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Abstract 

 

Mesenchymal stem cells (MSCs) can generate multiple end-stage mesenchymal cell types  and 

constitute a promising population of cells for regenerative therapies. Additionally, there is 

increasing evidence supporting other trophic activities of MSCs, including the ability to enable 

formation of vasculature in vivo. Although MSCs were originally isolated from the bone marrow, 

the presence of these cells in the stromal vascular fraction of multiple adult tissues has been 

recently recognized. However, it is unknown whether the capacity to modulate vasculogenesis 

is ubiquitous to all MSCs regardless of their tissue of origin. Here, we demonstrated that tissue-

resident MSCs isolated from four distinct tissues have equal capacity to modulate endothelial 

cell function, including formation of vascular networks in vivo. MSCs were isolated from four 

murine tissues, including bone marrow, white adipose tissue, skeletal muscle, and myocardium. 

In culture, all four MSC populations secreted a plethora of pro-angiogenic factors that 

unequivocally induced proliferation, migration, and tube formation of endothelial colony-forming 

cells (ECFCs). In vivo, co-implantation of MSCs with ECFCs into mice generated an extensive 

network of blood vessels with ECFCs specifically lining the lumens and MSCs occupying 

perivascular positions. Importantly, there were no differences among all four MSCs evaluated. 

Our studies suggest that the capacity to modulate the formation of vasculature is a ubiquitous 

property of all MSCs, irrespective of their original anatomical location. These results validate 

multiple tissues as potential sources of MSCs for future cell-based vascular therapies. 
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Introduction 

 

Mesenchymal stem cells (MSCs) are a subset of multipotent precursors that reside in the 

stromal fraction of many postnatal tissues. MSCs can differentiate into distinctive end-stage 

mesenchymal cell types, including those found in fat, bone, and cartilage [1]. Due to their 

multilineage differentiation potential, as well as ease of isolation and expansion, MSCs are the 

subject of intensive clinical research and constitute a promising cell population for future 

regenerative therapies [2].  

 

MSCs were first identified in the bone marrow stroma as a population of fibroblast-like cells that 

adhered with ease to tissue culture plates and were able to differentiate into multiple 

mesenchymal cell types [3-5]. However, the bone marrow is not the only tissue that contains 

cells with these characteristics; there are now numerous studies that demonstrate the presence 

of MSCs in a diverse range of human tissues, including adipose tissue, skeletal muscle, and 

placenta [6, 7]. The identity of MSCs in vivo, their anatomical localization, as well as their 

functional roles in tissue homeostasis have become increasingly better understood [8]. In this 

regard, Crisan et. al. demonstrated that multiple human tissues contain subpopulations of 

perivascular cells that express MSC markers in situ and retain multilineage differentiation 

potential following expansion in culture, thus revealing a close connection between MSCs and 

pericytes [6, 9]. From a practical standpoint, definition of a MSC is often simplified to a 

multilineage differentiation ability after in vitro expansion. However, this definition is not 

sufficient to indicate whether MSCs from different anatomical locations have an equivalent 

therapeutic potential. For example, MSCs isolated from both bone marrow and adipose tissue 

have multipotential capacity but exhibit differential sensitivities to inductive molecules in culture 

[10], which reflects the influence of their tissue of origin. Additionally, MSCs derived from 

various postnatal and embryonic tissues display significant differences in colony morphology, 
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differentiation potential, and gene expression [7, 11-13]. Moreover, equivalent multipotential 

ability in vitro does not necessarily imply equivalent cell performance upon engraftment in vivo. 

Thus, there are multiple questions regarding differential properties of distinct tissue-resident 

MSCs that remain unanswered. 

 

The therapeutic potential of MSCs is more extensive than solely the capacity to generate large 

number of multiple end-stage mesenchymal cell types (e.g., adipocytes, chondrocytes, and 

osteocytes) [14]. There is increasing evidence supporting additional trophic and 

immunomodulatory activities of MSCs, including the ability to enable de novo formation of 

microvascular networks in vivo. For example, studies have demonstrated that bone marrow-

derived MSCs facilitate the self-assembly of human blood-derived endothelial colony-forming 

cells (ECFCs) and umbilical cord vein endothelial cells (HUVECs) into functional capillaries in 

models of human cell implantation in immunodeficient mice [15, 16]. Similar properties have 

also been described using MSCs from white adipose tissue [17]. However, the influence of the 

tissue of origin on the vascular modulatory properties of cultured MSCs remains largely 

unknown. 

