Ser 359:69–87
- Garcés E, Fernández M, Penna A, Van Lenning K, Gutierrez A, Camp J, Zapata M (2006) Characterization of NW Mediterranean *Karlodinium* spp. (Dinophyceae) strains using morphological, molecular, chemical, and physiological methodologies. J Phycol 42:1096–1112

- Haywood AJ, Steidinger KA, Truby EW, Bergquist PR, Bergquist PL, Adamson J, MacKenzie L (2004) Comparative morphology and molecular phylogenetic analysis of three new species of the genus *Karenia* (Dinophyceae) from New Zealand. J Phycol 40:165–179
- Ishikawa A, Wright SW, van den Enden R, Davidson AT, Marchant HJ (2002) Abundance, size structure and community composition of phytoplankton in the Southern Ocean in the austral summer 1999/2000. Polar Biosci 15:11–26
- Johnsen G, Sakshaug E (1993) Bio-optical characteristics and photoadaptive responses in the toxic and bloom-forming dinoflagellates *Gyrodinium aureolum*, *Gymnodinium galatheanum*, and two strains of *Prorocentrum minimum*. J Phycol 29:627–642
- Kempton JW, Lewitus AJ, Deeds JR, Law JM, Place AR (2002) Toxicity of *Karlodinium micrum* (Dinophyceae) associated with a fish kill in a South Carolina brackish retention pond. Harmful Algae 1:233–241
- Lauridsen TL, Schlüter L, Johansson LS (2011) Determining algal assemblages in oligotrophic lakes and streams: comparing information from newly developed pigment/chlorophyll *a* ratios with direct microscopy. Freshw Biol 56:1638–1651
- Laviale M, Neveux L (2011) Relationships between pigment ratios and growth irradiance in 11 marine phytoplankton species. Mar Ecol Prog Ser 425:63–77
- Laza-Martinez A, Seoane S, Zapata M, Orive E (2007) Phytoplankton pigment patterns in a temperate estuary: from unialgal cultures to natural assemblages. J Plankton Res 29:913–929
- Lewitus AJ, White DL, Tymowski RG, Geesey ME, Hymel SN, Noble PA (2005) Adapting the CHEMTAX method for assessing phytoplankton taxonomic composition in Southeastern U.S. estuaries. Estuaries 28:160–172
- Lionard M, Muylaert K, Tackx M, Vyverman W (2008) Evaluation of the performance of HPLC– CHEMTAX analysis for determining phytoplankton biomass and composition in a turbid estuary (Schelde, Belgium). Estuar Coast Shelf Sci 76:809–817
- Llewellyn CA, Fishwick JR, Blackford JC (2005) Phytoplankton community assemblage in the English Channel: a comparison using chl *a* derived from HPLC-CHEMTAX and carbon derived from microscopy cell counts. J Plankton Res 27:103–119
- Mackey MD, Mackey DJ, Higgins HW, Wright SW (1996) CHEMTAX a program for estimating class abundances from chemical markers: application to HPLC measurements of phytoplankton. Mar Ecol Prog Ser 144:265–283
- Mackey DJ, Higgins HW, Mackey MD, Holdsworth D (1998) Algal class abundances in the western equatorial Pacific: estimation from HPLC measurements of chloroplast pigments using CHEMTAX. Deep-Sea Res I 45:1441–1468
- Millie DF, Schofield OM, Kirkpatrick GJ, Johnsen G, Tester PA, Vinyard BT (1997) Detection of harmful algal blooms using photopigments and absorption signatures: a case study of the Florida red tide dinoflagellate, *Gymnodinium breve*. Limnol Oceanogr 42:1240–1251
- Örnólfsdóttir EB, Pinckney JL, Tester PA (2003) Quantification of the relative abundance of the toxic dinoflagellate *Karenia brevis* (Dinophyta), using unique photopigments. J Phycol 39:449–457
- Rodríguez F, Pazos Y, Maneiro J, Zapata M (2003) Temporal variation in phytoplankton assemblages and pigment composition at a fixed station of the Ría of Pontevedra (NW Spain). Estuar Coast Shelf Sci 58:499–515
