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The phenomenon of modulation instability of continuous-wave (cw) solutions of the cubic–quintic complex
Ginzburg–Landau equation is studied. It is shown that low-amplitude cw solutions are always unstable.
For higher-amplitude cw solutions, there are regions of stability and regions where the cw solutions are modu-
lationally unstable. It is found that there is an indirect relation between the stability of the soliton solutions
and the modulation instability of the higher-amplitude cw solutions. However, there is no one-to-one corre-
spondence between the two. We show that the evolution of modulationally unstable cw’s depends on the sys-
tem parameters. © 2002 Optical Society of America
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1. INTRODUCTION
Passive mode locking allows for the generation of self-
shaped ultrashort pulses in a laser system. It has been
demonstrated in a number of works that the pulses gen-
erated by mode-locked fiber lasers are solitons.1–4 In ad-
dition to this very important feature, the mode-locked la-
ser is a dissipative nonlinear system that can have very
rich dynamics, including not only the generation of pulses
of accurate shape but also much more complicated behav-
ior. The approach that uses the complex Ginzburg–
Landau equation (CGLE) in relation to passively mode-
locked lasers was pioneered by Haus.5 It is now used
extensively to describe pulse behavior in solid-state or
fiber-based passively mode-locked lasers,6–9 optical para-
metric oscillators,10 free electron laser oscillator,11 etc.
The CGLE has also been used to describe transverse soli-
ton effects in wide-aperture lasers.12–17 The reason is
that the CGLE is the equation of minimum complexity
that nonetheless includes the most important effects that
are present in any active optical system. Various short-
pulse laser designs result in a similar master
equation.18,19 In the case of fast saturable absorbers
with response times much faster than the pulse duration,
the main features of pulse generation can be described by
the cubic–quintic CGLE. The quintic terms in the equa-
tion are essential to ensure that pulses are stable.20

This continuous model takes into account the major
physical effects occurring in a laser cavity, such as disper-
sion, self-phase modulation, spectral filtering, and gain/
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loss (both linear and nonlinear). Some delicate balances
between them give rise to the majority of the effects ob-
served experimentally. On the other hand, we assume
that relaxation times do not enter explicitly into the mas-
ter equation. This is possible when the pulse duration is
much shorter than the relaxation times in the system,
relative to both the gain medium and the saturable ab-
sorber. This condition excludes, for example, lasers that
use a semiconductor Bragg reflector as a saturable
absorber.4,21,22 We also exclude the influence of gain
depletion on pulse generation.22,23 However, the CGLE
allows us to describe a large range of solid-state and fiber
lasers and serves as a basic model in laser theory.

One of the key issues in the theory of passively mode-
locked lasers is the self-starting condition. There are
various approaches to the problem of self-starting.24–26

They depend on the type of laser, and, in particular, on
the type of mode locking. One of the models for self-
starting is the transition from continuous-wave (cw) op-
eration to steady-state mode-locked operation.26 It has
been suggested27 that such a transition occurs through
the modulational instability of cw solutions. One of the
motivations of the present research is to make a detailed
study of this possibility, based on solutions of the complex
Ginzburg–Landau equation. In particular, we need to
know when cw solutions of the CGLE become unstable
and whether the soliton solutions are stable for the same
set of parameters. The crucial question is, are the condi-
tions for stability of cw’s and solitons somehow related?
2002 Optical Society of America
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Of course, the modulation instability is not the only way
of self-starting.24,25 However, a clear understanding of
the self-starting phenomenon requires a careful study of
each model. Hence here we concentrate on the question
raised above.

In particular, we carefully consider both cw and soliton
regimes of passively mode-locked lasers. To be specific,
in studying the stability properties of cw and soliton solu-
tions of the cubic–quintic CGLE, we have found that, al-
though the stability properties of the two are related,
there is no one-to-one correspondence between them.
Modulation instability of the cw’s does not necessarily
lead to pulse generation. Various possibilities of cw evo-
lution are possible, depending on the parameter values of
the laser system. Only at certain values of the param-
eters does modulation instability of a cw solution lead to
the generation of solitons.

