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We report theoretical integral and differential cross sections for electron scattering from hydrogen
cyanide derived from two ab initio scattering potential methods. For low energies (0.1–100 eV),
we have used the symmetry adapted-single centre expansion method using a multichannel scatter-
ing formulation of the problem. For intermediate and high energies (10–10 000 eV), we have ap-
plied an optical potential method based on a screening corrected independent atom representation.
Since HCN is a strong polar molecule, further dipole-induced excitations have been calculated in
the framework of the first Born approximation and employing a transformation to a space-fixed
reference frame of the calculated K-matrix elements. Results are compared with experimental data
available in the literature and a complete set of recommended integral elastic, inelastic, and total
scattering cross sections is provided from 0.1 to 10 000 eV. © 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.4754661]

I. INTRODUCTION

It is currently known that the major part of the energy
deposited by any kind of primary radiation (x-rays, electrons,
positrons, or ions) in biological media is transferred by the
secondary electrons produced along the ionization tracks.1–3

Some medical applications of radiation need accurate interac-
tion models including secondary electron effects. Therefore,
in these applications, electron scattering cross sections are
required over a wide energy range, from the high energies
of the primary particles down to the very low energies of
thermalised secondary electrons.

Hydrogen cyanide (HCN) is a linear polyatomic
molecule with a high permanent dipole moment of
μ = 2.98 D. Numerous biomolecules, including H2O,
have a strong polar nature, which plays an important role in
the low-energy scattering dynamics but can cause significant
difficulties either for experimental or theoretical studies.
Being a fairly simple polyatomic molecule, HCN seems to be
an appropriate target for checking computational models of
dipole excitations and thus for giving a more realistic com-
parison between theory and experiments over a very broad
range of collision energies which are finally recommended
for applicative uses. Given the fact that all previous studies
have been limited to a smaller range of collision energies,
the present work intends to supply usable data over a much
broader region of electron energies.

a)E-mail: g.garcia@iff.csic.es.

In the low energy region, electron collisions with HCN
have been the subject of numerous studies focused on iden-
tifying the low-lying shape resonances and fragmentation
paths via dissociative electron attachment (DEA). Early
experiments performed by Inoue4 showed the formation of
the anion CN− via the DEA channel. Burrow et al.5 reported
electron transmission spectra and identified a low-lying shape
resonance. More recently, May et al.6 reported absolute
partial cross sections for the formation of CN− using a time-
of-flight ion spectrometer. Calculations were also performed
a while ago by Jain and Norcross7 using a model potential
method and by Varambhia and Tennyson who applied the
R-matrix technique.8 Both studies observed the presence of a
low-lying shape resonance around 2.7 eV. In addition, Chorou
and Orel9 calculated the resonance parameters and studied
dissociation mechanisms of the molecule using the complex-
Kohn variational method in a three-dimensional space.

However, electron scattering studies over wider energy
domains are scarce and there is a lack of differential and
integral cross section data out of the energy range where reso-
nances take place. To the best of our knowledge, experimental
integral and differential elastic cross sections have been only
provided by Srivastava and co-workers:10 they measured
elastic differential cross sections for electron impact energies
ranging from 3 to 50 eV and scattering angles from 20◦ to
130◦ by using a crossed electron-molecular beam technique.
Absolute differential cross section values were derived by
them through a gas flow procedure for normalisation to
helium data. Integral elastic cross sections were also obtained
there by extrapolating to angular regions between 0◦ and 20◦
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and from 130◦ up to 180◦. In addition, theoretical elastic cross
sections (ECS) and total scattering cross sections (TCS) up to
5000 eV were calculated by Jain and Baluja11 with a complex
optical potential model whose imaginary part is given by a
semiempirical absorption potential. Electron impact differen-
tial and integral rotational excitation cross sections of HCN
can be found in a recent study published by Faure et al.12

where the molecular R-matrix method has been used in com-
bination with the adiabatic-nuclei-rotation approximation.

