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ABSTRACT

Background

Proteasome inhibition represents a promising novel-anticancer therapy, and bortezomib is a
highly selective reversible inhibitor of the proteasome complex. Acute myeloid leukemia (AML)
is an immnunophenotypically heterogeneous.group of diseases, with CD34* cases being asso-
ciated with drug resistance and poor outcome. We investigated the effects of bortezomib on the
growth and survival of AML cells.

Design and Methods
We studied the in vitro activity and mechanism of action of bortezomib on both cell lines and
fresh cells from 28 AML patients including CD34* and CD34- cases.

Results

Bortezomib showed.-potent anti-AML activity (ICso < 50 nM), which was greater than that of con-
ventional agents (doxorubicin, cytarabine and fludarabine). Moreover, synergistic effects were
observed when bortezomib was adminstered in combination with doxorubicin and cytarabine.
Mechanistically,"bortezomib induced accumulation of cells in the Go/M phase, with up-regula-
tion of.p27;.together with cell death through an increase in the mitochondrial outer membrane
permeability involving caspase-dependent and -independent pathways. The apoptotic activity
of bortezomib on fresh CD34" blast cells from patients was similar to that observed on CD34-
blast cells. Importantly, bortezomib was significantly more active than doxorubicin in the imma-
ture CD34 cells, while there were no differences in its action on CD34 cells.

Conclusions

Bortezomib induces apoptosis in acute myeloid leukemia cells in vitro. Whether this drug might
be useful in the treatment of patients with acute myeloid leukemia can be established only in
ad hoc clinical trials.
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Introduction

The ubiquitin-proteasome pathway plays a funda-
mental role in cellular homeostasis as a critical regulator
of cell proliferation and apoptosis. For this reason, the
proteasome represents an attractive target for therapeu-
tic intervention in cancer patients,' and this is supported
by the results obtained in different malignancies with
the proteasome inhibitor bortezomib (Velcade®, former-
ly PS-341), which is a highly selective, reversible
inhibitor of the 26S subunit of the proteasome complex.’
Studies on the mechanism of action of bortezomib have
indicated that this drug stabilizes p21, p27 and p33, as
well as the pro-apoptotic Bid and Bax proteins, caveolin-
1 and IkB-a.** The last protein prevents activation of
NFkB-induced cell survival pathways in several cellular
systems, including a multiple myeloma model.” The
anticancer effects of bortezomib have been demonstrat-
ed in vitro and in vivo for different malignancies such as
multiple myeloma,” adult T-cell leukemia,® melanoma,’
lung,'*" breast,” pancreatic,”" prostate,”" ovarian,”
head and neck,” and colon cancer.”” Moreover, several in
vitro experiments have also shown that bortezomib
enhances the antitumor properties of various antineo-
plastic drugs.”**

Clinical investigations concerning the efficacy and
safety of bortezomib alone or in combination with
chemotherapy in multiple myeloma have been complet
ed™” and bortezomib was approved in 2003 for the
treatment of relapsed and refractory multiple myelo-
ma.” More recently, bortezomib was also approved for
the treatment of mantle cell lymphoma. As far as con-
cerns acute myeloid leukemia (AML), threeismall clinical
trials have been conducted;”* in two, ofthem, borte-
zomib was combined with conventional agents,”*" and
in one it was used as a singleagent, but only modest and
transient antileukemic activity.was observed.”

In spite of these data, there is little information on the
in vitro activity and mechanism of action of bortezomib
in AML to support its clinical use. This is important, par-
ticularly due to the heterogeneity of AML, including a
wide array of genetic lesions and immunophenotypic
profiles. The CD34 antigen identifies early progenitor
cells and, accordingly, AML can be divided into imma-
ture and mature forms (CD34* and CD34, respectively),
the former subset associated with drug resistance and
poorer outcome,”* as compared to the more mature
CD34 cases. Moreover, at relapse, blast cells usually dis-
play a more immature phenotype, as a reflection of drug
resistance.” In fact, it has been suggested that the pres-
ence of an immature phenotype,™® together with age
and cytogenetics represent important prognostic factors
in AML.*® On this background, we carried out a detailed
analysis of the in vitro activity and mechanism of action
of bortezomib on AML cells using both cell lines and
fresh cells from patients including CD34* and CD34"
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cases. In addition, we compared the activity of borte-
zomib with that of conventional agents used for the
treatment of AML.

Design and Methods

Reagents and immunochemicals

Cell culture media, serum and penicillin-streptomycin
were purchased from Invitrogen Corporation (Gaithers-
burg, MD, USA). Bortezomib (formerly known as PS-
341; Millenium Pharmaceutics Inc. Cambridge, MA,
USA) was dissolved in DMSO and stored at —20°C until
use. Doxorubicin, cytarabine (ara-C) and fludarabine
were purchased from Sigma (USA). Annexin V-FITC
was obtained from Becton Dickinson (San Diego, CA,
USA). Calpeptin and Z-VAD-FMK were from Cal-
biochem (San Diego, CA, USA). Other generic chemicals
were purchased fromiSigma Chemical Co., Roche
Biochemicals (Mannheim, Germany), or Merck
(Darmstadt, Germany): The origins of the different
monoclonal antibedies employed in the western blot-
ting analyses ‘were as follows: the anti-p21, anti-pErk,
anti-Erk1/2y and anti-caspase-3, were from Santa Cruz
Biotechnolegy (Santa Cruz, CA, USA); anti-Apaf-1, anti-
caspase-8, anti-caspase-9, anti-AlF, anti-Bcl-X, anti-
PARP, anti-Bcl-2, anti-Cdk4 and anti-cyclin D1 antibod-
ies were from Becton Dickinson, anti-p53 antibody was
from Calbiochem Science, and the HRP-conjugated sec-
ondary antibodies were from Bio-Rad.