 

Here, we demonstrate that MSCs isolated from four distinct tissues have equal capacity to 

facilitate the generation of functional human vasculature in vivo. The tissues examined were 

murine bone marrow, white adipose tissue, skeletal muscle, and myocardium. Our studies 

suggest that the capacity to modulate the formation of vasculature is a ubiquitous property of all 

MSCs, irrespective of their anatomical location.  

 

Material and Methods 

 

Isolation of stromal vascular fraction from murine tissues 
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Mouse stromal vascular fractions (SVFs) of four different tissues were isolated from six-week-

old C57BL/6 and GFP-C57BL/6 mice (Jackson Laboratories) as follows: 

 

Bone marrow 

Hind limbs were dissected from the trunk of euthanized mice and muscle and connective tissues 

were removed to obtain tibia and femur bones. Bones were digested (1 mg/mL collagenase A, 

2.5 U/mL dispase, 126 µM calcium chloride, and 80 µM magnesium sulfate in DMEM containing 

1% FBS) for 10 min at 37oC. Bones were then crushed with a glass pestle and digested for an 

additional 30 min. The SVF was obtained after removal of bone fragments with a 100-µm cell 

strainer and lysis of erythrocytes with ammonium chloride solution.  

 

White adipose tissue 

Subcutaneous white fat pads were excised from euthanized mice, minced, and digested for 1 hr 

at 37oC. The SVF was obtained after removal of mature adipocytes by centrifugation (450 g for 

10 min) and the lysis of erythrocytes with ammonium chloride solution. 

 

Myocardium and skeletal muscle  

Myocardium and skeletal muscle tissues were excised from the heart and hind limb of 

euthanized mice, respectively. Pericardial and adipose tissues were carefully removed from the 

harvested tissues prior to digestion. Tissues were minced and digested for 1 hr at 37oC. The 

digested cells and tissues were then collected by centrifugation and digested for an additional 1 

hr. The SVFs were obtained following the removal of undigested tissues with a 100-µm cell 

strainer and lysis of erythrocytes with ammonium chloride solution. 

 

Purification and culture of MSCs 
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The SVFs were plated on uncoated tissue culture dishes using MSC-medium: MSCGM 

Mesenchymal Stem Cell Medium BulletKit (basal media and SingleQuots; Lonza),  

supplemented with 10% FBS (MSC-Qualified; Gibco/Invitrogen), 1X Penicillin-streptomycin-

glutamine solution (PSG), and 10 ng/mL of FGF-2 (R&D system). After 48 hr, unbound cells 

were removed. Thereafter, medium was replaced every two days. Once each SVF culture 

reached 80% confluence, cells were detached and incubated with a FITC-conjugated anti-

mouse CD45 antibody (1 µL for 1x106 cells), followed by anti-FITC magnetic microbeads 

(Miltenyi Biotec), and passed through magnetic columns (Miltenyi Biotec). The CD45- cell 

fraction were then incubated with a PE-conjugated anti-PDGFR-β antibody (5 µL for 1x106 

cells), followed by anti-PE magnetic microbeads, and passed through magnetic columns (Fig. 

1A). The purified CD45-/PDGFR-β+ MSCs (referred to here as tissue-resident MSCs) were 

cultured on uncoated tissue culture dishes using MSC-medium. All experiments were carried 

out with MSCs at passage 3.  

 

Flow cytometry and indirect immunofluorescence 

MSCs at passage 3 were characterized by standard flow cytometry (CD45, CD11b, CD34, 

CD31, PDGFR-β, CD146, CD90, Sca-1, CD29, and CD44) and indirect immunofluorescent 

staining (vimentin and α-SMA) as previously described [18, 19]. Mouse dermal endothelial cells 

(mDEC) and peripheral blood leukocytes served as controls. Antibodies and staining dilutions 

were summarized in Supplemental Table 1.  

 

Multilineage differentiation of MSCs 

 

Adipogenesis 

Confluent MSCs were cultured for 10 days in low-glucose DMEM with 10% FBS, 1X GPS, and 

adipogenic supplements (5 µg/mL insulin, 1 µM dexamethasone, 0.5 mM 
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isobutylmethylxanthine, 60 µM indomethacin, 1 µM rosiglitazone). Differentiation into adipocytes 

was assessed by Oil Red O staining. Cells cultured in medium lacking adipogenic supplements 

served as a negative control. 

 

Osteogenesis 

Confluent MSCs were cultured for 21 days in low-glucose DMEM with 10% FBS, 1X GPS, and 

osteogenic supplements (1 µM dexamethasone, 10 mM β- glycerophosphate, 60 µM ascorbic 

acid-2-phosphate). Differentiation into osteocytes was assessed by alkaline phosphatase and 

von Kossa staining. Cells cultured in medium lacking osteogenic supplements served as a 

negative control. 