In this study we report theoretical cross sections for
electron scattering from HCN obtained with two different
non-empirical quantum scattering models: For low energies
a symmetry adapated-single centre expansion approach
(ePOLYSCAT) and for higher energies a corrected form
of the independent-atom model (IAM) called screening-
corrected additivity rule (IAM-SCAR) were used. We have
also calculated dipole-induced rotational excitations and then
we compared them with the available data. As a result of this
study we provide a complete set of recommended integral
elastic, inelastic, and total scattering cross sections from 0.1
to 10 000 eV.

In Sec. II of this article we describe the details of our cal-
culation models: ePOLYSCAT and IAM-SCAR. In Sec. III
we present and discuss the results of this study. Thereafter,
our work is summarized in Sec. IV before drawing some con-
clusions from this study.

II. THEORETICAL METHODS

A. Symmetry adapted-single centre expansion
(SA-SCE) method

The approach we followed to study the low-energy elec-
tron interaction with polyatomic molecules is based on a
single-centre expansion (SCE) of the target molecule and the
incident electron wavefunction around the center of mass of
the N + 1 system. Specific details of our procedure have been
discussed before;13, 14 therefore, only a brief outline of the
method is given in this section.

The collisional process is described in terms of the usual
Schrödinger equation within the fixed nuclei approximation,
which considers the time scale of the impinging electron
motion to be short compared to the molecular vibrations or
rotations. Hence, we can separate the electronic contribution
from the nuclear motion while the target is held in a frozen
geometry during the scattering process:

Ĥ (r, X ; R)�(r, X ; R) = E�(r, X ; R), (1)

where r represents the scattered electron position, X stands
for the target electrons coordinates xi (i = 1, . . . , N),
and R corresponds to the frozen nuclei coordinates Rγ

(γ = 1, . . . , N) which act as fixed parameters. The electronic
scattering Hamiltonian has several contributions,

Ĥ (r, X ; R) = T̂incident e− (r) + V̂interaction(r, X ; R)

+ Ĥtarget(X ; R), (2)

where T̂ is the kinetic energy operator of the incident particle,
V̂ is the interaction potential between the incoming projectile

and the target, and Ĥtarget is the Hamiltonian of the target
molecule.

This is a many electron problem which can be reduced
to a set of coupled one-particle equations if the total N + 1
wavefunction is expanded in terms of the target eigenstates,

�(r, X ; R) =
∑

α

A{Fα(r)ψα(X)}, (3)

Htarget(X)ψα(X) =∈α ψα(X), (4)

where ψα(X) are the eigenstates of the target Hamiltonian,
A is the antisymmetrization operator, Fα(r) is the continuum
electron wavefunction, and ∈ α is the electronic eigenvalue for
the target state α.

We further approximate the wavefunction at the static-
exchange (SE) level with the ground electronic state given by
a single Hartree-Fock (HF) determinant in the self-consistent
field model. This assumption truncates the expansion in
Eq. (3) to only one state (α = 1). The post HF correlation
and polarization corrections are included by means of model
potentials (VCP) added to the SE description.15 After these
approximations, we obtain a set of close-coupling (CC)
integro-differential equations:[

1

2
∇2 + (E− ∈)

]
F (r) =

∫
V (r, r ′)F (r ′)dr ′. (5)

To numerically solve the scattering problem, CC equa-
tions are converted into a set of coupled radial equations
by applying the previously mentioned SCE method, which
implies expanding every function around the centre of mass
of the N + 1 system. Therefore, any three-dimensional
functions, such as the target molecular orbitals, continuum
wavefunction, or the interaction potentials V(r), are expanded
as a set of symmetry adapted angular functions X

pμ

hl (θ, φ),

Fpμ(r) = 1

r

∑
hl

f
pμ

hl (r)Xpμ

hl (θ, φ), (6)

where μ is a component of the pth irreducible representation
of the point group of the molecule (Cinf.v for HCN) and h in-
dexes all the possible X

pμ

hl belonging to a certain irreducible
representation (pμ) with the same angular momentum l
value.16 Their radial functions f

pμ

hl (r) are represented on a
numerical grid.