Cell lines: cell proliferation, cell cycle and apoptosis
assays

All AML cell lines (HEL, KG-1, MV4-11 and HL-60)
were cultured in RPMI 1640 containing 10% fetal-
bovine serum (Gibco), 2x10° M glutamine, 100 units/mL
penicillin and 100 eg/mL streptomycin at 37°C in a
humidified atmosphere in the presence of 5% C02-95%
air. HL60 cells were derived from a patient with FAB M2
AML, the HEL and KG-1 cell lines were derived from
patients with erythroid leukemia (FAB M6), while the
source of MV4-11 was a patient with myelomonocytic
leukemia (FAB M4). The proliferation of AML cells was
examined using MTT colorimetric assays as described
elsewhere.®* Pilot studies were conducted on all the
AML cell lines to optimize cell concentrations and incu-
bation times with the different drugs. Interactions
between bortezomib and other anti-AML drugs were
analyzed using the Calcusyn software program (Biosoft,
Ferguson, MO, USA). Data from cell viability assays
(MTT) are expressed as a fraction of cells with growth
affected (FA) in drug-treated versus untreated cells. This
program is based upon the Chou and Talalay method."*
For flow cytometric evaluation of apoptosis, 110° of
HEL cells were washed with phosphate-buffered saline
(PBS) and resuspended in binding buffer (10 mM



Hepes/NaOH, pH 7.4, 140 mM NaCl, 2.5 mM CaCl).
Cells were incubated with 5 pL of annexin-V-FITC for
15 min at room temperature in the dark, and then 10 pL
of propidium iodide (PI) were added.

To obtain a quantitative evaluation of the mitochondr-
ial transmembrane potential (Ww), cells were incubated
in PBS with 20 nM 3,3"-dihexyloxacarbocyanine iodide
[DiOC6(3)] (Molecular Probes, Leiden, The Netherlands)
for 20 min at 37°C in the dark, washed with PBS and,
then, following addition of 10 wL PI (Calbiochem, San
Diego, CA, USA) underwent flow activated cell sorting
(FACS) on a FACScalibur flow cytometer (BD Bio-
sciences) and analysis with the Paint-a-gate program.

To analyze the cell cycle distribution, cells were made
permeable by the addition of 70% ethanol for 4 h at 4°C
and stained with PI in the presence of 5 pg/mL RNAse
(Sigma). Ten thousand events were acquired on a
FACScalibur flow cytometer (BD Biosciences) and ana-
lyzed with the Paint-a-Gate program.

Western blotting

Cell lines were treated with 50 nM of Bortezomib and
were collected and centrifuged at 10,000 x g for 2 min.
The cells were then washed with PBS and lysed in ice-
cold lysis buffer (140 mM NaCl, 10 mM EDTA, 10%
glycerol, 1% Nonidet P-40, 20 mM Tris (pH 7.0), 1 pM
pepstatin, 1 wg/mL aprotinin, 1 pg/mL leupeptin, 1 mM
sodium orthovanadate). Samples were centrifuged 4t
10,000 x g at 4°C for 10 min and supernatants were
transferred to new tubes.

Subcellular fractionation

HEL cells were harvested in isotonic mitochondrial
buffer (250 mM sucrose, 20 mM HEPES; 10 mM KCl, 1.5
mM MgCl, 1 mM EDTA, 1 mMEGTA, 1 mM DTT, 1
M pepstatin, 1 pg/mL aprotininyl pg/mL leupeptin, 1
mM sodium orthovanadate), and Dounce homogenized
by 60-70 strokes. Samples were transferred to Eppendorf
tubes and centrifuged at 770 x g for 10 min at 4°C to sep-
arate nuclei and unbroken cells. The resulting super-
natant was centrifuged at 10,000 x g for 25 min at 4°C to
obtain the mitochondrial pellet. The supernatant was
further centrifuged at 100,000 x g for 1 hour at 4°C to
yield the final soluble cytosolic fraction.

Patients’ samples and apoptosis assays

For cytometric analyses of apoptosis in bone marrow
(BM), cell subpopulations from 29 AML patients, exclud-
ing those with acute promyelocytic leukemia, were
obtained at diagnosis before any treatment. Both CD34-
and CD34" cells co-existed in nine cases. In seven cases, all
blast cells were CD34", while in the other 13 samples, they
were all CD34". Accordingly, a total of 16 samples had a
significant CD34* population, either as a pure population
or in a mixture, and in 22 samples a CD34" population was
identified and available for investigation of drug-induced
antitumor activity. The multiparametric flow cytometry
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analysis of the CD34 populations showed that in all cases,
these populations were inmunophenotypically more
mature cells based on the expression of different matura-
tion antigens (CD15, CD11b, CD64, CD14, CD65, ctMPO,
CDA45™). The average age of the patients was 64+12 years
(mean+SD). Cytogenetic information was available for 22
samples (7 complex karyotype or 11¢23; 15 normal risk
karyotypes), the remaining seven patients had no mitoses.
According to the FAB classification, the distribution of
cases was as follows: two MO, (7 %); eight M1, (28%); five
M2, (17%); four M4, (14%); eight M5 (28%); one M6,
(4%) and one case was considered not classifiable. Patients
were treated according to the Spanish Cooperative
PETHEMA group’s protocols LAM99 <65 (n=19), and
LAM99>65 (n=1), and 68% (n=14) of 20 evaluable patients
achieved morphological complete remission. The remain-
ing patients (n=9) were considered to have received only
supportive care, due to older age.

