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Sapphire samples~Al2O3! were implanted with 400-keV ions at a dose of 131016 ions cm22. A
comparison was made between furnace annealing and pulsed laser annealing of the implant
samples. Furnace annealing to 1200 °C, followed by excimer laser anneals, resulted in an increa
of the cathodoluminescence emission intensity of the implanted europium by a factor of;20. This
enhanced intensity is;50 times that of the signal prior to any form annealing treatment. It is
proposed that the laser anneals dissociate Eu related clusters. The Eu 622-nm lifetime reached 1.
ms compared with an original postimplant value of 0.14 ms. ©1994 American Institute of Physics.
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The literature of optical effects resulting from ion beam
implantation of insulators is small although it includes e
amples as diverse as the formation of optical waveguid
waveguide lasers, second-harmonic generation, guided fo
wave mixing to production of car mirrors and sunglasse1

One topic which has received extensive study in recent ye
is the attempt to make Er lasers operating at 1.5mm by direct
implantation of the Er ions.2–4 Independent of the target ma
terial there appear to be a number of problems. The firs
that the radiation damage quenches the photoluminesce
and, hence, lasing action is not possible. Further, in orde
anneal out the damage sites, temperatures as high as 120
are required in, for example, sapphire. Such furnace anne
successfully sharpen the line shape for the Er transition a
increase the excited state lifetime, but as shown by transm
sion electron microscopy, also result in a precipitation of
into either colloids or an oxide phase. Consequently, t
overall luminescence efficiency drops by about a factor
40. Cluster precipitation is most obvious with high Er con
centrations, which is unfortunate since one prefers to
crease the Er doping to enhance the laser action.

The challenge is thus to dissociate the rare earth clus
into an atomically dispersed state and so increase the ove
luminescence efficiency. To this end pulsed laser annea
has been attempted and data are presented here. For ex
mental convenience the selected ion was Eu, rather than
since Eu emits in the red region of the spectrum near 622
and the cathodoluminescence equipment was designed
photomultiplier detection. The system was not easily e
tended into the infrared region for Er signals at 1.54mm. The
change in ion species is not thought to be significant in ter
of the annealing response since the behavior of rare e
ions of comparable ionic radius is unlikely to vary greatl
More importantly, as seen from the data presented here,
changes in intensity of the Eu luminescence with furna
annealing are closely similar to those of the Er implants.2–4

Laser annealing has been widely and successfully
plied to anneal ion implanted semiconductor and metals,5–8

but the literature for insulator targets is very restricted9,10and
Appl. Phys. Lett. 65 (15), 10 October 1994 0003-6951/94/65(1
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has been mainly concerned with laser damage studies.11,12

Formation of metallic colloids, clusters, or precipitate phas
have been reported for many crystalline and glass insula
targets~as reviewed in Ref. 1!. In a recent example with ion
implanted Ag in glass the colloids were successfully disso
ated by pulsed laser annealing.10 There was, therefore, an
expectation that for the rare earth colloids, or precipitate
that a similar dissociation of the clusters might be achieve
The present letter describes the effects of excimer puls
laser annealing on the cathodoluminescence emission spe
of europium implanted Al2O3 samples.

The samples used for the annealing studies were i
planted with 400 keV ions at a dose of 131016 atoms cm22.
The Al2O3 sample were tilted by 7° in order to suppres
channeling. Thermal treatments have been made by two d
tinct approaches. The first approach, using standard tube
naces with temperatures from 100 to 1200 °C, was carri
out on an Al2O3 sample in air for 1 h at each temperature.
Since the problem is concerned with colloid or cluster diss
ciation and formation the speed of cooling may be releva
as dissociated clusters might reform during the cooling cyc
The cooling period was, therefore, relatively fast and rang
from 1 to 10 min, depending on the maximum temperatur
The second approach was to use excimer laser pulses.
irradiation were performed in air with an ArF excimer lase
@wavelength5193 nm and pulse length512 ns full width at
half-maximum~FWHM!#. The ArF excimer laser for the an-
nealing was partially focused on the sample to yield an e
ergy density between 110 and 190 mJ cm22. Energy density
fluctuations are about 5%. Several pulses, from 25 to 36
were accumulated in the various areas of the specimen~i.e.,
233 or 434 mm! at a repetition rate of 1 Hz. The data ar
discussed in terms of three well-defined areas. Data for ar
1 and 2 were for 25 and 100 pulses, respectively, at the 1
mJ cm22 power level whilst region 3 was for 360 pulses a
the higher level of 190 mJ cm22. Comparison between the
three values is a useful first guide but one must note that
annealing may not be linear with the laser pulse power.

Depth analysis of the Eu was made using Rutherfo
18715)/1871/3/$6.00 © 1994 American Institute of Physics
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backscattering spectrometry~RBS! with He ions at 1.89
MeV.

