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Stability of three-dimensional self-trapped beams with a dark spot
surrounded by bright rings of varying intensity
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We analytically and numerically examine the stability of three-dimensional self-trapped beams
with a dark spot surrounded by bright rings of varying intensity in a uniform saturable self-focusing
medium. It is shown that the fundamental bound state of the family is stable to a symmetric
perturbation but unstable to an asymmetric perturbation (that breaks the azimuthal symmetry of
the beam, i.e. , transverse instabilities). The higher-order states are also found to display transverse
(modulation) instabilities. The development of the instabilities is shown to lead to the emission of
filaments which spiral away from the center of the dark spot as stable entities.

PACS number(s): 42.65.—k, 42.25.8s, 42.50.Rh

Self-trapping of optical beams in a nonlinear medium
has been a subject of interest and investigated extensively
over the last three decades both experimentally and
theoretically [1—15]. In their pioneering works, Chiao,
Garmire, and Townes [1] and Haus [2] demonstrated that
in a Kerr-law nonlinear medium, a cylindrically symmet-
ric beam with the maximum intensity at the center can
be a three-dimensional self-trapped beam pattern (which
in theory remains unchanged with the propagation dis-
tance). However, in practice it may not be the case, as
this family of bound-state solutions is not stable against
a symmetric perturbation [3]. Above the critical trap-
ping power the beam focuses, and below the critical trap-
ping power the beam difFracts. In a saturable nonlinear
medium (as is often the case in practice), the trapped
beams demonstrate quite diferent stability characteris-
tics. The fundamental state of the family becomes stable
(against both symmetric and asymmetric perturbations)
[9], whereas the higher-order states are unstable against
the perturbation, which breaks the azimuthal symmetry
of the beams (transverse instabilities) [10];and these sta-
bility results, which were predicted from the linear sta-
bility analysis, have been conGrmed by direct numerical
simulations of the nonlinear wave equation [15].

The self-trapped beam patterns discovered in Refs.
[1,2] are not the only family of trapped light patterns
[with a linear polarization in the z or y direction, which
are approximations to the hybrid trapped light patterns
(HEi ) resulting &om Maxwell's equations]. There ac-
tually exists another family of self-trapped light pattern
characterized by a dark spot surrounded by bright rings
of varying intensity (called TE patterns) first reported in
Ref. [16] for Kerr-law nonlinearity and late in Ref. [17]
for a saturable nonlinearity. Similar to the trapped light
patterns with maximum intensity at the center, in the
Kerr-law medium this family of TE self-trapped light pat-
terns is unstable against a symmetric perturbation [18];
the beam focuses or difFracts when the power is greater
or smaller than the trapping power. In a saturable non-
linear medium, the fundamental state of this TE family

was shown to be stable against symmetric perturbation,
based on the optical force argument [17]. However, the
question of the stability of this fundamental state against
the perturbation that breaks the symmetry of the beam
(transverse stability) and the stability of higher-order
states has been left unaddressed.

Here, we examine the stability (including the trans-
verse or modulation stability) of the TE family of the
self-trapped beams both by linear stability analysis and
by direct numerical simulations on the wave equation.
Our linear stability analysis shows that the fundamen-
tal bound state of this TE family of self-trapped beams
is stable against a symmetric perturbation, conBrming
the work of Ref. [17]; however, it also reveals that this
fundamental bound state is unstable against asymmetric
perturbation that breaks the azimuthal symmetry of the
beam. The higher-order states of the family are found
to display transverse instabilities as well. And all the re-
sults obtained from the linear stability analysis are cor-
roborated by direct numerical simulations which unveil
nonlinear dynamics of various evolution patterns of spi-
ralling Glaments emitted from perturbed bound states.

The propagation of a light beam in a uniform nonlin-
ear medium follows the vector wave equation [18] which
normally involves three Beld components. One special
case is when there is only one azimuthal Geld component
concerned. The vector wave equation then reduces to the
scalar wave equation

i2p + 7'te4, ———(p —Ic no)e4, + k An (le4, l )e4,
Oz

upon invoking the slowly varying approximation with
e~ ——E4, exp( —iPz), where k is the wave number in free
space, no is the linear refractive index, and the non-
linear refractive index, without loss of generality, takes
the two-level model b,n = non&leal I[ + (nonzl stl )I
(n, t —no)] with nz the nonlinear coefficient and n, t the
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maximum re&active index in the presence of nonlinear-
ity. In a dimensionless form, g = eygnpn2/(n, I —np),
Z = zk (n, I —np) /2P, and R = rk gn, I —np2, Eq. (1)
reads

+&T@—,—q g+,@=0,'I

the fundamental bound state the eigenvalues b are either

real or imaginary and the variational principle can be
applied for obtaining the largest value h2 of Eq. (4b),

(nlL»u)
b = max —(ulLpi u)

where p2 = (P /k —np)/(n, I —np) and VT
(1/R)8(RB/BR)/BR + (1/R )8 /BgP . By setting
8$/BZ = 0 and 82$/84t2 = 0, within 0& p ( 1, Eq.
(2) is shown to admit a family of cylindrically symmet-
ric bound-state solutions (identified by n = 1, 2, 3, . . .),
the nth of which is characterized by a dark spot [i.e. ,

$(0, Q) = 0] surrounded by n bright rings [17]. The power
[defined as P = f le~i dS = (2Ir/k npn2) f Q RdR] car-
ried by each bound state increases with increasing n.
For a fixed n, P increases with increasing p2, as shown
in Fig. 1(a) for the fundamental bound state, where

P, = 15.38Ir/k npn2 is the critical trapping power for
the Kerr-law nonlinearity.