Mononuclear cells (MNC) were isolated by a Ficoll-
Hipaque density sedimentation and maintained in IMDM
containing 15%-ECS;/the percentage of blasts after purifi-
cation was 88+9%. To consider a MNC sample as valid,
it had to have less that 5% trypan blue-positive cells at
arrival_at,our laboratory, and, after incubation for 18 h
with 'drugs, there had to be less than 40% annexin V pos-
itive events in the control. In order to analyze the apop-
totic activity of bortezomib and to compare it with that
of doxorubicin and cytarabine, 1x10° BM cells were incu-
bated in six-well plates with bortezomib (50 nM), dox-
orubicin (1 pM) or cytarabine (1 wM), or without any
drug (control) for 18 h at 37 °C in a humidified atmos-
phere in the presence of 5% C02-95% air. The drug con-
centrations were selected based on the median plasma
levels achieved in patients for these drugs and our results
in cell lines. Subsequently, cells were incubated for 15 min
at room temperature in the dark with 5 pL annexin-V-
FITC (Bender MedSystems, Burlingame, CA, USA)
together with a combination of monoclonal antibodies:
anti-CD33-PE, anti-CD34-PerCP, anti-CD45-APC (BD
Biosciences). A total of 50,000 cells were acquired on a
FACScalibur flow cytometer (BD Biosciences) and ana-
lyzed with the Paint-a-Gate program. Using quadruple
staining (annexin V/CD33/CD34/CD45), we were able to
identify and distinguish the most immature blast cell pop-
ulation (CD34*, CD45%") from the more mature blast cell
population (CD33*, CD34) and normal residual lympho-
cytes (CD45", SSC®). The number of apoptotic cells was
measured in each cell population. The percentage of
apoptotic events was corrected according to the propor-
tion of apoptotic cells in the control tube (to which no
drug was added).

Statistical analysis

The percentage of apoptotic cells referred to the viable
fraction of cells, which was calculated using the control
tube, for normalization in order to reduce the variability
among samples. Induction of apoptosis (annexin V-
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Figure 1. Effect of bortezomib
on the proliferation of acute
myeloid leukemia cells. MTT
uptakes of acute myeloid
leukemia cell lines incubated
with different doses of borte-
zomib (A), doxorubicin (B),
cytarabine (C), and fludarabine
(D). Cells were plated at identi-
cal densities in 96-well dishes.
Bortezomib, doxorubicin,

Doxorubicin, nM

cytarabine and fludarabine
were added at the indicated
concentrations. MTT uptake
assays were performed 48
hours later as described in the
Design and Methods section.
The average proliferation val-
ues of control untreated sam-
ples were taken as 100%.
Data are represented as the
mean + SD of quadruplicates
of an experiment that was
repeated at least twice. (E)
Bortezomib (15 nM) was com-
bined with doxorubicin (250
nM), cytarabine (250 nM) or
fludarabine (250 nM) and 48
hours later, MTT assays were
done in HEL cells.
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events) was calculated on the total-blast cell population,
CD34* blast cells, CD34" blast cells.and normal residual
lymphocytes. Statistical analyses were performed using
the SPSS 11.0 statistical package.

Results

Activity of bortezomib in AML cell lines

To investigate the effect of bortezomib on the growth
and survival of AML cells, we first used MTT assays on
four different representative AML cell lines. Treatment
with increasing doses of bortezomib (0.1-100 nM) for 48
hours potently suppressed MTT uptake (Figure 1A), with
ICs0 values between 5 nM and 10 nM for all four cell lines
used. Comparisons of the ICs values of bortezomib with
those of other drugs commonly used in AML indicated
that bortezomib was clearly more potent than doxoru-
bicin (Figure 1B), cytarabine (Figure 1C) and fludarabine
(Figure1D). MV4-11 was resistant to doxorubicin, and
the ICs value for doxorubicin for HEL, HL60 and KG-1
were 500 nM, 1 uM and 1 M, respectively. All cell lines
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were resistant to pharmacological doses of cytarabine,
and cell growth inhibition was only observed with
micromolar concentrations. MV4-11 was resistant to flu-
darabine and growth inhibition appeared only at 10 wM,
while the ICso values for HEL and KG-1 were 500 nM,
and that for the HL60 cell line, 3 WM.

Bortezomib increases the action of doxorubicin
and cytarabine

In order to investigate whether bortezomib could
increase the activity of conventional drugs used in AML
treatment, HEL cells were treated with several combina-
tions of bortezomib and conventional drugs (doxoru-
bicin, fludarabine and cytarabine). For these experi-
ments, we used suboptimal doses of the compounds,
and evaluated their combined effect by MTT
absorbance assays, then analyzed the data using the
Calcusyn program. As shown in Figure 1E, bortezomib
was found to synergistically increase the anti-AML
effect of doxorubicin (Cl: 0.17) and cytarabine (CI: 0.51).
However, bortezomib did not enhance the ability of flu-
darabine to inhibit the proliferation of HEL cells.
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Bortezomib provokes cell cycle arrest in AMECells

We next evaluated whether the reduced-MTT uptake
observed in AML cell lines treated withibottezomib was
due to stimulation of cell death or cell'eycle arrest. HEL
cells were cultured with bortezomib 50 nM for 0, 3, 6,
12, 18 and 24 hours and then cell'cycle profile was ana-
lyzed by PI staining. As shown'in Figure 2A, bortezomib
caused an increase in-Ge/M and a marked decrease in
Go/Gi and S phases.in/a time-dependent manner.
Analyses of several proteins implicated in cell cycle pro-
gression indicated that bortezomib decreased the levels
of pRb, but rapidly increased the levels of p27 and cyclin
E. Bortezomib also decreased the amount of IkB, and
provoked a shift in the molecular weight towards a
faster migrating form, likely representing dephosphory-
lated or underphosphorylated IkB. No major changes in
p21, cyclin B, CDK2, CDK4, NFkB or p53 levels were
observed, except at longer incubation times after which
a decrease in most of these proteins was detected, prob-
ably due to massive protein degradation.