Once we have expanded all the functions over the sym-
metry adapted ones, we multiply Eq. (5) by X

pμ

hl (θ, φ) and
integrate over the angular variables which leads to a set of
coupled radial equations,[

d2

dr2
− l(l + 1)

r2
+ 2(E− ∈)

]
F

pμ

lh (r)

= 2
∑
l′h′

∫
V

pμ

lh,l′h′(r, r ′)Fpμ

l′h (r ′)dr ′, (7)

where V
pμ

lh,l′h′(r, r ′) is the potential formed by some diagonal
and non-diagonal elements which fully describes the electron-
molecule interaction. If we only consider the local electron-
molecule interaction, we can reformulate Eq. (7) and get its
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homogenous form[
d2

dr2
− l(l + 1)

r2
+ 2(E− ∈)

]
F

pμ

lh (r)

= 2
∑
l′h′

V SMECP
lh,l′h′ (r)Fpμ

l′h′ (r), (8)

VSMECP(r) = VST(r) + VME(r) + VCP(r). (9)

The potential VSMECP refers to the static-model-
exchange-correlation-polarization potential. The initial non-
local exchange potential has been replaced by a local energy-
dependent exchange model potential denoted VME. The one
chosen is the free-electron-gas-exchange potential HFEGE
suggested by Hara long ago17 where the interaction between
the bound-electron density, n(r), with the continuum electron,
considered as a free electron, gives rise to the exchange term:

V ex
FEGE(r) = − 2

π
kF (r)

(
1

2
+ 1 − η2

4η
ln

∣∣∣∣ 1+η

1 − η

∣∣∣∣
)

, (10)

where η = k/kF (r), k being the single-electron momentum,
and kF (r) = {3π2n(r)}1/3 is the Fermi momentum of the
electron distribution.

The response of the target to the charged projectile is de-
scribed by the correlation and polarization effects, at short and
long range, respectively. This interaction is modelled by an
energy-independent local potential VCP which smoothly joins
together both contributions at a certain rmatch:

VCP

{
Vcorr(r), r ≤ rmatch

Vpol(r), r > rmatch

.

We have used the Lee-Yang-Parr form for the (Vcorr)18

where an analytical expression of the potential is obtained as a
function of the target electronic density. This term is smoothly
joined together with the polarization term Vpol which is a
function of the polarization tensor.18 For a given molecular
geometry R it has the following form:

V pol (r; R) = lim
r→∞

(
−

∑
k=1

αk (R)

2r2k+2

)
. (11)

With this purely local potential VSMECP (r) the homoge-
nous radial equation (8) is solved using the standard Green’s
function technique.19 In the present case the permanent dipole
and quadrupole terms (experimental values) have been added
to the long-range part of the static potential, VST (r) defined
above using the matching radius of Eq. (11). The asymptotic
form of the wavefunction is then analyzed to obtain the scat-
tering K-matrix from which integral and differential elastic
cross sections can be computed. This computational method
is referred to as “ePOLYSCAT.”

However, when the target molecule has a permanent
dipole moment as is the case of hydrogen cyanide, the fixed
nuclei approximation breaks down and causes divergences in
the evaluation of elastic differential cross sections (EDCS) in
the forward direction. In order to overcome this drawback an-
other code developed by Gianturco and co-workers has been
employed: POLYDCS.20

Within this approach the initial, body-fixed K matrices
which describe the electron-molecule scattering process, are

read and transformed into a space-fixed (SF) frame of refer-
ence (laboratory frame). Then SF-K matrices are employed
to calculate the state-to-state rotationally elastic and inelastic
differential cross section as a Legendre expansion of the so-
lutions. The long-range nature of the dipole potential implies
that a very large number of partial waves need to be consid-
ered. However a slow convergence of this sum can be avoided
by introducing the following formula:

dσ

d�
= dσB

d�
+

∑
L

(
AL − AB

L

)
PL(cos (θ )). (12)

The first term on the right side represents the analytic
Born DCS,21 while the second term contains the unitarized
Born terms (AB

L) subtracted to the close-coupling calculation
(AL). This formula can be considered as a “correction” of
the original Born approximation for polar molecules: short-
range effects are introduced by the close-coupling calcula-
tion (ePOLYSCAT) summing up terms up to a specific partial
wave, while higher partial wave contributions are calculated
assuming the Born approximation for an electron-point dipole
interaction. Moreover, it has been demonstrated that theoreti-
cal DCS does not depend on the initial rotational state;22 thus,
cross sections can be calculated from the rotational ground
state of the target (J = 0) to higher rotational states. In these
calculations we have included transitions up to J = 3.