To investigate the stability of a bound state g„,we

seek a perturbed solution of the form

Q = Q„+(u+ iv) exp(6Z),

which substituted into Eq. (2) leads to

8u = —Lo„v, bv = Ii„u (4)
upon linearization, where Ip„——V'T 1/R p+—Q„j(1—+
g2) and Li„——Ip„+2@2/(1+/„). Note that if (6, u, v)
is a solution to Eq. (4a), —6, u, v are the solutions too.
In terms of u alone, the linearized equation (4a) reads

Lp„Li„u= -6 u. (4b)
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FIG. l. (a) Dependence of trapping power P (right scale) of
the n = 1 bound state of the YE family of self-trapped beams
on p and values of At and Aa (left scale). (b) Dependence of
the I,romth rates b of the n = 1 bound state on p .

It can be shown that all the solutions, with 6 g 0, to Eq.
(4) are orthogonal to g„(since6(ulg„)= —(Lp„vl@„)=

(vlLp„g„—) = 0 where (filf2) = f fif2dS) So far a.s
the solutions with h g 0 are concerned, Eq. (4) needs
to be solved only in the subspace orthogonal to g„.In
this subspace, the inverse operator Lp„exists, and for
the fundamental bound state the operator Lp„(Lp„)is
negative-definite [because all the eigenvalues of Lpi or

Lpi are negative, whereas Lp (n ) 1) admit positive
eigenvalues and are not negative-definite]. Therefore, for

where the denominator —(ulLpi u) is a positive quantity
ensured by the negative-definiteness of Lpy The value
on the numerator of Eq. (5), G = (ulLiiu), determines
whether or not there exists an exponential growth 6 ) 0
from a perturbation for the fundamental bound state. If
G ) 0 real 6 ) 0 exists, implying that the fundamen-
tal bound state is unstable, and G ( 0 means that 6
is imaginary and no exponential growing results from a
perturbation.

From the method of indeterminate Lagrange multipli-
ers [9] it can be shown that maximization of the quantity
(ulLiiu) in Eq. (5) is equivalent to solve the equation

Liif = &f+ qadi (6)

for the largest eigenvalue A, which together with con-
stant q is determined by the conditions of orthogonality

(f~pi) = 0 and normalization (flf) = l. Expanding
f(= P iti f ) and Qi(= P ic f ) of Eq. (6)
in the complete set of eigenfunctions f of the operator
L,ii gives rise to f = q P i c f /(A —A). This ex-
pansion f, substituted into the orthogonality condition

(fi/i) = 0, leads to an equation for determining A,

qg(A) = q ) = 0,
m=1

(7)

where q = Q when A = A for asymmetric (P dependent)
eigenfunctions. An analysis of symmetric eigenfunctions
shows that Lqq admits only one positive eigenvalue Aq

[see Fig. 1(a) for Ai vs 7] within 0 & p ( 1. The largest
A, for the symmetric f (or u) must lie between

A~ and the largest negative eigenvalue of the symmetric
eigenfunction (since (filgi) g 0 and f g fi or A g Ai).
Equation (7) indicates that A, ) 0 when g(0) & 0 and
A, & 0 when g(0) ) 0, and this g(0) is related to the
power by

where the relation L»(Bvgi/Bp ) = gi, obtained from
differentiating the equation Lpigi ——0, has been used
in the derivation. From Fig. 1(a) it is seen that within
Q & p & 1 dP/dp2 ) 0, leading to g(Q) ) 0 or A, & 0,
i.e., no real b exists for a symmetric perturbation and
in a saturable nonlinear medium the fundamental bound
state vPi is stable against the symmetric perturbation.