 

Chondrogenesis 

Suspensions of MSCs were gently centrifuged in 15 ml polypropylene centrifuge tubes (500,000 

cells/tube). The pellets were cultured in high-glucose DMEM medium with 1X GPS, and 

chondrogenic supplements (1X insulin-transferrin-selenium, 1 µM dexamethasone, 100 µM 

ascorbic acid-2-phosphate, and 10 ng/mL TGF-β3). After 21 days, pellets were fixed in 10% 

buffered formalin, cryoprotected in 30% (w/v) sucrose solution, embedded in O.C.T. medium, 

and sectioned (8 µm-thick) using a cryostat microtome. Differentiation into chondrocytes was 

assessed by evaluating the presence of glycosaminoglycans after Alcian Blue staining. Cells 

cultured in the absence of TGF-β3 served as negative controls and failed to form compact 

spheroids. 

 

Smooth muscle myogenesis 

MSCs were co-cultured for 7 days with mDEC (1:1 ratio) on fibonectin-coated, 2-well Permanox 

chamber slides at a density of 1x105 cell/well using EGM-2 medium (Lonza). MSC expression of 

smooth muscle myosin heavy chain (smMHC) was evaluated by immunofluorescence using a 
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rabbit monoclonal antibody followed by anti-rabbit TexasRed-conjugated secondary antibody. 

mDECs were stained with FITC-conjugated isolectin Griffonia simplicifolia B4 (IB4; 1:200; 

Vector Laboratories). Monocultures of MSCs cultured in EGM-2 medium served as negative 

control. 

 

Angiogenesis assays 

Confluent cultures of MSCs were incubated in EBM-2, 5% FBS (basal medium) for 24 hr. MSC 

conditioned medium (MSC-CM) was filtered (0.2 µm) and concentrated (Amicon Ultra 

centrifugal filters, Regenerated cellulose; 3 kDa cut off; Millipore) to a 10-fold reduced volume. 

MSC-CM was reconstituted in basal medium (1:10) prior to use. Proliferation assays were 

carried out with ECFCs seeded in triplicate onto fibonectin-coated 24-well plates at 5 x 103 

cell/cm2 using basal medium; plating efficiency was determined at 24 hr; cells were then treated 

for 48 hr using basal medium in the presence or absence of either 10 ng/mL VEGF-A (R&D 

Systems) and 1 ng/mL bFGF (R&D Systems), or conditioned media. Cells were stained with 

DAPI and counted under a fluorescent microscope. The scratch assay was performed in 

confluent cultures of ECFCs plated on a 6-well plate. Scratch wounds were generated across 

each well using a pipette tip. Scratch size was measured after 48 hr for each culture condition. 

The sprouting assay was performed with ECFC-coated microcarriers embedded in fibrin gel (2 

mg/mL of fibrinogen, 0.15 U/mL of aprotinin, and 0.625 U/mL of thrombin) for 4 days, as 

previously described [19]. To coat microcarriers, ECFCs were mixed with Cytodex 3 

microcarriers (Amersham Pharmacia Biotech) at a concentration of 200 ECFCs per bead. 

Beads with cells were shaken gently every 30 min for 3 h at 37°C and 5% CO2 to allow uniform 

ECFC coating. The following day, beads with cells were washed three times with EGM-2 before 

gel embedding. The tube formation assay was carried out by seeding ECFCs on Matrigel-

coated plates at a density of 2 x 104 cell/cm2. After incubating for 24 hr in each culture condition, 

the total length of ECFC-lined cords were measure using ImageJ analysis software (NIH, 
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Bethesda, MD), as previously described [19]. Secretion of angiogenic factors was evaluated in 

each MSC-CM sample with mouse angiogenesis antibody arrays (R&D Systems), as described 

in the manufacturer’s manual. Antigen-antibody complexes were visualized using Lumiglo (KPL) 

and chemiluminescent sensitive film (Kodak). Densitometry was performed by image analysis to 

quantify the amount of protein present in each MSC-CM sample (ImageJ). 

 

In vivo vasculogenic assay 

Postnatal vasculogenesis is a paradigm in which circulating endothelial progenitor cells are 

recruited to form new blood vessels. The capacity of MSCs to support postnatal vasculogenesis 

in vivo was evaluated using our xenograft model of ECFCs transplantation [18]. Briefly, MSCs 

isolated from GFP-C57BL/6 mice (GFP-MSCs) were combined with human cord blood-derived 

ECFCs (2x106 total; 40:60 ECFC/GFP-MSC ratio) in 200 µl of Matrigel and the mixture 

subcutaneously injected into a 6-week-old male athymic nu/nu mouse (n = 4 for each GFP-MSC 

group). Implants were harvested after 7 days, fixed overnight in 10% buffered formalin, 

embedded in paraffin and sectioned (7 µm-thick). Hematoxylin and eosin (H&E) stained 

sections were examined for the presence of blood vessels containing red blood cells. 