Bortezomib causes apoptosis in AML cells

We then investigated whether bortezomib caused
apoptotic cell death. A significant, time-dependent
induction of annexin V-positive cells was observed in
HEL-cells after treatment with bortezomib (Figure 3A).
Treatment with bortezomib also caused internucleoso-

for the indicated times, and the expression of cell cycle-
related proteins was analyzed by western blotting. The
position of the Mr marker is shown at the right.

mal DNA fragmentation indicative of cell death (Figure
3B). As mitochondria appear to be organelles critically
involved in the triggering of apoptotic cell death, we
explored whether bortezomib altered mitochondrial
membrane potential (¥=). Analysis of W= by the use of
the mitochondrial membrane potential probe DioCs(3)
showed a decrease in Wn in cells treated with borte-
zomib, suggesting that mitochondria were indeed affect-
ed in HEL cells treated with this compound (Figure 3C).

We next evaluated the biochemical parameters that are
affected upon apoptotic cell death. Apoptosis triggered
by bortezomib provoked cleavage of PARP, caspase-3,
caspase-8 and caspase-9, with the generation of active
low M cleaved fragments, (Figure 4A), suggesting that
bortezomib exerts its effect by activating both the intrin-
sic and extrinsic caspase pathways. To investigate the
importance of caspases in the anti-leukemic action of
bortezomib, the ability of the caspase-3 inhibitor Z-
VAD-FMK to rescue from cells from bortezomib-induced
death was evaluated. HEL cells were preincubated for 60
minutes with Z-VAD-FMK| then bortezomib was added,
and the incubation continued for 24 hours. As shown in
Figure 4B, preincubation with the caspase-3 inhibitor
blocked bortezomib-induced cell death. These results
indicate that bortezomib activated the caspase-depend-
ent apoptotic pathway, and that this activation was the
main executor of cell death caused by this compound in
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Figure 3. Bortezomib causes apoptotic cell death in an acute
myeloid leukemia cell line. (A) Time-course of the effect of borte-
zomib on HEL cells. Cells were plated in 6-well plates, treated with
bortezomib (10 nM), and 18 hours later, stained with annexin V-
FITC and propidium iodide. (B) Bortezomib provokes internucleo-
somal DNA fragmentation, HEL cells were treated with bortezomib
for the indicated times and DNA was isolated and analyzed by
agarose gel electrophoresis. The position of the Mr markers is
shown at the right. (C) Bortezomib induces A'Wm disruption. HEL
cells were treated with bortezomib (50 nM), and the A'Ym analy-
ses performed with [DiOCs®] by flow cytometry.

HEL cells. Loss of W= often reflects increases in-mito-
chondrial outer membrane permeability. Bcl-2“family
members act as important regulators of mitechondrial
outer membrane permeability. Western ‘blot_analyses
indicated that bortezomib down-regulated the Bcl-2 fam-
ily member BCLX, but not BCL2, and slightly increased
MCL1 levels within the first 12=hoeurs of treatment.

(Figure 4C). The increase in mitochondrial outer mem-
brane permeability also favors the release of AIF, a medi-
ator of caspase-independent cell death.” Subcellular frac-
tionation of HEL cells treated for 18 hours with borte-
zomib showed that this drug caused a translocation of
AIF from the mitochondrial to the cytosolic fraction after
18 hours of treatment (Figure 4D).

Bortezomib induces apoptosis in CD34* and CD34-
cell populations from fresh AML samples

We used a multiparametric flow cytometry method to
discriminate blast cells from normal residual lympho-
cytes, and, more interestingly, to discriminate between
immature and more mature leukemic cell populations.
The average percentage of apoptosis induced by borte-
zomib in the total blast cell of the whole series of 28
patients was 48+22% (mean+SD). In 14 samples, borte-
zomib induced apoptosis in'280% of leukemic cells. In
12 samples, between S0vand 20% of leukemic cells
became apoptotic, and, only in two samples was the
level of apoptotic-leukemic cells less than 20%. The
apoptotic activity ‘ef 'bortezomib on CD34" blast cells
was similar «to, that observed in CD34 blast cells
(48+22% versus 57+27 %, p=0.86; Figure 5A)

BorteZomib induces apoptosis more efficiently than
doxorubicin and cytarabine in AML samples from
patients

In a set of seven samples from AML patients, cytara-
bine (mean apoptosis induction+SD: 10+6%) was
shown to be less cytotoxic than either bortezomib or
doxorubicin (37+£16% and 21+14%, respectively). For
this reason, we decided to continue our experiments
using only doxorubicin as the reference drug. When the
effect of bortezomib was compared with that induced
by doxorubicin, using both drugs at their optimal con-
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(50 nM) for the indicated times, and cell
extracts were used for western blotting with
anti-Bcl-2, anti- Bcl-X or anti-MCL-1 antibodies.
(D) HEL cells were treated for the indicated
times with bortezomib (50 nM), and the sub-
cellular distribution of AIF in mitochondrial
and cytosolic fractions was analyzed by west-
ern blotting.
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0 ed cells, as described in.the Design and Methods section. The apoptotic activity of bortezomib
KY RN on CD34* blast cellsswas similar to that observed in CD34- blast cells (48+22% versus
‘po Ay 57+27%, p= 0.86), while doxorubicin was more effective on CD34- cells, although differences
P 0\0" were not statistically significant (33,8+26% versus 51.4+35%, p= 0.75) Results are shown
o{(\ ‘o'o" as meantSD and statistical analyses were performed by paired samples Wilcoxon’s rank test.
{‘-61' 40 p values are indicated. (B) The comparative effect of apoptosis induced by bortezomib (50
90 00 nM) and doxorubicin (1 wM) on CD34* blast cells of paired samples from single patients. The

percentage of‘apoptotic CD34* blast cells is higher for bortezomib-treated cells than for dox-
orubicin-treated cells (meantSD: 48+22% versus 31+26%, p=0.002). (C) Bortezomib is less
toxic to normal residual lymphocytes. In 22 samples normal residual lymphocytes were iden-
tified'and the percentage of apoptotic events induced by either bortezomib or doxorubicin
was measured (18+12% versus 27+22%, p=0.053).

centrations, we obseryed.that doxorubicin was slightly
less cytotoxic on the total blast cell population (39+33%
versus 48+22%, p=0.30"data not shown). More interesting
was the difference between the two compounds’ activi-
ties on CD34* and CD34 blast cell subsets. Bortezomib
was significantly more active than doxorubicin in the
immature CD34* cells (48+22% versus 31+26%,
»=0.002). (Figure 5A) In contrast, the activity of the two
drugs on the CD34" subset did not differ significantly
(5727 % versus 47+35%, p=0.17). Considering paired
samples from single cases, we observed that the effect of
bortezomib on CD34" cells was greater than that of dox-
orubicin, suggesting that bortezomib may overcome
drug resistance associated with the immature phenotype
(Figure 5B).