B. SCAR method

This second method which permits to study the interac-
tion of intermediate and high energy electrons with molecules
is based on a corrected form of the IAM known as SCAR.
Details of this method have been presented in previous
works,23–26 therefore, only a brief description is given here.

Initially, this approximation does not consider the
molecule as a single target but as an aggregate of atoms
which scatter independently assuming that molecular binding
does not affect the electronic distribution of the atoms.
The first subjects of these calculations are therefore the
constituent atoms, namely, H, C, and N. Each atomic target
is represented by an interacting complex (optical) potential,
Vopt(r), whose real part accounts for the elastic scattering of
the incident electrons while the imaginary part represents the
inelastic processes that are considered as “absorption” from
the incident beam. This optical potential can be expressed as

Vopt(r) = Vs(r) + Vex(r) + Vpol(r) + iVabs(r), (13)

where Vs (r) is the static term derived from the Hartree-Fock
calculation of the atomic charge density.27 Vex (r) is the
exchange term which accounts for the indistinguishability
between the incident and target electrons. The expression
chosen for this term is the semiclassical energy-dependent
formula derived by Riley and Truhlar.28 Vpol (r) is the polar-
ization term which describes the long-range interactions and
depends on the target dipole polarizibility in the form given by
Zhang et al.29 Finally, the absorption potential Vabs (r), which
accounts for the inelastic processes, is based on Staszewska´s
quasifree model.30 Initially, some divergences were found
when results were compared to the available atomic scattering
data. After including some improvements such as many-body
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and relativistic corrections, screening effects inside the
atom, local velocity correction, and in the description of the
electrons’ indistinguishability, the model proves to provide
a good approximation for electron-atom scattering24, 25 over
a broad energy range. An excellent example of this was for
elastic electron–atomic iodine (I) scattering,31 where the
optical potential results compared very favourably with those
from a sophisticated Dirac-B-spline R-matrix computation.

Within this model we also numerically integrate the
radial scattering equation, from where we obtain the complex
partial wave phase shifts δl. Using these phase shifts, in
combination with the optical theorem, we can generate the
atomic scattering amplitudes ( f(θ )), which provide differen-
tial (dσ el/d�) and integral (σ el) elastic cross sections as well
as the total (σ tot) scattering cross sections as a function of
the scattering angle (θ ) and the momentum of the incident
electrons (k):

f (θ ) = 1

2ik

lmax∑
l=0

(2l + 1)(e2iδl + 1)Pl(cos θ ),

dσel

d�
= |f (θ )|2 , (14)

σel =
∫

dσel

d�
d�, σtot = 4π

k2
Imf (θ = 0). (15)

In order to obtain molecular cross sections, the IAM
has been followed by applying a coherent addition pro-
cedure, commonly known as the additivity rule (AR). In
this approach, the molecular scattering amplitude (F(θ )) is
derived from the sum of the above atomic amplitudes which
lead to the differential elastic cross section for the molecule
(dσ molec/d�), according to

F (θ ) =
∑
atoms

fi(θ )eiqri ,

dσ molecule
el

d�
=

∑
i,j

fi (θ ) f ∗
j (θ )

sin qrij

qrij

, (16)

where q is the momentum transferred in the scattering
process and rij is the distance between the i and j atoms.

Integral elastic cross sections for the molecule can be de-
termined by integrating Eq. (16). Alternatively, elastic cross
sections can be derived from the atomic scattering amplitudes
in conjunction with the optical theorem24 giving

σ molecule
el =

∑
atoms

σ atom
el . (17)

Unfortunately, in its original form, we found an inherent
contradiction between the integral cross section derived from
those two approaches, which suggested that the optical theo-
rem was being violated.32