Microvessel density (vessels/mm2) was reported as the average number of erythrocyte-filled 

vessels in sections from the middle of the implants. Immunofluorescent staining was performed 

on 7-µm-thick sections were stained as previously described [15]. GFP-MSCs were stained with 

a rabbit anti-GFP antibody (1:2000; abcam) followed by FITC-conjugated secondary antibody 

(1:200; Vector Laboratories). ECFC-lined microvessels were stained with a mouse anti-human 

CD31 antibody (1:50; abcam) followed by biotinylated IgG and Texas Red-conjugated 

streptavidin (1:200; Vector Laboratories). Alpha-smooth muscle actin (α-SMA) was stained with 

an anti-α-SMA antibody (1:100; Sigma-Aldrich) followed by a Texas Red-conjugated secondary 

antibody (1:200; Vector Laboratories). All sections were counterstained with DAPI (Vector 

Laboratories). 
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Statistical analysis 

Data were expressed as mean ± S.E.M. Comparisons between groups were performed by 

ANOVA followed by Bonferroni post-test analysis using Prism Version 4 software (GraphPad). P 

< 0.05 was considered statistically significant. 

 

Results 

 

Isolation and characterization of tissue-resident MSCs 

 

Tissue-resident MSCs were isolated from the SVF of four different murine tissues: 1) bone 

marrow (bm), 2) white adipose tissue (wat), 3) skeletal muscle (skm), and 4) myocardium (myo). 

In all cases, the SVF was cultured until it reached 80% confluence prior to selection of MSCs. 

Thereafter, MSCs were selected based on their negative expression of CD45 and positive 

expression of PDGFR-β (Fig. 1A). This methodology resulted in highly homogenous CD45-

/PDGFR-β+ MSC populations (> 96% purity in all cases; Fig. 1A) and eliminated the majority of 

cellular contaminants originally present in the SVF, including hematopoietic cells (CD45+), 

endothelial cells (ECs) (CD45-/PDGFR-β-), and non-perivascular stromal cells (CD45-/ PDGFR-

β-). Purified MSCs displayed a characteristic spindle-shape morphology in culture (Fig. 1B). The 

mesenchymal phenotype was confirmed by additional methods. Indirect immunofluorescent 

staining confirmed the uniform expression of mesenchymal intermediate filament vimentin in all 

MSCs populations (Fig. 1C). α-SMA, an intracellular marker often associated with cultured 

mesenchymal cells, was also visible in all MSCs, although its expression was not evenly 

distributed among the entire population (Fig. 1D). Flow cytometry analyses were performed to 

examine the expression of cellular surface markers (Fig. 2). MSCs showed remarkably uniform 

expression of mesenchymal markers Sca-1, CD29 and CD44. Of note, murine MSCs did not 
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express CD90 in all four population; this is in contrast with their human counterparts, which 

abundantly express CD90 [15]. In addition, all four murine MSC populations uniformly 

expressed the perivascular marker PDGFR-β, expression that was maintained after prolonged 

expansion in culture. Importantly, cells were negative for endothelial markers (CD31, CD34) and 

hematopoietic markers (CD45, CD11b), confirming that none of the MSC populations were 

contaminated with either of these additional cell types. 

 

The ability of tissue-resident MSCs to differentiate into cells from multiple mesenchymal 

lineages was evaluated in vitro using well-established protocols [4]. MSCs isolated from all four 

murine tissues differentiated into adipocytes, osteocytes and chondrocytes, as shown by the 

intracellular accumulation of oil droplets (adipogenesis; Fig. 3A), expression of alkaline 

phosphatase and calcium deposition (osteogenesis; Fig. 3B) and glycosaminoglycan deposition 

in pellet cultures (chondrogenesis; Fig. 3C), respectively. Additionally, we examined the ability 

of each MSC population to differentiate into mature smooth muscle cells (SMCs) upon direct 

contact with ECs [15]. Cultured MSCs share multiple cellular markers with SMCs (e.g., α-SMA, 

calponin), therefore, differentiation was assessed by expression of smMHC, a definitive marker 

of mature SMCs that is not expressed by MSCs. Indeed, in the absence of direct contact with 

ECs, smMHC expression was undetectable in all MSC populations (insets in Fig. 3D). However, 

when MSCs were directly co-cultured with mDECs for 7 days, expression of smMHC was 

consistently induced in all four MSC populations (Fig. 3D), indicating smooth muscle myogenic 

ability. Collectively, our data showed that tissue-resident CD45-/PDGFR-β+ cells, independently 

isolated from the SVF of four distinct tissues, comprise a population of cells that are consistent 

with the definition of MSCs, as characterized via cell phenotype and multipotency. 