Bortezomib is less toxic than doxorubicin to normal
residual lymphocytes

Within the same samples we analyzed the toxicity to
residual normal lymphocytes. Our results demonstrate

that bortezomib is highly specific for leukemic cells,
since the toxicity to residual normal lymphocytes was
low (18+12%). Moreover, this toxicity was lower than
that observed for doxorubicin (Figure 5C). Finally, we
analyzed the toxicity of bortezomib against normal
CD34 cells from four normal bone marrow samples,
and found that bortezomib is highly specific for CD34
leukemic cells, since toxicity to normal CD34* cells was
low (5+£5.2%, data not shown).

Discussion

Nearly 80% of patients with AML achieve a com-
plete remission with induction chemotherapy.
However, a high proportion relapse, and eventually die
of their disease."* Recent studies have shown that pro-
teasome inhibitors represent a valuable novel anti-
cancer therapy. These agents inhibit the degradation of
multiubiquitinated target proteins, i.e., cell cycle regu-
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latory proteins such as cyclins and cyclin-dependent
kinase inhibitors, and regulate cell cycle progression.”
Bortezomib is the first proteasome inhibitor that has
been introduced into clinical practice for the treatment
of relapsed multiple myeloma,**¥** and active clinical
investigation is ongoing in other malignancies.”* In
this study we provide the framework for more inten-
sive clinical investigation of bortezomib in AML. MTT
uptake experiments on AML cell lines, sensitive and
resistant to conventional chemotherapeutic agents,
indicate that bortezomib is efficient at concentrations
in the low nanomolar range, within pharmacologically
achievable doses. Moreover, the in vitro activity of
bortezomib appears to be clearly superior to that of
conventional agents currently used for AML treatment
such as doxorubicin, cytarabine and fludarabine. In
addition, bortezomib showed a synergistic effect with
doxorubicin and cytarabine against AML cells. This
may be important since both conventional agents rep-
resent the backbone of AML treatment. Our studies on
the mechanism of action of bortezomib indicate that
this compound affects several pathways involved in the
control of cell cycle progression and apoptosis. In HEL
cells, bortezomib caused a progressive accumulation of
cells in Go/M with a decrease in the percentages of cells
in Go/Gr and S phases. Induction of G2/M arrest has pre-
viously been shown to occur in multiple myeloma,™
non-small cell lung cancer,”"" and ovarian cancer"” cells
treated with bortezomib. Western blotting analyses
indicated changes in the amounts of pRb, p27+and
cyclin E. Furthermore, increased p27 levels havebeen
reported in multiple myeloma cells® as well as,in ovari-
an cancer cells” following treatment withibortezomib.
In addition to its effect on the cell cycle; bortezomib
provoked cell death, as shown by annexinV positivity,
loss of mitochondrial membrane~potential, and DNA
fragmentation. Analyses of the effect of bortezomib on
AML cells indicated that-this‘compound caused cleav-
age of the initiator caspases/-8 and -9, effector caspase-
3; and PARP. The cleavagé of caspase-3 and PARP is
consistent with results obtained in other types of tumor
cells®"*"" treated with comparable exposure to borte-
zomib. Moreover, pretreatment with Z-VAD-FMK
blocked bortezomib-induced cell death suggesting that
the caspase-dependent apoptotic pathway is the main
executor of cell death caused by this compound. In line
with our observations, Hideshima et al.* also showed
that caspase inhibitors were able to prevent borte-
zomib-induced apoptosis in multiple myeloma cells.
The progressive loss of mitochondrial membrane
potential reflected an increase in the permeability of
the outer mitochondrial membrane, which allowed
release of pro-apoptotic proteins, such as AIE The
release of AIF is facilitated by decreased levels of Bcl-2
family members, which have been shown to regulate
mitochondrial outer membrane permeability.®”
Western blot analyses indicated that bortezomib
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caused translocation of AIF from the mitochondrial to
cytosolic fraction and down-regulated the antiapoptot-
ic Bel-2 family member Bcl-X. To the best of our
knowledge, the contribution of AIF to bortezomib-
induced cell death has not been previously reported. As
AIF has been involved in caspase-independent cell
death, our data both suggest a dual apoptotic mecha-
nism induced by bortezomib in AML cells, involving
both caspase-dependent and -independent pathways.

Finally, we had the opportunity to analyze the effect
of bortezomib (compared to doxorubicin) on fresh cells
obtained from a cohort of AML patients. As mentioned
in the Design and Methods section, by using an appropri-
ate triple antigen combination plus simultaneous stain-
ing with annexin V we were able to separate the blast
cell population from the residual normal hematopoietic
cells and to assess the proportion of apoptotic cells
induced by the drug in each-eell,population. Moreover,
even in cases with co<existence of CD34* and CD34
blast cells, our immunophenotypic approach clearly
discriminated these, two blast cell populations and
enabled subsequent measurement of apoptosis induced
in each subset. For this study, we used doxorubicin as a
reference drug since it is a cornerstone of the treatment
of AML. As observed in the cell lines, bortezomib
showed greater antitumor activity than doxorubicin on
patients’ fresh blast cells, although the difference did
not-reach statistical significance. Interestingly, howev-
er, differences emerged when the CD34" and CD34
blast cell subsets were analyzed separately. Thus, while
bortezomib had a similar pro-apoptotic effect on both
cell populations, doxorubicin showed greater activity
on the more mature cells (CD347). Moreover, borte-
zomib was significantly more active than doxorubicin
on immature CD34* blast cells. This finding supports
the belief that bortezomib could overcome the drug
resistance associated with the immature phenotype.*
Moreover, since the cell subset most commonly respon-
sible for relapses is the CD34" subset, bortezomib may
represent an ideal drug for the eradication of minimal
residual disease, which is currently the major therapeu-
tic challenge in the treatment of AML. Finally, we
observed that the antileukemic effect of bortezomib
was selective, since the toxicity to normal residual lym-
phocytes was low. Similarly, proteasome inhibition
specifically provoked apoptosis in CD347/CD387/
CD123" cells (leukemic stem cells) without significant
toxicity to normal hematopoietic stem cells.”®”