In the optical context the cubic–quintic CGLE has the
following form28:

icz 1
D

2
c tt 1 u cu2c 1 nu cu4c

5 idc 1 ieu cu2c 1 ibc tt 1 imu cu4c, (1)

where z is the cavity round-trip number, t is the retarded
time, c is the normalized envelope of the field, D is the
group-velocity dispersion coefficient with D 5 61 de-
pending on whether the group-velocity dispersion is
anomalous or normal, respectively, d is the linear gain–
loss coefficient, ibc tt account for spectral filtering or lin-
ear parabolic gain (b . 0), eu cu2c represents the nonlin-
ear gain (which arises, e.g., from saturable absorption),
the term with m represents, if negative, the saturation of
the nonlinear gain, and the one with n corresponds, also if
negative to the saturation of the nonlinear refractive in-
dex.

An important question is that of the correspondence be-
tween the equation and laser parameters. As we do not
specify a particular type of laser, our theory allows us to
find dimensionless parameters in Eq. (1), where cw and
soliton solutions exist and can be compared. We have
made this comparison over a wide range of the parameter
values. To apply the theory to any particular experimen-
tal case would require certain adjustments. However,
the latter is beyond our aims.

2. STATIONARY SOLUTIONS
Equation (1) has both soliton and cw stationary solutions.
We ignore fronts, sinks, and sources that are beyond our
interest here. To study the interrelation between the
cw’s and solitons, we carry out the following analysis.
We reduce Eq. (1) to a set of ordinary differential equa-
tions (ODEs). Namely, we look for solutions in the form

c ~t, z ! 5 c0~t!exp~2ivz ! 5 a~t!exp@if~t! 2 ivz#,
(2)

where a and f are real functions of t 5 t 2 vz, v is the
pulse inverse velocity, and v is the nonlinear shift of the
propagation constant. Substituting Eq. (2) into Eq. (1),
we obtain an equation for two coupled functions, a and f.
Separating real and imaginary parts, we get the following
set of two ODEs:

Fv 2
D

2
f 82 1 bf 9 1 vf 8Ga 1 2bf 8a8 1

D

2
a9

1 a3 1 na5 5 0,

S 2d 1 bf 82 1
D

2
f 9D a 1 ~Df 8 2 v !a8

2 ba9 2 ea3 2 ma5 5 0, (3)

where each prime denotes a derivative with respect to t.
It can be transformed into

S v 2
D

2
M2 1 bM8 1 vM D a 1 2bMa8 1

D

2
a9

1 a3 1 na5 5 0,

S 2d 1 bM2 1
D

2
M8D a 1 ~DM 2 v !a8

2 ba9 2 ea3 2 ma5 5 0, (4)

where M 5 f 8 is the instantaneous frequency.
Separating derivatives, we obtain

M8 5 2
y~8b2M 1 2M 2 2Dv !

a~4b2 1 1 !

2
4bv 1 4bMv 2 2dD

1 1 4b2

1
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1 1 4b2
1
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1 1 4b2
,

y8 5 M2a 2
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a 2
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2
2~Dn 1 2bm!

1 1 4b2 a5 2
4bv

1 1 4b2 y 2
2Dv

1 1 4b2
Ma,

a8 5 y. (5)

This set contains all stationary and uniformly translating
solutions. The parameters v and v are the eigenvalues
of Eq. (5). Pulse solutions exist only at certain values of
v and v.

If we are only interested in zero-velocity (v 5 0) solu-
tions, Eqs. (5) can be further simplified:
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M8 5
y~8b2M 1 2M !
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2

4bv 2 2dD

1 1 4b2
1
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1 1 4b2
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1 1 4b2
,
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1 1 4b2
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2~D 1 2be!

1 1 4b2
a3

2
2~Dn 1 2bm!

1 1 4b2 a5,

a8 5 y. (6)

This set of three coupled first-order ODEs can be solved
numerically. For localized solutions with correctly cho-
sen v, the amplitude a should go exponentially to zero
outside the region of localization. Only the value of v
plays a role of an eigenvalue in this nonlinear problem.
It is fixed for a given solution, but other solutions have
different values of v unless there is a degeneracy.

3. CONTINUOUS WAVES
Equations (6) have singular points defined by M8 5 0,
y8 5 0, and a8 5 0. The obvious one is at the origin:
a 5 0, M50. Others can be found by solving the polyno-
mial equations that arise after quating the right-hand
sides of Eqs. (6) to zero:

~Dm 2 2bn!a4 1 ~De 2 2b!a2 1 ~Dd 2 2bv! 5 0,

M2 5 2
@~Dv 1 2bd! 1 ~D 1 2be!a2 1 ~Dn 1 2bm!a4#

1 1 4b2 .