The main limitation of the AR is that no molecular
structure is considered, thus it is really only applicable when
the incident electrons are fast enough to effectively “see” the
target molecule as a sum of the individual atoms (typically
above ∼100 eV). To reduce this limitation we developed
the SCAR method25, 26 which considers the geometry of the
corresponding molecule (atomic positions and bond lengths)

by introducing some screening coefficients which modify
both differential and integral cross sections, especially for
decreasing energies.25, 26 With this correction the range
of validity of the IAM-SCAR method might be extended
down to about 30 eV. For intermediate and high energies
(30–5000 eV) this method has been proved to be a powerful
tool to calculate electron scattering cross sections from a high
variety of molecules of very different sizes, from diatomic to
complex biomolecules.33

From the above description of the IAM-SCAR procedure
it is obvious that vibrational and rotational excitations are not
considered in this calculation. However, for polar molecules
such as HCN additional dipole-induced excitation cross
sections can be calculated following the procedure suggested
by Jain.34 Basically it calculates differential and integral
rotational excitation cross sections for a free electric dipole
in the framework of the first Born approximation (FBA)
which can be incorporated to our IAM-SCAR calculation in
an incoherent way, just adding the results as an independent
channel. Although rotational excitation energies are, in
general, very low (typically a few meV) in comparison with
the incident electron energies, in order to validate the Born
approximation the latter energies should be higher than about
20 eV. Under these circumstances, rotational excitation cross
sections J → J′ were calculated by weighting the population
for the Jth rotational quantum number at 300 K and estimat-
ing the average excitation energy from the corresponding
rotational constants. We can call the whole procedure as the
IAM-SCAR + rotations method and it has been successfully
used for other polar molecules as H2O and pyrimidine.35, 36

Additionally, when the permanent dipole moment of the
molecule is at least as large as is the case of HCN, the FBA
also fails for medium and large scattering angles. In order
to partially solve this situation, we introduced a correction
based on that suggested by Dickinson,37 which brings a
substantial improvement for electron scattering cross sections
with strongly polar molecules. This procedure introduces a
first-order corrective term to the differential cross sections
( dσDck

d�
) for medium and large angles but maintaining the FBA

correction ( dσB

d�
) for lower angles:

dσB

d�
≈ D2

6Ei

1

sin2(θ/2)
θ < θc, (18)

dσDck

d�
≈ πD

64Ei

1

sin3(θ/2)
θ > θc, (19)

where D is the permanent dipole moment of the molecule and
Ei is the energy of the projectile. Providing that the dipole mo-
ment is bigger than D = 0.75 Dy, both curves smoothly join
together at θ c, the critical angle at which they cross each other.

III. RESULTS AND DISCUSSION

A. Integral elastic cross sections

For low energies, integral ECS have been computed with
the ePOLYSCAT model. The initial target wavefunction was
generated by the GAUSSIAN 94 code38 at the Hartree-Fock
level and expanded in the 6-311++G (3df,3pd) basis set. The
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FIG. 1. Integral elastic cross sections. ePOLYSCAT (solid red line), SCAR
(dotted blue line), SCAR without the absorption potential term (dashed green
line).

bound and scattering orbitals were expanded at the center-
of-mass of the target including partial waves up to lmax = 60.
The multipolar expansion of the potential VSMECP included
terms up to λmax = 120. The scattering at short-range was
carried out up to Rmax = 11.5 Å and the discrete (r,θ ,ϕ)
grid of the scattered wavefunction involved a total of 1464
× 84 × 324 points. The computed dipole moment from our
ground state wavefunction turned to be 3.26 D, while the
experimental value is 2.98 D:39 the latter was the one used for
the long-range part of the static interaction. This modification
is expected to affect final cross sections mainly at very low
collision energies, while the other contributions of the model
potential terms are more important at energies away from
threshold.

For higher incident electron energies, ECS for HCN have
been computed with the IAM-SCAR model. The correspond-
ing atomic cross sections for C, N, and H were previously cal-
culated and discussed.25 Molecular cross sections have been
calculated according to available geometrical parameters:40

rCN = 1.136 Å and rCH = 1.05 Å.
Results for both calculations are plotted in Fig. 1. We