Cathodoluminescence~CL! emission spectra were re
corded between 300 and 800 nm for Al2O3:Eu at 293 K with
different excitation modulation frequencies. The strong
red emission line from the Eu ions occurs at 622 nm a
arises from the transitions from the5D0 to

7F2 levels. Figure
1 displays typical CL spectra taken at room temperature.
broadband emission near 340 nm arises from the sapp
host lattice, the line feature near 694 nm comes from
impurities in the host and the remaining line spectra are p
dominantly from the implanted Eu. Figure 1~a! shows a
spectrum after Eu implantation and Fig. 1~b! is after furnace
annealing at 1000 °C. Figures 1~a! and 1~b! are presented
with different intensity scales and emphasize that after
1000 °C anneal the overall intensity can be increased b
factor of 20 times for the Eu signal but by different amoun
for the Cr impurity and the intrinsic defect emission. Su
variations are a function of the anneal temperature. Ove
the furnace annealing temperatures ranged from 100
1200 °C for the Al2O3 samples and a graph of the Eu 622-n
CL intensity versus temperature is shown in Fig. 2. It
obvious that the form of the furnace anneal curve clos
follows the pattern described earlier for Er implants.3 Al-
though the luminescence intensity for Eu rose by about
times relative to the initial implant signal by annealing

FIG. 1. Examples of the cathodoluminescence spectra from Eu impla
sapphire.~a! after ion implantation and~b! after 1000 °C furnace annealing
The band near 340 nm is from the Al2O3 and the line near 694 nm from C
impurities. The main Eu signal is at 622 nm. The lock-in amplifier modu
tion frequency was 90 Hz.
1872 Appl. Phys. Lett., Vol. 65, No. 15, 10 October 1994
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1000 °C there was a rapid fall by a factor of about 8 for the
higher temperature anneal. This decline is noticeably les
than for the earlier Er examples.

With the Er data3 one saw a steady rise in lifetime with
furnace annealing without any alteration after 1000 °C and a
parallel situation occurred here for the Eu. Lifetime values
were recorded for the 622-nm Eu line as 0.14 ms for the
as-implanted sample. After annealing at 800, 1000, and
1200 °C the lifetimes increased to 0.82, 1.44, and 1.35 ms
respectively.

Laser pulse annealings were applied on the same samp
after annealing at 1200 °C. After the laser annealing the in
tensity of the cathodoluminescence emission lines comin
from Eu31 was increased significantly. For instance, the CL
emission line at 622 nm was increased by a factor of 3.5
whereas the broadband in the blue region~340 nm! was in-
creased by a factor of 3. Laser pulse annealings were applie
to the Al2O3 sample three times. Laser annealing changes th
relative intensity of the intrinsic band, the Cr impurity and
the Eu implanted signals. In each case this is consistent wit
dissociation of Eu complexes which provides isolated Eu
ions that are able to luminesce. The difference in behavio
following the three pulsed laser anneals is typified by Fig. 3
in which the relative intensities of the signals are compared
after each laser treatment with the zeroth-order signal whic
was for the sample after the 1200 °C furnace anneal. Sinc
the laser anneal experiments were initial trials they do no
represent a detailed analysis of the potential of the pulse
laser treatments, however they clearly indicate enhanceme
of the luminescence signals and, additionally, the data o
Figs. 2 and 3 suggest that further enhancement may be po
sible. The most important aspect of the data is that the E
signal increases;20-fold with respect to the final furnace
anneal and;50-fold compared with the original as-
implanted signal.

Subsequent to the furnace anneals laser annealing ma
small changes in the lifetime and the value rose to 1.53 m
after the third treatment.

Rutherford backscattering spectrometry showed that th
europium implanted sapphire had a Eu depth concentratio
with the expected near Gaussian profile. Analysis of the dat

nted
.
r
la-

FIG. 2. The 622-nm intensity following isochronal furnace annealing, each
of 1 h, and subsequent laser treatments with 25 and 100 pulses at a pow
level of 110 mJ cm22 and 360 pulses at 190 mJ cm22.
Can et al.
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gave the projected ion range value of 69 nm, with a FWH
of 50.6 nm. Of particular significance is that there is no n
ticeable diffusion as a result of either the thermal or the la
annealing. This is the same result as reported for the furn
annealed Er implants and the new data emphasize that
annealing has not been accompanied by any long-range
fusion.

The data presented here confirm that furnace annea
can significantly alter the state of dispersion of rare ea
ions after they have been implanted into sapphire. As
earlier Er data the excited state lifetime can be improved,
unfortunately the high-temperature furnace annealing allo
both damage reduction and rare earth precipitation into n
radiative clusters. Destruction of such clusters is feasible

FIG. 3. The relative signal intensities at 340, 622, and 694 nm after 1200
furnace annealing~cycle 0! and the three subsequent laser anneals~1,2,3!.
Appl. Phys. Lett., Vol. 65, No. 15, 10 October 1994
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the rapid thermal heating and quenching which ensues wh
the material is annealed with short laser pulses. The impro
ments exceed those reached by furnace annealing by at l
a factor of 20 and further experiments are in progress
ascertain the maximum enhancement that is possible
should be noted that the data are for relatively high impla
doses of Eu, which favor cluster generation, so this und
lines the favorable result obtained by the laser pulse anne
ing. Overall the data suggest that, contrary to earlier repo
laser action may be achievable using rare earth ion implan
active ions followed by laser pulse annealing.
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