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41092 Sevilla, Spain 

 
 
 
 

Summary 
 

1.  Comparative analyses are used to address the key question of what makes a species more prone 
to extinction by exploring the links between vulnerability and intrinsic species’ traits and ⁄ or extrin- 
sic factors. This approach requires comprehensive species data but information is rarely available 
for all species of interest. As a result comparative analyses often rely on subsets of relatively few 
species that are assumed to be representative samples of the overall studied group. 
2.  Our  study  challenges this assumption and  quantifies  the taxonomic,  spatial,  and  data  type 
biases associated with the quantity  of data available for 5415 mammalian  species using the freely 
available life-history database PanTHERIA. 
3.  Moreover,  we explore how existing biases influence results of comparative analyses of extinc- 
tion risk by using subsets of data that attempt to correct for detected biases. In particular, we focus 
on links between four species’ traits  commonly  linked to vulnerability  (distribution range area, 
adult body mass, population density and gestation length) and conduct univariate  and multivari- 
ate analyses to understand how biases affect model predictions. 
4.  Our results show important biases in data availability with c.22% of mammals completely lack- 
ing data.  Missing data,  which appear  to be not missing at random,  occur frequently  in all traits 
(14–99% of cases missing). Data  availability is explained by intrinsic traits, with larger mammals 
occupying bigger range areas being the best studied. Importantly, we find that existing biases affect 
the results of comparative analyses by overestimating  the risk of extinction and changing which 
traits are identified as important predictors. 
5.  Our results raise concerns over our ability to draw general conclusions regarding what makes a 
species more prone to extinction. Missing data represent a prevalent problem in comparative anal- 
yses, and unfortunately, because data are not missing at random,  conventional  approaches to fill 
data  gaps, are not valid or present  important challenges. These results show the importance  of 
making appropriate inferences from comparative analyses by focusing on the subset of species for 
which data are available. Ultimately, addressing the data bias problem requires greater investment 
in data collection and dissemination,  as well as the development of methodological approaches to 
effectively correct existing biases. 
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Introduction 
 

An important priority  for conservation biology is to under- 
stand what makes a species or population more likely to 
become  extinct.  A popular  and  appealing  answer  is based 
on comparative analyses that explore the links between spe- 
cies vulnerability  to extinction  and  intrinsic  ecological and 
life-history   species’   traits   (Purvis   et al.  2000;  Fisher   & 
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Owens 2004; Cardillo  et al. 2008; Fritz, Bininda-Emonds & 
Purvis 2009; Pinsky et al. 2011) or extrinsic factors (Kerr & 
Currie 1995; Forester  & Machlis 1996; Cardillo et al. 2004). 
This  approach requires  large  databases  describing  species 
traits (or extrinsic factors) in a format suitable for compara- 
tive analyses. Compiling such databases takes considerable 
effort from multiple dedicated researchers, who ideally make 
their complete databases publicly available allowing future 
research (Jones et al. 2009). However, any efforts to gather 
information  are  limited  by  the  fact  that   data   are  not 
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available for all species in all locations,  something  that  has 
been previously recognized by other authors  (Fisher, Blom- 
berg & Owens 2003; Luck  2007; Nakagawa & Freckleton 
2008; Matthews  et al. 2011). As a result, gathered  data  rep- 
resent  only a subset  of species and  locations,  which tradi- 
tional comparative analyses implicitly assume are a 
representative  sample of the taxon or group of interest (but 
see Matthews et al. 2011). Our study challenges this assump- 
tion  testing  the  hypothesis  that  studied  species, those  for 
which data  are available,  are not  a random  sample  of the 
global biodiversity and that this bias affects results from 
comparative studies.  In particular, we address  three objec- 
tives: (i) to describe existing biases associated with the num- 
ber and type of data available in a mammalian  comparative 
data  set; (ii) to test the hypothesis  that  life-history, ecologi- 
cal and behavioural traits are associated with greater data 
availability, because some traits can facilitate, or complicate, 
research  and  make species more or less appealing  as study 
subjects  (Matthews   et al.  2011);  and   (iii)  to  investigate 
whether the existing biases affect the results and conclusions 
of comparative  analyses linking intrinsic species’ traits  and 
vulnerability  to extinction.  Specifically, we compare  results 
from standard phylogenetically  informed  comparative anal- 
yses based on different subsets of species, some of which 
attempt  to control biases. 