expect the ePOLYSCAT cross sections to be more reliable
for energies below the ionisation threshold (13.6 eV), while
the more favourable energies to apply the IAM-SCAR proce-
dure are above 30 eV. Based on previous studies using both
methods,35, 41, 42 we can establish a numerical uncertainty of
up to about 10% for the integral cross sections provided by
each method in its own energy range of applicability. As seen
from Fig. 1, within 15 and 30 eV, ePOLYSCAT (solid red
line) and SCAR (dotted blue line) elastic cross sections differ
from one to another by 50%. This discrepancy may be due
to the optical potential Vopt used by ePOLYSCAT which, al-
though allowing for virtual excitations to be included globally
during the scattering process, does not allow for direct elec-
tronic excitations to take part in the collisional event. We have
shown, however, that scattering calculations ignoring inelas-
tic processes overestimate integrated elastic cross sections for
energies above the ionization limit.23 In fact, when the absorp-

tion term is removed from the SCAR optical potential (dashed
green line), calculated ECS values increase and both methods
tend to converge to the same values for increasing energies.
So that, we propose in this range (15 to 30 eV) ECS data de-
rived from a smooth interpolation between both data curves
by means of a double logarithmic fitting with an estimated
error of about 20%. The ePOLYSCAT data have used its
K-matrix values to obtain Born-corrected cross sections via
the procedure described for the POLYDCS code.

B. Rotational excitations

Rotational excitations are very important for molecules
with strong permanent dipole moment, such as HCN, and es-
pecially for low electron energies. However, the excitation en-
ergy associated to rotational levels is so low and the angular
distribution of scattered electrons is so peaked in the forward
direction that experiments do not have enough energy and an-
gular resolution to distinguish these inelastic processes from
the elastic one. Thus, for a more realistic comparison between
theoretical and experimental ECS, additional rotational exci-
tations have been calculated with both methods.

Computational results have been compared with the ex-
perimental data from Srivastava et al.10 available in the liter-
ature. They measured elastic differential cross sections from
20◦ to 130◦ for electron impact energies of 3, 5, 11.6, 21.6,
and 50 eV. In order to obtain integral ECS they extrapolated
to small angles (0◦–20◦) following the Born approximation,
and to higher angles by simply extending the straight line de-
fined by the last measured points. Authors stated that due to
insufficient electron energy resolution of the experimental de-
vice, their elastic term includes also rotational and vibrational
excitations.

Cross sections calculated with POLYDCS (solid red line)
and IAM-SCAR + rotations method (dashed blue line) to-
gether with the experimental data (green dots) are shown in
Fig. 2. At intermediate energies, 11.6 eV and 21.6 eV, both
calculations agree with Srivastava’s measurements, within
the error limits. However, at lower energies (3 and 5 eV)
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FIG. 2. Elastic cross sections plus rotational excitation cross sections. POLY-
DCS (solid red line), SCAR (dashed blue line), Faure et al.12 (dotted-dashed
black line), Srivastava et al.10 experimental data (∗).

Downloaded 28 Jan 2013 to 161.111.22.69. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



124103-6 Sanz et al. J. Chem. Phys. 137, 124103 (2012)

FIG. 3. Elastic cross sections integrated from 20◦ to 130◦. ePOLYSCAT (O),
SCAR (∇), Srivastava et al.10 experimental data (∗).

experimental ECS are lower than the calculated values. This
may be due to the extrapolation method used10 in the ex-
periments for low angles (θ < 20◦) following the first Born
approximation. It has been proved by Mittleman and von
Holdt43 that the FBA underestimates the cross sections for
polar molecules and they claim that in the case of HCN
molecules it could lower the results by a factor of 2 at low
energies. Note, in fact, that below 5 eV reasonable agreement
between the present calculation and that by Faure et al.12 has
been found (see Fig. 2). This suggests us to integrate experi-
mental and theoretical data only from 20◦ to 130◦ (see Fig. 3),
avoiding any approximation. As may be seen in this figure,
now the agreement is much better, especially with the SCAR
calculation, verifying that discrepancies in the integral ECS
(0◦–180◦) results are due to errors in the extrapolation proce-
dures used by Srivastava et al.10

As a result of this discussion we propose the set of
recommended integral cross section data which is shown in
Table I. As mentioned above, low energy data are provided by
the ePOLYSCAT-POLYDCS calculations while above 30 eV,
the SCAR data have been preferably considered, both with
an estimated error of about 10%. The smooth interpolation
method applied between 30 and 50 eV leads to an uncertainty
between 10 and 20% for the recommended values in this en-
ergy range.