In summary our study indicates that bortezomib has
marked in vitro activity in both AML cell lines and fresh
blast cells obtained from patients. Moreover, the simi-
lar antileukemic effect of bortezomib on CD34* and
CD34" AML cells suggests that this agent may over-
come the drug resistance associated with the immature
CD34" phenotype. Collectively, these data open new
pathways for the clinical development of bortezomib
in the treatment of AML, and may add this already



approved drug to the therapeutic armamentarium
against AML. For more than 30 years very few novel

Bortezomib in acute myeloid leukemia

agents have been introduced to treat AML,” and yet

many patients continue to relapse due to the persist-
ence of residual resistant leukemic cells. Our data clear-
ly support that further clinical investigation of borte-
zomib, particularly in combination with conventional

agents, is warranted.

References

1.

10.

Mitsiades CS, Mitsiades N, Hide-
shima T, Richardson PG, Anderson
KC. Proteasome inhibition as a new
therapeutic principle in hematologi-
cal malignancies. Current Drug

Targets 2006;7:1341-7.

. Roccaro AM, Hideshima T, Richard-

son PG, Russo D, Ribatti D, Vacca A,
et al. Bortezomib as an antitumor
agent. Current Pharm Biotechnol
2006;7:441-8.

. Boccadoro M, Morgan G, Cavenagh

J. Preclinical evaluation of the protea-
some inhibitor bortezomib in cancer
therapy. Cancer Cell Int 2005;5:18.

. Hideshima T, Mitsiades C, Akiyama

M, Hayashi T, Chauhan D, Richard-
son P, et al. Molecular mechanisms
mediating antimyeloma activity of
proteasome inhibitor PS-341. Blood
2003;101:1530-4.

.Ma MH, Yang HH, Parker K

Manyak S, Friedman JM, Altamirano
C, et al. The proteasome inhibitor
PS-341 markedly enhances sensitivi-
ty of multiple myeloma tumor cells
to chemotherapeutic agents. Clin
Cancer Res 2003;9:1136-44.

. Hideshima T, Richardson P, Chatthan

D, Palombella V], Elliott PJ, Adams"],
et al. The proteasome inhibitor PS-
341 inhibits growth, induces apopto-
sis, and overcomes drug resistance in
human multiple ‘myeloma cells.
Cancer Res 2001;61:3071-6.

. LeBlanc R, Catley LP, Hideshima T,

Lentzsch S, Mitsiades CS, Mitsiades
N, et al. Proteasome inhibitor PS-341
inhibits human myeloma cell growth
in vivo and prolongs survival in a
murine model. Cancer Res 2002;62:
4996-5000.

. Satou Y, Nosaka K, Koya Y, Yasunaga

JI, Toyokuni S, Matsuoka M. Protea-
some inhibitor, bortezomib, potently
inhibits the growth of adult T-cell
leukaemia cells both in vivo and in
vitro. Leukaemia 2004; 18:1357-63.

. Amiri KI, Horton LW, LaFleur B],

Sosman JA, Richmond A. Augment-
ing chemosensitivity of malignant
melanoma tumors via proteasome
inhibition: implication for borte-
zomib (VELCADE, PS-341) as a ther-
apeutic agent for malignant melano-
ma. Cancer Res 2004;64:4912-8.

Ling YH, Liebes L, Jiang JD, Holland
JE Elliott PJ, Adams J, et al
Mechanisms of proteasome inhibitor

11.

12.

13.

14.

15.

16.

17.

18.

19.

Authorship and Disclosures

EC: performed and designed the research, analyzed
the data and wrote the paper; SA-E JM-S, MG, EMO
and JCM: performed research; PM: performed research
and wrote the paper; MBV: designed the research, con-

tributed analytical tools, and analyzed the data; AP and
JESM: designed the research and wrote the paper.
The authors reported no potential conflicts of interest.

PS-341-induced G(2)-M-phase arrest
and apoptosis in human non-small
cell lung cancer cell lines. Clin
Cancer Res 2003;9:1145-54.

Yang Y, Ikezoe T, Saito T, Kobayashi
M, %(oefﬂer HP, Taguchi H. Protea-
some inhibitor PS-341 induces
growth arrest and apoptosis of non-
small cell lung cancer cells via the
JNK/c-Jun/AP-1 signaling. Cancer Sci
2004;95:176-80.

Codony-Servat J, Tapia MA, Bosch
M, Oliva C, Domingo-Domenech ],
Mellado B, et al. Differential cellular
and molecular effects of bortézomib,
a proteasome inhibitor, in, human
breast cancer cells. Mol Cancer Ther
2006;5:665-75.