Currently  available tools for comparative analyses can be 
broadly classified into phylogenetic and non-phylogenetic 
regressions  (Bielby et al.  2010). Phylogenetic  methods  are 
more commonly used and include regressions using phylo- 
genetic independent contrasts  (Felsenstein  1985), a popular 
approach despite its unrealistic assumptions about Brownian 
trait evolution (Blomberg, Garland & Ives 2003), and gener- 
alized  regressions,  such  as  phylogenetic  generalized  least 
square models (PGLSs, Martins  & Hansen 1997), which 
provide a flexible alternative  with fewer assumptions. Non- 
phylogenetic   methods   include  regression   trees  (Breiman 
1984) that have fewer data requirements  but can be unstable 
and  fail to  account  for  phylogenetic  relationships   (Bielby 
et al. 2010). All of these tools are limited by data availability 
because they generally require complete data  for all predic- 
tors. Therefore, exploring patterns with multiple predictors 
requires  either interpolating missing data,  which may 
introduce  biases if data  are not missed at random  (Little & 
Rubin 2002), or eliminating all species with any missing data, 
which can bias estimates and reduces the sample size 
considerably (Nakagawa & Freckleton 2008). For example, a 
well-cited study by Cardillo et al. (2006) drew inferences from 
<20% of the extant species in some analyses, while analyses 
for this study  were in some cases limited to <12% of the 
species of interest. If those species with available data are not 
a random sample, conclusions may not apply to the broad 
group of interest and inferences need to be made carefully. 

In recent years, many authors  have contributed to develop 
large databases  suitable for comparative analyses, which 
describe life-history traits in diverse taxa including birds, 
mammals,   amphibians,  fish  and  angiosperms   (Froese   & 
Pauly 2000; Sekercioglu, Daily & Ehrlich 2004; Bielby et al. 

2008; Sodhi et al. 2008; Jones et al. 2009). For this study, we 
decided to focus on mammals for several reasons. First, 
mammals are arguably the best-studied group with many 
species of conservation, economic  and  social interest.  Sec- 
ond,  the links between species traits  and vulnerability  have 
been extensively investigated in mammals with multiple com- 
parative  studies published showing how traits such as adult 
body mass, distribution range area, gestation length and 
population density are linked to vulnerability  to extinction 
(Purvis et al. 2000; Fagan et al. 2001; Brashares 2003; Cardillo 
2003; Cardillo et al. 2004, 2005, 2006, 2008; Davidson  et al. 
2009; Fritz, Bininda-Emonds & Purvis 2009). Finally, we had 
free online access (http://www.utheria.org/) to a large mam- 
malian life-history data set, PanTHERIA (Jones et al. 2009), 
which was also used in several recent  comparative  studies 
(e.g.,  Bininda-Emonds  et al.  2007;  Cardillo   et al.  2008; 
Davies et al. 2008; Fritz, Bininda-Emonds & Purvis 2009). 

In this study,  we show that  species’ ecology, life history 
and morphology explain variation in the quantity of data col- 
lected. Data  appear  to be not missing at random, and thus 
applying imputations techniques to fill data gaps may be 
difficult. Moreover,  existing biases affect estimates obtained 
from comparative analyses suggesting the predictive ability 
of  currently  used  models  may  be  limited.  Although   our 
results  are  limited  to  mammalian  species, the  existence of 
data biases that can affect comparative  analyses is likely 
common to other taxa. Overall, these findings highlight the 
importance of explicitly considering data biases in compara- 
tive analyses and ultimately, the need for gathering and 
publishing   basic  natural   history   data   even  if  currently 
deemed ‘old-fashion’. 
 
 
Materials and methods 
 
DA T A B A S E  
 
PanTHERIA is comprised of two files: the median data set and the 
raw data file. The median data set includes an entry for each of the 
5415 mammalian species recognized by the Wilson & Reeder’s (2005) 
taxonomy  with calculated median values for 30 variables describing 
morphology, development,  reproduction, ecology and  spatial  data 
(Jones et al. 2009). These median values were calculated from a vary- 
ing number  of estimates  gathered  from  the literature  (Jones  et al. 
2009). The raw data file includes these individual literature estimates, 
which we used to estimate  the total  number  and  the type of data 
available for each mammalian  species. Because we expect entries in 
the raw data file to represent a reasonably random sample of the liter- 
ature,  we equate  more  data  entries with more  available  published 
data. Certainly this relationship is likely not exact because some 
published sources are easier to access than others and, as Jones et al. 
(2009) discuss, the database  may include some duplicate entries. 
However, we assume any bias associated with finding data in the 
literature  and duplicate  entries is minor  compared  with the bias in 
data collection and publication. 