C. Total cross sections

As far as we know, there are no experimental data of
TCS for HCN. Hence, our results are compared in Fig. 4
with the theoretical ones provided by Jain and Baluja,11 who
calculated TCS for electron scattering energies from 10 to
5000 eV. These authors used a complex optical potential
composed of static, exchange, polarisation, and absorption
terms. The imaginary part of this potential, absorption term,
was based on that given by Staszewska30 but substituting
the threshold excitation energy � of the original formulation
by the ionization potential, which they claimed to be closer
to the “mean excitation energy” of the target. Within this
approach, rotational excitations were included by taking into

TABLE I. Recommended electron elastic, rotational, electronically inelastic
(electronic excitation and ionization), and total scattering cross sections for
HCN molecules from 0.1 to 10 000 eV.

Energy Elastic Rotational Electronically Total
(eV) (Å2) (Å2) Inelastic (Å2) (Å2)

0.1 668.95 2765.47 3434.43
0.2 389.05 1416.22 1805.27
0.3 282.14 1005.86 1288.00
0.4 224.79 749.21 974.00
0.5 188.44 597.56 786.00
0.6 163.59 503.61 667.20
0.7 145.31 431.49 576.80
0.8 131.25 378.35 509.60
0.9 120.24 339.96 460.20
1 111.60 311.84 423.44
2 70.73 163.76 234.50
3 60.86 109.41 170.26
4 60.42 81.50 141.92
5 50.50 70.20 120.71
7 35.48 53.62 3.94 93.04
10 26.72 39.75 5.70 72.17
11.6 23.75 34.76 6.42 64.94
15 19.36 27.75 6.96 54.07
20 15.41 21.57 7.08 44.06
21.6 14.40 20.25 7.06 41.71
30 11.05 15.22 6.74 33.01
40 8.80 11.82 6.28 26.90
50 7.54 9.54 5.86 22.95
70 6.00 6.87 5.19 18.06
100 4.73 5.10 4.70 14.53
150 3.72 3.53 4.06 11.31
200 3.11 2.72 3.61 9.44
300 2.42 1.88 2.93 7.22
400 2.00 1.43 2.48 5.91
500 1.72 1.15 2.16 5.04
700 1.36 0.85 1.71 3.92
1000 1.04 0.61 1.32 2.97
2000 0.59 0.32 0.76 1.68
3000 0.42 0.22 0.54 1.18
5000 0.27 0.14 0.35 0.75
10 000 0.14 0.07 0.19 0.40

FIG. 4. Total cross sections. POLYDCS (dotted red line), SCAR (dashed
blue line), and Jain and Baluja11 (solid green line).
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account the anisotropic terms in the multipole expansion of
the optical potential within the FBA.

Jain’s TCS results are quantitatively similar to the SCAR
data; however, at high energies Jain’s values tend to decay
faster but discrepancies remain within the estimated error

limits for the whole energy range where the comparison is
feasible. One should note, however, that the calculations of
Ref. 11 employed a simpler description of both target state
and interaction potentials, so that they refer to a lower level of
numerical accuracy with respect to the present study.
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FIG. 5. Elastic differential cross sections: SCAR (dashed blue line). EDCS + rotation excitations: POLYDCS (solid red line), SCAR + rotations (dotted green
line), SCAR + rotations with Dickinson correction (dashed-dotted black line), Jain and Norcross7 model potential (solid-crossed brown line), Faure et al.12

R-matrix method calculation (solid-dotted purple line), Srivastava et al.10 experimental data (green asterisk).
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Below the first electronic excitation energy, i.e., below
6.15 eV,44 elastic collisions constitute the main scattering pro-
cess. Up to that energy, recommended TCS values are given
by the POLYDCS computational model, including rotational
excitation cross sections. Above 30 eV recommended TCS
data come from the IAM-SCAR + rotations model which
accounts for electronic and rotational excitations as well as
ionisation processes. Again, a double logarithm interpolation
procedure has been carried out to derive data within both
limits.