(7)

These equations have a free parameter v. The ampli-
tude a is a continuous function of v. There is none, one,
or two singular points (a0 , M0) in each quadrant of the
plane (a, M) for every given v. The locus of the singular
points on the plane (a, M) is shown in Fig. 1(a) for three
sets of equation parameters. As in the rest of the figures,
we are using D 5 1, i.e., we are in the anomalous-
dispersion regime, although all the equations apply to
any regime. The parameter that changes along each
curve is v. The dependence of the amplitude a on v is
shown in Fig. 1(b). The continuous curve in Fig. 1(b) rep-
resents one of the solutions of the biquadratic Eq. (7a),
and the dashed curve represents the other solution.

The singular points define continuous waves. Return-
ing to the analysis of Eqs. (6), we should notice that a tra-
jectory on the plane (a, M) that starts at the origin can
stop at a singular point, and the corresponding solution is
a front. When the trajectory connects two nonzero stable
singular points, the solution is either a sink or a source.
As we already mentioned above, we are not interested in
these solutions here.

It follows from Fig. 1(a) that below some threshold,
there are two different solutions for a for each M. The
minimum and the maximum values of the amplitude a
take place at M 5 0. We refer to these two values of a as
low-amplitude (a 5 a1) and high-amplitude (a 5 a2)
cw’s respectively. For M 5 0 the two cw solutions adopt
the simple form

c ~t,z ! 5 a1,2 exp~2ivz !,

a1,2
2 5

2e 6 Ae2 2 4dm

2m
,

v 5 2na4 2 a2. (8)

Two different values of a for each set of the equation pa-
rameters exist when

e2 . 4dm. (9)

At smaller values of e there are no cw solutions. We
should keep in mind, though, that there is always a trivial
solution a 5 0.

Inequality (9) means that the cubic gain must be strong
enough to compensate the linear and quintic losses. The
condition for the existence of soliton solutions is even
stronger as the cubic gain in addition must compensate
the losses due to the spectral-filtering term. We do not

Fig. 1. (a) Locus of singular points for the set of ODEs (7).
Only the upper-half for positive M is shown. The solid and the
dotted curves correspond to the two solutions of the biquadratic
Eq. 7(a). The equation parameters are written inside the figure.
D, as in the rest of the figures, is taken to be D 5 1. The values
b, m, n, and d are common for all three curves, and e is different.
(b) Parametric dependence of a versus v.
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have an exact criterion for the existence of solitons in ana-
lytic form. Nevertheless, the validity of the above guess
is illustrated in Fig. 2(a), which shows the cw amplitude
a1,2 versus e (dotted curve) and the peak amplitude versus
e for the plain soliton solutions, which from here on we re-
fer to as single-pulse (SP) solitons. Similarly, Fig. 2(b)
shows v versus e for the same solutions. The figure
shows that the threshold for the existence of solitons is
higher than the threshold for the existence of cw’s. As in
the continuous case, there are two soliton solutions for
each e above the threshold.

Our aim here is to investigate the stability of the cw
waves. This can be done analytically in contrast to the
problem of the soliton stability. The latter requires nu-
merical simulations,29 as the soliton solutions in general
can be found only numerically. An exception is the lim-
iting case of the nonlinear Schrödinger equation.30 For

Fig. 2. (a) Cw amplitude (dotted curve) and the peak amplitude
of the plain-soliton solutions (solid curve) versus e. (b) v versus
e for cw’s and the plain-soliton solutions.

Fig. 3. Illustration of the stability for the cw solutions. The
gain changes sign at the stationary values of the amplitude a.
Arrows at the two intervals between the singular points show
whether the amplitude at this interval increases or decreases.
cw’s, simple qualitative estimates can be done on the fol-
lowing basis. For the background state, i.e., c 5 0, to be
stable, we need the condition d , 0. Additionally we
need m , 0 in order for the optical field C to be limited
from above. Then the only positive gain term is the one
with e.