Shah SA, Potter MW, McDade TP,
Ricciardi R, Pertigini RA, Elliott PJ, et
al. 26S  proteasome inhibition
induces apoptosissand limits growth
of human~pancreatic cancer. ] Cell
Biochém 2001;82:110-22.
Nawrocki,ST, Bruns CJ, Harbison
MT;Bold R], Gotsch BS, Abbruzzese
JL, et=al. Effects of the proteasome
inhibitor PS-341 on apoptosis and
angiogenesis in orthotopic human
pancreatic tumor xenografts. Mol
Cancer Ther 2002;1:1243-53.
Williams S, Pettaway C, Song R,
Papandreou C, Logothetis C,
McConkey DJ. Differential effects of
the proteasome inhibitor borte-
zomib on apoptosis and angiogene-
sis in human prostate tumor xeno-

grafts. Mol Cancer Ther 2003;2:835-
43

Williams SA, McConkey DJ. The
proteasome inhibitor bortezomib
stabilizes a novel active form of p53
in human LNCaP-Pro5 prostate can-
cir cells. Cancer Res 2003; 63:7338-
44.

Bazzaro M, Lee MK, Zoso A, Stirlin
WL, Santillan A, Shih IeM, et al.
Ubiquitin-proteasome system stress
sensitizes ovarian cancer to protea-
some inhibitor-induced apoptosis.
Cancer Res 2006;66:3754-63.

Fribley A, Zeng Q, Wang C-Y. Pro-
teasome inhibitor PS-341 induces
apoptosis through induction of
endoplasmic reticulum stress-reac-
tive oxygen species in head and neck
squamous cell carcinoma cells. Mol
Cell Biol 2004;24:9695-704.
Coquelle A, Mouhamad S, Pe-
quignot MO, Braun T, Carvalho G,
Vivet S, et al. Cell cycle-dependent
cytotoxic and cytostatic effects of
bortezomib on colon carcinoma

20.

21:

22.

23.

24.

25.

26.

27.

28.

cells. Cell Death Differ 2006;13:873-

5.

Jones DR, Broad RM, Madrid LV,
Baldwin AS, Mayo MW. Inhibition
of NF-[k]B sensitizes non-small cell
lung .eancer cells to chemotherapy-
induced apoptosis. Ann Thorac Surg
2000;70:930-6.

Bold'R], Virudachalam S, McConkey
DJ. Chemosensitization of pancreat-
ic cancer by inhibition of the 26S
?roteasome. J Surg Res 2001;100:11-

Fahy BN, Schlieman MG, Viruda-
chalam S, Bold R]. Schedule-depend-
ent molecular effects of the protea-
some inhibitor bortezomib and gem-
citabine in pancreatic cancer. ] Surg
Res 2003;113:88-95.

Mitsiades N, Mitsiades CS, Richard-
son PG, Poulaki V, Tai YT, Chauhan
D, et al. The proteasome inhibitor
PS-341 potentiates sensitivity of
multiple myeloma cells to conven-
tional chemotherapeutic agents:
therapeutic applications. Blood 2003;
101: 2377-80.

Denlinger CE, Rundall BK, Keller
MD, Jones DR. Proteasome inhibi-
tion sensitizes non-small-cell lung
cancer to gemcitabine-induced apop-
tosis. Ann Thorac Surg 2004; 78:
1207-14.

Denlinger CE, Rundall BK, Jones DR.
Proteasome inhibition sensitizes
non-small cell lung cancer to histone
deace%/lase inhibitor-induced apop-
tosis through the generation of reac-
tive oxygen species. ] Thorac
Cardiovasc Surg 2004;128:740-8.
Mateos MV, Herndndez JM,
Herndndez MT, Gutiérrez NC,
Palomera L, Fuertes M, et al. Borte-
zomib plus melphalan and pred-
nisone in elderly untreated patients
with multiple myeloma: results of a
multicenter phase 1/2 study. Blood
2006; 108:2165-72.

Richardson PG, Sonneveld P,
Schuster MW, Irwin D, Stadtmauer
EA, Facon T, et al. Bortezomib or
high-dose dexamethasone for relaps-
ed multiple myeloma. Assessment of
Proteasome Inhibition for Extending
Remissions (APEX) Investigators. N
Engl ] Med 2005;352:2487-98.

Kane RC, Farrell AT, Sridhara R,
Pazdur R. United States Food and
Drug Administration approval sum-
mary: bortezomib for the treatment
of progressive multiple myeloma
after one prior therapy. Clin Cancer
Res 2006; 12:2955-60.

haematologica | 2008; 93(1) | 65 |



E. Colado et al.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Cortes J, Thomas D, Koller C, Giles
E Estey E, Faderl S, et al. Phase I
study of bortezomib in refractory or
relapsed acute leukemias. Clin
Cancer Res 2004;10:3371-6.
Orlowski RZ, Voorhees PM, Garcia
RA, Hall MD, Kudrik FJ, Allred T, et
al. Phase 1 trial of the proteasome
inhibitor bortezomib and pegylated
liposomal doxorubicin in patients
with advanced hematologic malig-
nancies. Blood 2005;105:8%58—65.
Attar EC, De Angelo DJ, Sirulnik A.
Addition of Bortezomib (Velcade) to
AML induction chemotherapy is
well tolerated and results in a Kigh
complete remission rate. ASH
Annual Meeting Abstracts 2005;
106:2782.

Myint H, NP L. The prognostic sig-
nigi/cance of the CD34 antigen in
acute myeloid leukaemia. Leuk
Lymphoma 1992;7:425-9.

Geller RB, Zahurak M, Hurwitz CA,
Burke PJ, Karp JE, Piantadosi S, et al.
Prognostic importance of immuno-
phenotyping in adults with acute
myelocytic leukaemia: the signifi-
cance of the stem-cell glycoprotein
CD34 (My10). Br ] Haematol 1990;
76:340-7.

Suarez L, Vidriales MB, Moreno M],
Lépez A, Garcia-Larafa ], Pérez-
Lépez C, et al. Differences in anti-
aﬁoptotic and multidrug resistance
phenotypes in elderly and young
acute myeloid leukemia patients are
related to the maturation of blast
cells. PETHEMA  Cooperative
Group. Haematologica 2005; 90:54-
9

Repp R, Schaekel U, Helm G,
Thiede C, Soucek S, Pascheberg U,
et al. Immunophenotyping is an
independent factor for risk stratifica-
tion in AML. AML-SHG Study
Group. Cytometry B Clin Cytom
2003;53:11-9.