Apart &om the symmetric eigenfunctions, the operator
Lii also admits asymmetric eigenvalue solutions (orthog-
onal to g„),and the largest eigenvalue A2 ——A, (& Ai)
of the asymmetric eigenfunctions is found to be pos-

g(0) = ). = (4 IL y )
A Bp

npn2 dP
8)

4Ir(n2 n2) d~2 '
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FIG. 2. Dynamical evolution of the funda-
mental bound state for 7 =0.5 (a) at Z = 0,
(b) at Z = 40, and (c) at Z = 50.

itive too [see Fig. 1(a) for A2 = A, vs p'].
means for an asymmetric (+dependent) perturbation,
the largest quantity (u]Iiiu) of Eq. (5) [or the largest
eigenvalue of Eq. (6)] can be greater than zero, and
real b exists. In other words, the fundamental bound
state is unstable against asymmetric perturbations. This
prediction agYees with the analysis of direct numerical
solution to the linearized equation (4a). Figure 1(b)
shows the growth rate of the asymmetric perturbations
u = U(r)cosmic and v = V(r)cosmic for the n = 1 state.
Over 0 ( p2 & 0.88, m = 2, asymmetric perturbation
dominates, whereas m = 1 ("snake-type" [19]) instabil-

ity prevails when p & 0.88. The dashed curves shown in

Fig. 1(b) are the growth rates predicted by the approxi-
mate analytical expression

- i/2

(9)
)

where Q„i= f"'+' rQgzdr/ f"'+' rg2dr with Q = g or

r, and r~ is the jth zero of the nth bound state. This
approximation, as in the case of the self-trapped beams
with the maximum intensity at the center [15], gives a
reliable evaluation of the growth rate over a wide range
of p~ (from p2 = 0 up to pz = 06 for m = 2 and up to

= 0.9 for m = 1).
To verify the prediction of the stability characteristics

obtained &om the linear stability analysis, we conduct
numerical simulations of Eq. (2). Figure 2 illustrates
the nonlinear dynamics of the fundamental bound state
(at p = 0.5) evolving from the symmetric ring struc-

ture with the zero intensity at the center to two filaments

which spiral away from the center of the initial state with

the propagation distance, agreeing with the linear stabil-

ity analysis of Fig. 1(b) that predicts that the m = 2

growth mode predominates at p2 = 0.5. In the numeri-

cal simulations a random noise is implanted in the initial

input (g(z, y, 0) = Q„[1+F(z, y)] with the mean value

(I') = 0 and the variance (]I']2) = 0.0001}. Without a
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FIG. 3. Dependence of the growth rates b of the n = 2
bound state on y .

random noise, the evolution of the beam would follow the
same patterns, although at a longer distance.

The analysis for the n = 1 state above applies to the
other higher-order bound states, and shows that all the
higher-order states display transverse instabilities as well.
The difference is that the nonlinear dynamics of the beam
evolution becomes more and more complicated with in-

creasing order n. Figure 3 gives the growth rates of the
first higher-order (n = 2) state vs p2. The field profiles
of the m = 1 and 2 growth modes (nearly) coincide with
the inner ring field profile of the bound state, and thus
they are responsible for the instability development of the
inner ring. This is shown in Fig. 4 where two filaments
develop kom the inner symmetric ring, consistent with
the prediction of Fig. 3(a) that the m = 2 growth mode
dominates at p = 0.2. On the other hand, the field
profiles of m = 3, 4, 5, 6, 7 growth modes locate at the
outer ring Geld profile of the n = 2 bound state and the
growth mode with the largest growth rate among them
mainly contributes to the instability development of the
outer ring. This is demonstrated in Fig. 3(b) where the
m = 6 growth mode with the largest growth rate (below
p2 ( 0.35) dominates the instability development, lead-

ing to the six filaments (developed from the outer ring)
in Fig. 4 at p = 0.2. With increasing n, more filaments
result, and in general for a fixed n and p the number
of filaments developed per ring increases with increasing
ring radius.

Filaments develop from transverse instabilities. Then
what are these filaments? We believe that each of these
filaments is a quasi-self-trapped beam pattern with max-
imum intensity at the center, as discussed in Ref. [9]. In
the presence of two or more filaments, the location of fila-

ments will vary with the propagation distance, as a result
of the presence of the interaction force among filaments

(see Figs. 2 and 4), whereas one filament present alone
will stay there without changing its location. The greater
the number of Glaments, the more complicated the result-

ing interaction. Take the simplest case of the presence of
two filaments in Fig. 2. The interaction force between the
filaments pushes the filaments spiralling away kom the
center (of the bound state), and they distance themselves
until they reach the equilibrium state of the individual

(b)

FIG. 4. Dynamical evolution of the first higher-order

bound state for p =0.2 (a) at Z = 0, and (b) at Z = 50.
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filament (when they are far separated and the interaction
between the filaments becomes negligible). A similar de-
velopment occurs for higher-order states (Fig. 4) where
filaments spiral away from the dark spot with increasing
distance and finally reach the equilibrium state of the in-
dividual filament at a longer distance. The larger the n,
the longer the distance required for more filaments to be
separated.

In conclusion, the stability characteristics of the self-

trapped beam with a dark spot surrounded by rings of
varying intensity are examined analytically and numeri-
cally. We show that the fundamental bound state of the
family is stable against symmetric perturbation but un-

stable against an asymmetric perturbation. The higher-
order states are also found to display transverse (modula-
tion) instabilities. The development of transverse insta-
bilities is shown to lead to the emission of filaments which
spiral away from the dark spot and move toward the equi-
librium state of the three-dimensional self-trapped beam
with maximum intensity at the center.
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