Stability follows from the analysis of the polynomial on
the right-hand side of Eq. (1). As it is shown in Fig. 3,
the value of gain changes sign at the values of cw ampli-
tudes (a1 and a2). When gain is positive (between a1
and a2), the amplitude of the plane wave increases.
When gain is negative (outside of this interval), the am-
plitude of the plane wave decreases. These processes are
illustrated by the arrows in Fig. 3. It follows then that a
cw with the amplitude a1 is unstable, but the cw with the
amplitude a2 and trivial solution a 5 0 are stable. How-
ever, these rough estimates do not take into account ef-
fects of modulational instability. We conclude thus that
the continuous-wave solution with the higher amplitude
a2 has a chance to be stable, but the continuous-wave so-
lution with the lower amplitude a1 is always unstable.

We have found, from numerical simulations, that the
same principle can be applied to the plain soliton solu-
tions, which have two branches (see Fig. 2). Namely, the
soliton solution with the higher amplitude has a chance to
be stable whereas the soliton solution with the lower am-
plitude is always unstable.

4. MODULATION INSTABILITY OF CW
SOLUTIONS
Continuous-wave solutions of Eq. (1) can be written in the
form

C~t, z ! 5 a exp@i~Mt 2 vz !#, (10)

where the variables a, M depend on v, as Eq. (7) states.
Our task here is to study modulation instability of these
cw solutions. For this purpose, we add a small perturba-
tion to solution (10):

C~t, z ! 5 @a exp~iMt ! 1 af~t, z !#exp~2ivz !, (11)

where a is a small parameter and f(t, z) is the perturba-
tion function. Substituting Eq. (11) into Eq. (1) and as-
suming that a is small, we get the linearized evolution
equation for f(t, z):

ifz 1 S D

2
2 ib D ftt 1 ~v 2 id!f 1 ~1 2 ie!

3 @2a2f 1 a2exp~2iMt !f* # 1 ~n 2 im!

3 @3a4 1 2a4exp~2iMt !f* # 5 0, (12)

where the asterisk denotes complex conjugate. This is a
set of linear partial differential equations that can be
solved with the standard technique of separation of vari-
ables.

We are interested in solutions of the form

f~t, z ! 5 h~t, g !exp~ gz !, (13)

where g is a complex eigenvalue. The real part of g is the
perturbation growth rate. For each g, the t dependence
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of h is a periodic function @'exp(2iVt)# with frequency V.
For each Fourier component, Eq. (12) results in

@v 1 i~ g 2 d!# f̃~V!] 2 V2S D

2
2 ib D f̃~V! 1 ~1 2 ie!

3 @2a2 f̃~V! 1 a2 f̃* ~2M 2 V!# 1 ~n 2 im!

3 @3a4 f̃~V! 1 2a4 f̃* ~2M 2 V!# 5 0. (14)

Similarly, we can write the equation for f̃(2M 2 V). The
complex conjugate of this equation is

@v 2 i~ g 2 d!# f̃* ~2M 2 V! 2 ~2M 2 V!2

3 S D

2
1 ib D f̃* ~2M 2 V! 1 ~1 1 ie!

3 @2a2 f̃* ~2M 2 V! 1 a2 f̃~V!# 1 ~n 1 im!

3 @3a4 f̃* ~2M 2 V! 1 2a4 f̃~V!# 5 0. (15)

Equations (14) and (15) are two coupled linear equa-
tions relative to the two independent functions f̃(V) and
f̃* @(2M/a2) 2 V#. We denote them as A1 and A2 . The
two equations can then be written in a matrix form:

F ig 1 C P

P* S 2 igGFA1

A2
G 5 F0

0G , (16)

where

C 5 v 2 id 2 V2S D

2
2 ib D 1 ~1 2 ie!2a2

1 ~n 2 im!3a4,

S 5 C* 2 @~2M !2 2 4MV#S D

2
1 ib D ,

P 5 ~1 2 ie!a2 1 ~n 2 im!2a4. (17)

The existence of nontrivial solutions requires the determi-
nant of the square matrix in Eq. (16) to be zero. This
leads to the dispersion relation

g2 1 ig~S 2 C ! 1 CS 2 uPu2 5 0 (18)

relative to the value of g. When M 5 0, the solution is

Fig. 4. Real part of the eigenvalue g as a function of the pertur-
bation frequency V for the lower-amplitude cw solution. The
values of the parameters are b 5 0.18, d 5 20.1, m
5 2 0.1, n 5 2 0.6, e 5 1 (continuous curve), and e 5 1.5
(dotted curve).
g 5 2Im~C ! 6 AuPu2 2 @Re~C !#2, (19)

where Re(C) and Im(C) denote the real and imaginary
parts of C, respectively.