D. Differential elastic cross sections

Calculated EDCS have been compared with experimen-
tal data for energies of 3, 5, 11.6, 21.6, and 50 eV (see Fig. 5).
As we mentioned in Sec. III B, experimental EDCS could not
resolve rotational excitations. Therefore, to allow the com-
parison, we have also plotted in Fig. 5 calculated differen-
tial cross sections including rotational excitations (POLYDCS
and SCAR + rotations)

At low energies (3, 5, and 11.6 eV), POLYDCS qualita-
tively agrees with the experimental results verifying its relia-
bility at energies below 15 eV. The ePOLYSCAT calculations
without the FBA correction, not shown in Fig. 5, exhibit dif-
fuse undulating structures at the lower scattering energies due
to the breakdown of the body-fixed approximation for polar
molecules, as we have already discussed in Sec. II A. The
effect from a space-fixed treatment is included in the calcu-
lations with the POLYDCS programme. For these energies,
there is a reasonable agreement between this calculation and
those from Jain and Norcross7 and Faure et al.12

At higher energies, EDCS values from the IAM-SCAR
method show good agreement with the experimental data. For
instance, at E = 21.6 eV, for small and large angles (θ = 20◦,
30◦, 90◦, 100◦, 110◦, 120◦, and 130◦), calculated values are
within the experimental error bars being the difference less
than 10%. The situation gets even better at E = 50 eV, where
for θ > 50◦ IAM-SCAR data are in excellent agreement
with measurements and for θ > 80◦ divergences are less than
10%. As expected, for this relatively high energy and for the
relatively large scattering angles attainable by Srivastava’s
apparatus, their measurements, and our SCAR calculations,
without including rotations, agree very well.

However, when rotational excitations based on the FBA
(IAM-SCAR + rotations) are considered, differential cross
sections tend to overestimate the experimental data at medium
and large angles for increasing energies. This effect is even
more remarkable for the POLYDCS calculation which also
includes rotational excitations. It is known that the FBA ap-
proximation fails for relatively large scattering angles when
the permanent dipole moment of the target is remarkable, as
is the case of HCN. As shown in Fig. 5, this situation is par-
tially solved by applying the Dickinson’s correction31 which
mainly affects large angles.

IV. CONCLUSIONS

In this article we have reported calculated electron
collisional data with the hydrogen cyanide molecule. Two

different methods have been employed to provide elastic
cross sections: the ePOLYSCAT, which is known to be
reliable for energies below 15 eV, and the IAM-SCAR
which gives accurate results for E > 30 eV. Both methods
were consistent within their respective energy range of
applicability, where the estimated errors are lower than 10%.
This situation allowed a simple interpolation between 15 and
30 eV, providing data for this range with associated uncer-
tainties between 10% and 20%.

Since HCN has a strong permanent dipole moment, addi-
tional dipole-induced rotational excitation cross sections have
been further included, within the framework of the first Born
approximation, to realistically compare our differential cross
section data with those measured by Srivastava et al.10 Under
these conditions we have found a reasonable agreement for
all the energies where direct measurements are available
and especially at 50 eV where the SCAR data lie within
the experimental error limits. Due to the angular limitation
of the experiment (20◦–130◦), integral values provided by
Srivastava and co-workers included some approximations to
extrapolate data to low and high angles. The low angle region
becomes particularly sensitive to dipole-induced rotations
at low energies and cross sections could vary significantly
depending on the approximation applied. Therefore, we
have compared integrated elastic cross sections from 20◦ to
130◦, finding an excellent agreement within 10% for energies
ranging from 3 eV to 50 eV.

In addition, a complete set of integral cross sectional
data including elastic, rotational excitation, electronically
inelastic (electronic excitations and ionization), and total
cross sections has been provided from 0.1 to 10 000 eV.
As mentioned above, data derived from each quantum scat-
tering model are recommended in their respective energy
range of effectiveness, while a double logarithmic fitting
is applied to smoothly join them together at intermediate
energies.

We can finally conclude that a combination of the de-
scribed theoretical approaches allows obtaining reliable elec-
tron scattering data over a very broad energy range even for
strong polar molecules. This result becomes really promising
to study more complex biological targets, as the DNA and
RNA constituents, which are being demanded by important
biomedical applications of radiation both for diagnostics and
therapy.
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