 

Pro-angiogenic potential of tissue-resident MSCs 
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We examined the ability of our four tissue-resident MSC populations to modulate EC behavior 

through secretion of paracrine pro-angiogenic factors (Fig. 4). Irrespective of the tissue origin, 

all four MSCs secreted multiple angiogenic factors in culture, as confirmed by examination of 

MSC conditioned medium (MSC-CM) using murine angiogenesis protein arrays (Fig. 4A-B). 

Secreted pro-angiogenic factors included VEGF-A, PlGF2, HGF, several members of the IGFBP 

family as well as matrix metalloproteinase (MMP)-3 and -9, among other factors. Of note, 

murine MSCs did not secrete FGF-1 and FGF-2 (Fig. 4A), which is a distinction from human 

MSCs [20]. Overall, pro-angiogenic secretomes were similar in each of the MSC populations 

analyzed, and no particular factor was expressed exclusively in specific cell types. To examine 

whether MSC-secreted proteins were able to modulate EC activity, human umbilical cord blood-

derived ECFCs were exposed to each MSC-CM in four different functional in vitro assays (Fig. 

4C-F). First, using a standard proliferation assay, we found that all MSC-CM induced ECFC 

mitogenesis; cell numbers achieved after exposure to MSC-CMs for 48 hr were in all cases 

significantly higher than those observed when cells were exposed to basal control medium (Fig. 

4C). Similarly, MSC-CMs were shown to significantly increase the capacity of ECFCs to re-

endothelialize scratched monolayers (Fig. 4D), to launch angiogenic sprouts (Fig. 4E), and to 

assemble into capillary-like structures in three-dimensional cultures (Fig. 4F). Collectively, our 

data indicate that tissue-resident CD45-/PDGFR-β+ MSCs from all four distinct tissues were able 

to modulate EC function in vitro through the secretion of paracrine factors. 

 

MSCs support formation of vascular networks in vivo 

 

To examine whether tissue-resident MSCs can serve as perivascular cells and facilitate 

vasculogenesis in vivo, we implanted GFP-MSCs in combination with ECFCs subcutaneously 

into immunodeficient mice (Fig. 5A). One week after implantation, implants were removed and 

examined for the formation of vascular networks (Fig. 5B). H&E staining revealed that all 
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implants had formed numerous blood vessels that were perfused and contained murine 

erythrocytes (Fig. 5C). Carefully examination of vessels revealed no histological evidence of 

either hemorrhage or thrombosis (i.e., platelet aggregation and uniform fibrin deposition), 

suggesting proper functionality. Quantification of average microvessel densities at day 7 

revealed no statistically significant difference between implants prepared with each of the 

different murine MSC populations (Fig. 5D). The number of microvessels was 124.59 ± 13.28 

vessels/mm2, 95.01 ± 14.8 vessels/mm2, 94.99 ± 27.53 vessels/mm2, and 110.94 ± 55.65 

vessels/mm2, in implants with bmMSCs, watMSCs, skmMSCs, and myoMSCs, respectively. 

These values of microvessel density are similar to those previously reported with human 

saphenous vein SMCs, and bone marrow-derived MSCs [15, 21], indicating that all four of the 

murine MSCs tested were equally capable of generating extensive vascular networks. 

 

The generation of ECFC-lined vascular structures was dependent on the presence of MSCs. 

Perfused vessels stained positively for human specific CD31, indicating that the newly formed 

human vasculature had formed functional anastomoses with murine host blood vessels (Fig. 

6A). Irrespective of the MSC population used, the percentage of human vessels (hCD31+) was 

similar for all groups: 60.27 ± 8.79 % (bmMSCs), 64.51 ± 5.83 % (watMSCs), 57.87 ± 1.67 % 

(skmMSCs), and 69.58 ± 2.28 % (myoMSCs) (Fig. 6C). The location of implanted MSCs was 

identified by the expression of GFP (Fig. 6A); GFP-expressing MSCs were mainly detected in 

proximity and immediately adjacent to lumenal structures (Fig. 6A), indicating structural 

participation in the perivascular compartment of newly formed blood vessels. Perivascular 

participation of MSCs was observed in both ECFC-lined human microvessels (Fig. 6A; panels 1, 