We have calculated g from Eq. (19) for the following set
of parameters: b 5 0.18, d 5 20.1, m 5 20.1, and n
5 20.6. Figure 4 shows the real part of g versus
V for e 5 1.5 (dotted curve) and e 5 1 (continuous
curve) for the low-amplitude cw solutions with M 5 0.
For these equation parameters they are C(t, z)
5 0.26 exp(i 0.095z) (e 5 1.5) and C(t, z) 5 0.32
3 exp(i0.064z) (e 5 1). The case shown in Fig. 4 can be
considered as a generic example. The real part of the ei-
genvalue g splits at V values lower than a threshold de-
fined by the discriminant of Eq. (18). Whenever the real
part of g is positive for any value of V, the solution is un-

Fig. 5. Maximum growth rate as a function of a. Parameter
values are b 5 0.18, d 5 2 0.1, m 5 2 0.2, n 5 2 0.1,
and e 5 1.5 (upper curve), 1 (middle curve), and 0.5 (lowest
curve). These values of e are the same as in Fig. 1.

Fig. 6. Maximum growth rate, Re( g)max , as a function of e for
the cw solutions with M 5 0. The continuous curve is for the
low-amplitude cw solutions, and the dotted curve is for the high-
amplitude cw solutions.
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stable. As the real part of g is positive starting from zero
until certain finite V, the cw solution is unstable relative
to long-wave perturbations.

Knowing the whole function g(V), we can find the
value of V where g has a maximum real part, i.e., the
point where the growth rate is the highest. Examples
are shown in Fig. 5 for the cw solutions that are presented
in Fig. 1. Comparing the values of a in Fig. 1 with those
in Fig. 5, we can see that the growth rate is positive for all
small-amplitude cw solutions. However, in some cases,
there are regions in the parameter space where cw solu-
tions with the higher amplitude are stable. These re-
sults illustrate more accurately the following general
principle: the cw solutions with the lower values of a are
unstable, whereas those with the higher values have a
chance of being stable. The two limiting cases corre-
spond to M 5 0. Figure 5 shows that the solutions with
the higher values of a are stable at e 5 1.5 and 1,
whereas for e 5 0.5 the whole bunch of cw solutions is
unstable.

When M 5 0, the stability of the cw solutions is deter-
mined from Eq. (19). The growth rate for this instability
is shown in Fig. 6. The lower-amplitude cw solutions are
unstable at every e. The higher-amplitude cw solutions
are unstable for e , 0.77 but stable above this threshold.

As we can see from Fig. 2, the soliton solutions also ex-
ist in pairs: low-amplitude and high-amplitude solitons.
The stability properties of solitons are similar to those of
cw’s. The soliton solutions with small amplitude are al-
ways unstable, whereas the solitons with higher peak am-
plitude have a change to be stable. In this particular
case the stability interval for solitons is [0.39, 1.016].

5. INSTABILITY OF CW VERSUS STABILITY
OF SP SOLITONS
Modulation instability should create a train of pulses out
of cw’s when the latter is unstable. Hence intuitively one
would expect to find stable solitons whenever all the cw
solutions are unstable.26,27 We can see from the results
of this section that there are some grounds for this con-
jecture. However, we have found that this principle is
not completely correct. The following set of figures shows
the relation between the stability of cw’s and the stability
of the upper-branch plain (SP) solitons. We specify SP
solitons as plain (bell-shape) solitons. It is known that
several types of soliton solutions can exist
simultaneously.28 Other soliton solutions with more com-
plicated profiles exist in a smaller region of parameters
and are not considered here.

The regions of stability of SP solitons can be found with
a direct beam-propagation method; we use a split-step
Fourier method. We took advantage of the fact29 that at
the values of parameters where stable solitons exist, prac-
tically any initial condition that is close enough to the
soliton solution converges quickly to the SP soliton. Step
by step, changing slightly the values of the equation pa-
rameters, and using as the initial condition the soliton so-
lution from the previous step, we were able to find the re-
gions of parameters where stable SP solitons exist.
Alternatively the stability can be determined if we first
find [using a shooting technique to solve Eqs. (3)] the sta-
tionary solutions and then use a Crank–Nicholson
method to analyze their stability. In both cases the re-
sults are identical and are both highly computer-time-
consuming tasks. For the aims of the present paper we
partly used the results of our previous work.29 In ana-
lyzing the cw solutions, we then choose the parameters
for which the regions of stable SP solitons were previously
calculated.