- Rodríguez F, Garrido JL, Crespo BG, Arbones B, Figueiras FG (2006) Size-fractionated phytoplankton pigment groups in the NW Iberian upwelling system: impact of the Iberian Poleward Current. Mar Ecol Prog Ser 323:59–73

- Ruivo M, Amorim A, Cartaxana P (2011) Effects of growth phase and irradiance on phytoplankton pigment ratios: implications for chemotaxonomy in coastal waters. J Plankton Res 33:1012–1022
- Schlüter L, Møhlenberg F, Havskum H, Larsen S (2000) The use of phytoplankton pigments for identifying and quantifying phytoplankton groups in coastal areas: testing the influence of light and nutrients on pigment/chorophyll *a* ratios. Mar Ecol Prog Ser 192:49–63
- Schlüter L, Lauridsen TL, Krogh G, Jørgensen T (2006) Identification and quantification of phytoplankton groups in lakes using new pigment ratios a comparison between pigment analysis by HPLC and microscopy. Freshw Biol 51:1474–1485
- Schlüter L, Henriksen P, Nielsen TG, Jakobsen HH (2011) Phytoplankton composition and biomass across the southern Indian Ocean. Deep-Sea Res I 58:546–556
- Siano R, Kooistra WHCF, Montresor M, Zingone A (2009) Unarmoured and thin-walled dinoflagellates from the Gulf of Naples, with the description of *Woloszynskia cincta* sp. nov. (Dinophyceae, Suessiales). Phycologia 48:44–65
- Steidinger KA, Landsberg JH, Truby EW, Roberts BS (1998) First report of *Gymnodinium pulchellum* (Dinophyceae) in North America and associated fish kills in the Indian River, Florida. J Phycol 34:431–437
- Suzuki R, Ishimaru T (1992) Characteristics of photosynthetic pigment composition of *Gymnodinium mikimotoi* Miyake et Kominami ex Oda. J Oceanogr 48:367–375
- Suzuki K, Minami C, Liu H, Saino T (2002) Temporal and spatial patterns of chemotaxonomic algal pigments in the subarctic Pacific and the Bering Sea during the early summer of 1999. Deep-Sea Res II 49:5685–5704
- Suzuki K, Kuwata A, Yoshie N, Shibata A, Kawanobe K, Saito H (2011) Population dynamics of phytoplankton, heterotrophic bacteria, and viruses during the spring bloom in the western subarctic Pacific. Deep-Sea Res I 58:575–589
- Wright SW, van den Enden RL (2000) Phytoplankton community structure and stocks in the East Australian marginal ice zone (BROKE survey, January-March 1996) determined by CHEMTAX analysis of HPLC pigment signatures. Deep-Sea Res II 47:2363–2400
- Wright SW, Thomas DP, Marchant HJ, Higgins HW, Mackey MD, Mackey DJ (1996) Analysis of phytoplankton of the Australian sector of the Southern Ocean: comparisons of microscopy and size frequency data with interpretations of pigment HPLC data using the 'CHEMTAX' matrix factorisation program. Mar Ecol Prog Ser 144:285–298
- Wright SW, Ishikawa A, Marchant HJ, Davidson AT, van den Enden RL, Nash GV (2009) Composition and significance of picophytoplankton in Antarctic waters. Polar Biol 32:797–808
- Wright SW, van den Enden RL, Pearce I, Davidson AT, Scott FJ, Westwood KJ (2010) Phytoplankton community structure and stocks in the Southern Ocean (30–80°E) determined by CHEMTAX analysis of HPLC pigment signatures. Deep-Sea Res II 57:758–778
- Yang ZB, Takayama H, Matsuoka K, Hodgkiss IJ (2000) *Karenia digitata* sp. nov. (Gymnodiniales, Dinophyceae), a new harmful algal bloom species from the coastal water of west Japan and Hong Kong. Phycologia 39:463–470
- Yang ZB, Hodgkiss IJ, Hansen G (2001) *Karenia longicanalis* sp. nov. (Dinophyceae): a new bloomforming species isolated from Hong Kong, May 1998. Bot Mar 44:67–74
- Zapata M, Jeffrey SW, Wright SW, Rodríguez F, Garrido JL, Clementson L (2004) Photosynthetic pigments in 37 species (65 strains) of Haptophyta: implications for oceanography and chemotaxonomy. Mar Ecol Prog Ser 270:83–102