3, 5, 7) as well as in murine infiltrated host microvessels (Fig. 6A; panels 2, 4, 6, 8), and this 

perivascular participation took place independently of the tissue of origin from where MSCs 

were isolated.  
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Double staining of GFP and α-SMA demonstrated that, after 7 days in vivo, all blood vessels 

inside the implants were surrounded by α-SMA-positive perivascular cells (Fig. 6B). A large 

percentage of these perivascular α-SMA-expressing cells also expressed GFP (Fig. 6B; panels 

2, 4, 6, 8), confirming that donor MSCs indeed contributed to the perivascular compartment of 

blood vessels. Specifically, the percentage of vessels that stained positively for both α-SMA and 

GFP was 80.04 ± 4.77 %, 80.14 ± 4.32 %, 93.75 ± 3.99 %, and 75.02 ± 9.57 %, in implants that 

used bmMSCs, watMSCs, skmMSCs, and myoMSCs, respectively (Fig. 6D). Again, no 

significant difference was observed between implants prepared with different MSC sources. 

 

Discussion 

 

For decades, MSCs have been the subject of intensive research due to their promise in 

regenerative medicine [2]. Over the years, numerous studies have routinely demonstrated the 

capacity of MSCs to generate multiple end-stage mesenchymal cell types [2, 4]. Additionally, 

the presence of MSCs in the stromal vascular fraction of several adult tissues has been recently 

recognized [6, 7]. However, there are still aspects of MSC biology and their role in tissue 

homeostasis that are not fully understood [8], including the capacity to modulate the formation of 

blood vessels in vivo. Studies have shown the MSCs obtained from both bone marrow and 

subcutaneous adipose tissue facilitate the formation of blood vessels in animal models of 

human EC transplantation [15-17]. However, it is still unclear whether this vascular modulatory 

capacity is ubiquitous to all MSCs irrespective of their tissue of origin. Here, we have 

demonstrated that MSCs isolated from four distinct tissues (bone marrow, adipose, skeletal 

muscle, and myocardium) were equally capable of supporting de novo formation of human 

microvascular networks. In all four tissue-resident MSCs tested, co-implantation with ECFCs 

into immunodeficient mice rapidly generated an extensive network of blood vessels with ECFCs 

specifically lining the lumens and MSCs occupying perivascular positions. Moreover, MSCs 
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were critical for the self-assembly of ECFCs into functional capillaries, results that are in line 

with recent studies that showed vasculogenesis to be dependent on the presence of 

perivascular cells [15-17]. 

 

 In the last decade, several studies have revealed that MSC identity and anatomical localization 

in vivo is closely related to those of perivascular cells [6, 8, 22, 23], which has prompted some 

investigators to propose that all MSCs are pericytes [9]. This perivascular identity has enabled 

the selection of MSCs to be based on pericyte markers such as PDGFR-β and NG2 [8, 24]. In 

the present study, we isolated MSCs from the SVF of four distinct tissues based on their 

expression of PDGFR-β. Hematopoietic (CD45+) and non-perivascular (PDGFR-β-) cells were 

removed using magnetic activated cell sorting (MACS). The isolated MSCs (CD45-/PDGFR-β+) 

comprised a single phenotypic population (>96% homogeneous at passages 1) by flow 

cytometric analysis of expressed surface antigens, including PDGFR-β, Sca-1, CD29, and 

CD44. In addition, cultured MSCs uniformly lacked surface markers of hematopoietic (CD45, 

CD11b) and endothelial (CD31, CD34) cells, confirming they were not contaminated by these 

other components of the stroma. Of note, none of the four MSCs expressed CD90, which is in 

line with previous studies with murine MSCs [25-27]; nevertheless, positive expression of CD90 

has also been reported by others [7, 28], which suggest that expression of this particular cell 

marker may be influenced by specific culture conditions and techniques. The phenotypes of the 

selected MSCs were further confirmed by evaluation of their multilineage differentiation 

potential. Without exception, all four MSCs populations were able to undergo adipogenesis, 

osteogenesis, chondrogenesis, and smooth muscle myogenesis in vitro. Collectively, all the 

tissue-resident MSCs described here, independently of the tissue of origin, shared the following 

phenotypical characteristics: (1) ability to proliferate in culture with a distinct spindle-shape 

morphology, (2) uniform expression of a set of surface protein markers, and (3) capacity to 

differentiate into multiple mesenchymal lineages under controlled in vitro conditions. 