Baer MR, Stewart CC, Dodge RK,
Leget G, Sulé N, Mrézek K; et al.
High frequency of immunopheno-
type changes in acute myeloid
leukemia at relapse: implications for
residual disease detection~(Cancer
and Leukemia Group B/Study 8361).
Blood 2001;97:3574-80.

Macedo A, San Miguel JE Vidriales
MB, Lépez-Berges MC, Garcia-
Marcos MA, Gonzalez M, et al.
Phenotypic changes in acute
myeloid leukaemia: implications in
the detection of minimal residual
disease. ] Clin Pathol 1996;49:15-8.

| 66 | haematologica | 2008; 93(1)

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48:

49.

50.

Schoch C, Kern W, Schnittger S,
Biichner T, Hiddemann W,
Haferlach T. The influence of age on
rognosis of de novo acute myeloid
eukemia differs according to cyto-
enetic subgroups. Haematologica
%004; 89:1082-90.
Mosmann T. Rapid colorimetric
assay for cellular growth and sur-
vival: application to proliferation
and cytotoxicity assays. ] Immunol
Methods 1983;65:55-63.
Carvajal-Vergara X, Tabera S,
Montero JC, Esparis-Ogando A,
Lépez-Pérez R, Mateo G, et al
Multifunctional role of Erk5 in mul-
tiple myeloma. Blood 2005;105:
4492-9.
Chou TC, Talalay P. Quantitative
analysis of dose-effect relationships:
the combined effects of multiple
drugs or enzyme inhibitors. Adv
Enzyme Regul 1984,22:27-55.
Ramirez JM, Ocio EM, San Miguel
JE Pandiella A. Pemetrexed acts as
an antimyeloma agent by provoking
cell cycle blockade anc?/ apoptosis.
Leukemia 2007;21:797-804.
Kroemer G, Martin SJ. Caspase-
independent cell death. Nat Med
2005;11:725-30.
Estey E, Dohner H. Acute myeloid
leukaemia. Lancet 2006;368:1894-
907.
Jabbour EJ, Estey EJ, Kantarjian\HM.
Adult acute myeloid leukemia.
Mayo Clin Proc 2006;81:247-60.
King RW, Deshaiés, RJ, Peters JM,
Kirschner MW. How proteolysis
drives the cell eyclewScience 1996;
274:1652-9.
San Miguell]‘Blade J, Boccadoro M,
Cavenagh ] “Glasmacher A, Jagan-
nath S;7et al. A practical update on
the use of bortezomib in the man-
agement of multiple myeloma.
Oncologist 2006;11:51-61.
Richardson PG, Barlogie B, Berenson
J, Singhal S, Jagannath S, Irwin D, et
al. A phase 2 study of bortezomib in
relapsed, refractory myeloma. N
Engl ] Med 2003; 348:2609-17.
Ryan DP, Appleman 1], Lynch T,
Supko ]G, Fidias P, Clark JW, et al.
Phase I clinical trial of bortezomib in
combination with gemcitabine in
patients with advanced solid
tumors. Cancer 2006;107:2482-9.
Papandreou CN, Daliani DD, Nix D,
Yang H, Madden T, Wang X, et al.
Phase I trial of the proteasome
inhibitor bortezomib in patients
with advanced solid tumors with

51.

52.

53.

54.

55

56.

57.

58.

59.

60.

observations in androgen-independ-
ent prostate cancer. ] Clin Oncol
2004;22:2108-21.

Davis NB, Taber DA, Ansari RH,
Ryan CW, George C, Vokes EE, et al.
Phase II trial of PS-341 in patients
with renal cell cancer: a University
of Chicago phase II consortium
study. J Clin Oncol 2004;22:115-9.
Kondagunta GV, Drucker B,
Schwartz L, Bacik ], Marion S, Russo
P, et al. Phase II trial of bortezomib
for patients with advanced renal cell
carcinoma. ] Clin Oncol 2004; 22:
3720-5.

Shah MH, Young D, Kindler HL,
Webb I, Kleiber B, Wright ], et al.
Phase II study of the proteasome
inhibitor bortezomib (PS-341) in
patients with metastatic neuroen-
docrine tumors. Clin Cancer Res
2004; 10:6111-8.

Maki RGj, Kraft AS, Scheu K,
Yamada J; Wadler S, Antonescu CR,
et al. A multicenter Phase II study of
bortezomib in recurrent or metasta-
tic "sarcomas. Cancer 2005; 103:
1431-8.

Ryan DP, O'Neil BH, Supko ]G,
Rocha Lima CM, Dees EC, Apple-
man L], et al. A phase I study of
bortezomib plus irinotecan in
patients with advanced solid
tumors. Cancer 2006;107:2688-97.
Buzzeo R, Enkemann S, Nimma-
napalli R, Alsina M, Lichtenheld
MG, Dalton WS, et al. Character-
ization of a R115777-resistant
human multiple myeloma cell line
with cross-resistance to PS-341. Clin
Cancer Res 2005;11:6057-64.
Danial NN, Korsmeyer SJ. Cell
death: critical control points. Cell
2004;116:205-19.

Guzman ML, Neering SJ, Upchurch
D, Grimes B, Howard DS, Rizzieri
DA, et al. Nuclear factor-{k}B is con-
stitutively activated in primitive
human acute myelogenous leu-
kemia cells. Blood 2001;98:2301-7.
Guzman ML, Swiderski CF, Howard
DS, Grimes BA, Rossi RM, Szilvassy
SJ, et al. Preferential induction of
apoptosis for primary human
leukemic stem cells. Proc Natl Acad
Sci USA 2002;99:16220-5.

Tallman MS, Gilliland DG, Rowe
JM. Drug therapy for acute myeloid
leukemia. Blood 2005;106:1154-63.