In fact, we studied soliton stability in the widest pos-
sible range of parameters. First, let us note that there
are restrictions dictated by the underlying physics of the
problem under consideration. In particular, d must be
negative in order for the background to be stable, m must
also be negative to limit the amplitudes from above, and b
must be positive in order to stabilize the soliton in the fre-
quency domain. These considerations show clearly that e
can be the only gain term (.0) in this model. In a way, it
is responsible for the existence of any structure in this
dissipative system. Hence we can consider e as the most
important parameter that is related to the pump.

It would be a confusing and complicated task to try to
change several parameters at once. So we fixed all pa-
rameters except e and one of the other parameters (either
d, m, or n) that were variable. All these parameters were
changed in the widest possible range, covering the whole
range of stability of SP solitons. The particular choice of
the three fixed parameters was not critical, and we got
qualitatively similar results for any other sets of these pa-
rameters. The results for both SP solitons and cw solu-
tions are presented simultaneously in the following set of
figures.

Figure 7 shows the region in the plane (d, e) where the
upper cw solution is unstable and the region where the
upper SP is stable. We can see clearly the similarity be-
tween the two regions. The shift of the region for stable
solitons to higher values of e is related to having nonzero
b. The shape of this region is similar for any value of b,

Fig. 7. Region (vertically hatched area) in the plane (d, e) where
all the cw solutions are unstable and the region (horizontally
hatched area) where SP solitons are stable.
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but the region where stable pulses exist moves increas-
ingly upward as b increases. Note that both parameters
d and e change in a very wide range of values, namely,
from zero to 21 or 11, respectively. In fact, the range
where e changes covers the whole region of existence for
stable SP solitons. This means that our results are valid
for all those cases where cw and soliton solutions exist.

Figure 8 shows the area in the plane (m, e) where the
cw solutions are unstable and also the region where SP
solitons are stable. The similarity between these two re-
gions is striking, although one is shifted relative to the
other due to the above-mentioned reason. Note that here
the value of b is higher (b 5 0.5) than in Fig. 7. Corre-

Fig. 8. Region (shaded) in the plane (m, e) where cw solutions
are modulationally unstable and the region (dashed) where SP
solitons are stable.

Fig. 9. Region (shaded) in the plane (n, e) where all cw solutions
are modulationally unstable and the region (dashed) where SP
solitons are stable.
spondingly the shift between the two regions is greater in
the e domain. Another slice of the five-dimensional space
of parameters is shown in Fig. 9. This is the (n, e) plane
in the parameter space. The same striking similarity be-
tween the two regions can be noticed. In fact, in the limit
of small b these two regions would almost coincide. The
value of b in these simulations is relatively high so that
the e values differ approximately by a factor of 2. How-
ever, the two regions have a common region of overlap-
ping. Again, we stress here that the range in which the
parameters change in Figs. 8 and 9 is large. It is from
zero to 21 in the case of m and covers both negative and
positive values of n. This shows that the phenomenon we
have found is quite general. It is not related to any spe-
cific choice of parameters.

At the values of the parameters where the two regions
overlap, modulation instability of the cw solutions creates
a train of pulses, as expected. However, if the region of
unstable cw’s is below the region of stable SP solitons, the
cw decays without creating solitons. This example shows
that self-starting of the laser is not always related to
modulation instability of cw’s.