 

16 

 

The therapeutic potential of MSCs contributes to additional trophic activities, including the ability 

to support the formation of vascular structures [14]. Heterotypic interactions between endothelial 

and mesenchymal cells in the context of blood vessel formation and stabilization have been 

long recognized [20, 29-31]. However, whether MSCs obtained from different tissues have 

different vascular modulatory properties is largely unknown. In this study, we demonstrated that 

several pro-angiogenic properties were ubiquitous to all tissue-resident MSCs investigated, 

irrespective of their original anatomical location. All MSCs secreted a plethora of pro-angiogenic 

factors in culture, including members of the VEGF and angiopoietin families. Collectively, these 

secreted pro-angiogenic factors demonstrated function in that media conditioned by MSCs 

unequivocally induced ECFC proliferation, migration, and sprout and tube formation in vitro. 

 

The capacity of MSCs to modulate EC behavior was also examined in vivo. Previously, we and 

others demonstrated that bmMSCs facilitate the self-assembly of ECs into functional, long-

lasting capillaries after implantation into immunodeficient mice [15, 16]. Other studies have 

shown that end-stage mesenchymal cells such as fibroblasts facilitate the assembly of ECs into 

blood vessels [32], although whether fibroblast can differentiate in vivo into functional pericytes 

that assure stable, long-lasting vasculature may need further examination. Other authors 

described similar vascular modulatory properties with adipose stromal cells (ASCs), which share 

many of the characteristics herein used to define MSCs, including multipotent differentiation and 

pericytic properties [17]. However, how various MSCs differ in their capacity to facilitate 

vasculogenesis has not been systematically studied. To address whether this modulatory 

capacity is shared by all tissue-resident MSCs, we analyzed MSCs from bone marrow, white 

adipose tissue, and two myogenic tissues: skeletal muscle and myocardium. As expected from 

their similar pro-angiogenic characteristics, all four MSCs facilitated formation of vascular 

networks in our murine model of ECFCs transplantation. Moreover, we found no statistically 
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significant differences in either the total number of microvessels or the percentage of human 

ECFC-lined vessels inside the implants. Importantly, these experiments confirmed that 

implantation of ECFCs alone (without perivascular cells) did not generate perfused 

microvessels, as demonstrated in previous studies [15, 21]. In addition to the capacity to 

support vasculogenesis, we identified further similarities among the four MSC populations. In all 

cases, implanted MSCs engrafted as perivascular cells and were found tightly surrounding the 

majority of microvessels. There were no statistically significant differences in the percentage of 

vessels that were surrounded by donor MSCs expressing α-SMA. MSCs were also found 

interstitially distributed throughout the implants in all four groups; however, whether there were 

any differences between the MSCs that engrafted interstitially or perivascularly remains to be 

elucidated. Finally, MSCs were also found to contribute to the perivascular compartment of 

infiltrating host microvessels, indicating that this ubiquitous MSC capacity to engraft as 

perivascular cells was not limited to those microvessels formed de novo. 

 

In conclusion, we demonstrated that tissue-resident MSCs isolated from four distinct tissues 

have equal capacity to modulate EC function, including de novo formation of vascular networks 

in vivo. Our studies suggest that the capacity to modulate the formation of vasculature is an 

ubiquitous property of all MSCs, irrespective of their original anatomical location. Further 

research is warranted to determine whether this ability to support vasculogenesis is also present 

in other MSCs from additional postnatal tissues. Our results validate multiple tissues as 

potential sources of MSCs for future cell-based vascular therapies. 
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Figures captions 

 

Fig. 1. Isolation and characterization of MSCs from four different murine tissues. (A) Tissue-

resident MSCs were isolated from the stromal vascular fraction (SVF) of four different murine 

tissues: white adipose tissue (wat), bone marrow (bm), skeletal muscle (skm), myocardium 

(myo). MSCs were selected based on their negative expression of CD45 and positive 

expression of PDGFR-β using magnetic activated cell sorting (MACS). (B) Phase-contrast 

micrographs of confluent MSCs after 3 passages in culture (scale bar: 100 µm). (C) Indirect 

immunofluorescent staining of MSCs using an anti-vimentin antibody. Cells were counterstained 

with phalloidin for F-actin filaments and DAPI for nuclei (scale bar: 20 µm) (D) 

Immunofluorescent staining of MSCs using an anti-α-SMA antibody and DAPI (scale bar: 20 

µm). 

 

Fig. 2. Cytometric analysis of cultured MSCs. Expression of surface markers PDGFR-β, CD90, 

Sca-1, CD29, CD44, CD31, CD34, CD45 and CD11b was analyzed by flow cytometry. Black-

lined histograms represent cells stained with fluorescent antibodies. Isotype-matched controls 

are overlaid in solid grey histograms. Murine dermal endothelial cells (DECs) and peripheral 

blood leukocytes served as endothelial and hematopoietic controls, respectively. 

 

Fig. 3. Multilineage differentiation of MSCs. (A) Differentiation into adipocytes was revealed by 

oil red O staining (scale bar: 100 µm). (B) Differentiation into osteocytes was revealed by 

alkaline phosphatase staining as well as von Kossa staining for calcium mineralization (scale 

bar: 100 µm). Insets represent MSCs in non-differentiating control medium. (C) Chondrogenic 

differentiation was revealed in pellet culture by the presence of glycosaminoglycans, detected 

by Alcian blue staining (scale bar: 200 µm). (D) Smooth muscle cell (SMC) differentiation was 

evaluated by culturing MSCs in the presence of murine DECs for 7 days. Induction of SMC 
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phenotype was assessed by the expression of smooth muscle myosin heavy chain (smMHC). 

IB4-FITC lectin was used to stain DECs and DAPI for cell nuclei (scale bar: 100 µm). Inset 

represents MSCs cultured in the absence of DECs. 

 

Fig. 4. Pro-angiogenic properties of MSCs. (A) Murine angiogenesis protein array analysis of 

medium conditioned by MSCs (MSC-CM) for 24 hr. The position of selected angiogenic factors 

in the membranes is marked with color-lined boxes. (B) Quantification of selected angiogenic 

factors in MSC-CM was carried out by densitometry. (C) Proliferation of ECFCs after 48 hr in 

the presence of MSC-CM. (D) Scratch size (% original size) on a confluent layer of ECFCs after 

48 hr in the presence of MSC-CM (scale bar: 500 µm). (E) Total sprout length from ECFC-

coated Cytodex-3 microcarriers embedded in fibrin gel for 4 days in the presence of MSC-CM 

(scale bar: 200 µm). (F) Total tube length formed by ECFCs cultured on Matrigel-coated plates 

for 24 hr in the presence of MSC-CM (scale bar: 500 µm). Basal medium, VEGF-A(10 

ng/mL)/bFGF(1 ng/mL), and ECFC-CM served as control (C-F). Bars represent mean values 

determined from three replicate samples ± S.E.M. 

 

Fig. 5. Pro-vasculogenic properties of MSCs. (A) MSCs isolated from four different GFP-

C57BL/6 murine tissues (GFP-MSCs) were combined with ECFCs (2x106 total; 40:60 

ECFC/GFP-MSC ratio) in 200 µl of Matrigel and the mixture was subcutaneously injected into 

nu/nu mice (n=4 for each MSC group). Implants containing ECFCs alone served as controls. (B) 

Macroscopic views of representative Matrigel explants at day 7 (scale bar: 5 mm). (C) H&E 

staining at day 7 revealed the presence of numerous blood vessels containing erythrocytes 

(yellow arrowheads). Top panels (scale bars: 100 µm) and bottom panels (scale bars: 20 µm) 

are images at low and high magnification, respectively. (D) Microvessel density was determined 

at day 7 by counting luminal structures containing erythrocytes. Bars represent the mean 

microvessel density determined from four replicate implants ± S.E.M. 
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Fig. 6. Perivascular engraftment of MSCs. GFP-MSCs obtained from four different murine 

tissues were combined with ECFCs (2x106 total; 40:60 ECFC/GFP-MSC ratio) in 200 µl of 

Matrigel and the mixture subcutaneously injected into nu/nu mice (n=4 for each MSC group). 

(A) Immunofluorescent staining of engrafted MSCs and ECFCs using anti-GFP and anti-human 

CD31 antibodies, respectively. White arrowheads indicate hCD31+, ECFC-lined vessels. High 

magnification of selected regions showing representative human (panels 1, 3, 5, 7) and mouse 

(panels 2, 4, 6, 8) blood vessels that were covered by perivascular GFP-MSCs. (B) 

Immunofluorescent staining of engrafted MSCs and perivascular cells using anti-GFP and anti-

α-SMA antibodies, respectively. α-SMA-expressing perivascular cells were either donor GFP+ 

MSCs (yellow arrowheads) or GFP- host cells (red arrowheads). High magnification of selected 

regions showing representative blood vessels with GFP+ donor  (panels 2, 4, 6, 8) and GFP- 

host (panels 1, 3, 5, 7) perivascular cells. All images are representative of explants from four 

different mice. Nuclei were counterstained with DAPI. (scale bars: 50 µm). (C) Percentage of 

blood vessels that were lined by hCD31+ ECFCs. (D) Percentage of blood vessels with 

perivascular cells that expressed both GFP and α-SMA. Bars represent mean values 

determined from four replicate implants ± S.E.M. 
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