To avoid any confusion, we note that the train of pulses
in the t domain is not related to the round-trip time of the
laser. The latter is not present in our model and is usu-
ally much longer than the distance between the pulses in
the train. For reasons related to the gain depletion
(which we are also ignoring here) only one (or a few) of the
pulses in the train tend to survive. This indeed happens
when gain depletion is explicitly taken into account.23

6. EVOLUTION OF THE UNSTABLE CW
SOLUTIONS
From Figs. 7–9 we can see that essentially there are three
cases we need to study. The three examples of propaga-
tion are shown in the following figures. Our expectations
are fully confirmed by numerical simulations. Figure 10
shows an example of a cw solution slightly perturbed by a
single periodic wave. The initial condition is

C~t, 0! 5 a 1 0.001 cos~Vt !, (20)

where the frequency V is chosen in such a way that its
associated growth rate is the highest, and a is the corre-
sponding value for the lowest-amplitude cw solution.
Only one period T 5 2p/V needs to be simulated. The
equation parameters are b 5 0.18, d 5 20.1, m
5 2 0.2, n 5 20.1, and e 5 0.37. There is no any
stable-pulse solution for this case (let us recall that stable
pulses exist for these values of b, d, n, and m for e in the
interval [0.39, 1.014]), and as Fig. 6 shows, all the cw so-
lutions are also unstable. Nor do any stable periodic so-
lutions exist for these values of the parameters. The per-
turbation grows initially as the cw is modulationally
unstable. However, after the peak evolves into a pulse, it
decays, as there are no stable pulses or periodic solutions
for these values of the equation parameters. Similar be-
havior is observed when a is the corresponding high-
amplitude cw solution.

Another case of cw evolution is shown in Fig. 11. As in
the previous figure, the initial condition is given by Eq.
(20), where a is the lower-amplitude cw solution at e
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5 1.5, and V is the frequency of the perturbation with
the largest growth rate. The initial stage of evolution is
similar to the previous case, i.e., the cw is transformed
into a train of pulses because the lower-amplitude cw is
always unstable. However, either the pulses or periodic
solutions at these values of the parameters are also un-
stable. The final result of the evolution is the transfor-
mation of the train of pulses into the high-amplitude cw ’s
which is the only stable solution.

Figure 12 shows an example of propagation when the
high-amplitude cw is also unstable but the soliton solu-
tion is stable. As a result, the cw solution is transformed
into a train of solitons. In our model we ignore the gain
depletion. When we take it into account, only one or a
few pulses will survive out of the train. Practically, this
would correspond to a repetition rate related to a round-
trip time rather than the periodicity of our model.

We took as the initial input the low-amplitude cw solu-
tion perturbed as Eq. (20) indicates. In this particular
simulation we took V ten times lower than that corre-
sponding to the largest growth rate. In this case each
soliton in the train is well isolated from the others and
can be considered as a single soliton. We have made sev-
eral simulations with different values of V, and the final

Fig. 10. Evolution of the low-amplitude cw solution perturbed
by a weak periodic wave. The perturbation initially grows, but
finally the whole solution vanishes because of the absence of
stable pulses at these values of the equation parameters.

Fig. 11. Evolution of the lower-amplitude cw perturbed by a
weak periodic wave. The perturbation grows, and the cw is
gradually transformed into the higher-amplitude cw solution,
which is the only stable solution for these values of the param-
eters.
result is always the one shown in this figure. In some oc-
casions several pulses can be formed initially. This can
be seen clearly in Fig. 13. However, in the result of their
interaction, only one survives.

Generally, dissipative systems have a multiplicity of so-
lutions, including periodic solutions. This is true for the
CGLE as well as for more complicated systems.31 Com-
petition between the periodic and localized structures31 is
also an important problem in the case of laser systems.
However, to study this competition, we have to take into
account more details about the laser. In particular, we
need to take into account the gain depletion, which is not
included in Eq. (1).

7. CONCLUSIONS
In conclusion, we have studied the phenomenon of modu-
lation instability of cw solutions of the cubic–quintic
CGLE. We have found that low-amplitude cw solutions

Fig. 12. Transformation of an unstable cw solution into a stable
soliton. Parameter values are shown in the figure.

Fig. 13. Same as Fig. 12 but with a periodical perturbation of
different frequency. The period of the perturbation is the length
of the x axis.
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are always unstable. For the high-amplitude cw solution
there are regions of stability and regions of parameters
where the cw solutions are modulationally unstable. We
have also found that there is an indirect relation between
the stability of the soliton solution and the modulation in-
stability of the higher-amplitude cw solutions. However,
there is no one-to-one correspondence between these two
regions. As a result, the evolution of modulationally un-
stable cw’s can be quite complicated. The main conclu-
sion from our work is that the pulse operation of a pas-
sively mode-locked laser is not necessarily related to the
modulation instability of the cw solutions.
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