In the raw data files, species names were tracked onto the Wilson 
& Reeder mammalian taxonomy  (2005) based on the synonyms file 
provided by Jones et al. (2009). The final file includes all 5415 extant 
mammalian  species, but 1211 species have zero data  entries (i.e. no 
literature records were available for those species). 

http://www.utheria.org/)�
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A RE T HE R E B I A S E S I N D A T A A V A I LA B I L I T Y ?  
 

Taxonomic and phylogenetic bias 
 

Phylogenies capture  the evolutionary history  of a group  of species 
better  than  taxonomy, but generally there is also more uncertainty 
associated with phylogenies because of unresolved or inconsistent 
relationships  among taxa. For that reason, we explored the potential 
for biases, that is, related species having greater similarity in the total 
number  of data  entries than expected by chance, using both taxon- 
omy, as defined by Wilson & Reeder (2005), and phylogeny, based on 
the best date estimates of the mammalian  supertree (Fritz, Bininda- 
Emonds & Purvis 2009). Because tip branches in the phylogeny were 
not fully resolved, we generated 10 trees with randomly  resolved 
polytomies using the procedure multi2di (package ape in R, Develop- 
ment  Core  Team 2011). Parameter estimates  were identical  for all 
trees indicating that how polytomies were resolved did not influence 
results. 

We used nonparametric Kruskal–Wallis tests to compare data 
counts among orders, families and genera. We addressed the question 
of phylogenetic bias using the parameter k (Pagel 1999a), which char- 
acterizes  the phylogenetic  correlation  in the total  number  of data 
entries available  per species (log-transformed). We used the proce- 
dures corpagel (package  ape in R) and  gls (nlme package  in R) to 
define an intercept-only model with data availability as the dependent 
variable.  Following  Freckleton, Harvey  & Pagel (2002), we com- 
pared log likelihood estimates to determine whether the estimate of k 
was significantly different from 0 (0 indicates no phylogenetic corre- 
lation in the data). 

 

 
Other biases 

 
To assess biases in the type of data, we grouped the original 25 vari- 
ables listed by the raw data file into five data groups: Ecology, Mor- 
phology,  Development,  Reproduction and  Spatial  (Table S1 in 
Supporting Information),  and  compared   the  average  number  of 
entries per variable per species among groups. We explored biases in 
data  availability  related to threat  category using the 2008 Red List 
classification   (International  Union   for  Conservation  of  Nature 
2010). Threat classification was available for 5288 species in our data 
base, including 731 listed as Data  Deficient. Finally, to explore spa- 
tial biases, we obtained  global distribution maps of terrestrial  mam- 
mals from the IUCN  spatial database  (International Union for 
Conservation of Nature  2010). We used data  from the 4847 species 
recognized by Wilson & Reeder (2005) and with range areas defined 
as presence ‘extant’ or ‘probably extant’. Maps were projected in the 
cylindrical  equal  area  projection   and  onto  a  grid  equivalent  to 
2° · 2° near the equator  (Hurlbert & Jetz 2007). For  each grid cell, 
we calculated the following: species richness, as the total number of 
distinct species’ ranges overlapping any area of the cell; data richness, 
as the mean number  of data  entries per species occupying the cell; 
and the coefficient of variation  in the number of data entries among 
all species occupying the cell. Data  richness reflects the average data 
availability  expected for any species occupying  a cell, whereas the 
coefficient of variation indicates the difference in data availability 
among species within the same cell. 

 
 

D O S P E CI E S T RA I T S E XP LA IN T H E B IA S I N D A T A 

A V A I LA B I L I T Y ?  

To explore if intrinsic species traits  could explain data  availability, 
we used 28 variables describing life-history, behavioural and ecologi- 

cal traits, and an estimate of distribution range area provided in the 
median data set (Jones et al. 2009). Analysing these data presented us 
with a series of challenges. First, because of abundant missing data in 
the 29 variables considered,  using AIC model selection approaches 
was not possible as models based on different data sets are not com- 
parable (Burnham & Anderson 2002). Therefore, we initially defined 
univariate  models to explore relationships between data availability 
and  species’ traits  using all available  data  for each trait.  We then 
defined a multivariate model based on a reduced data set, which 
included  only  data-rich  (<950  missing  cases.  Table 1) and  non- 
highly  correlated   variables  to  reduce  the  effects  of  collinearity 
(r < 0Æ80,  Variance   Inflation   Factor,  VIF < 5.  Table S2).  The 
reduced data set includes 10 quantitative and three categorical vari- 
ables that describe intrinsic species traits but represents only a limited 
number of species (as many data are missing). Thus, multivariate 
results may not reflect patterns common to all mammals. 

A second challenge was whether,  and  how, to incorporate non- 
independence  of species data  because of evolutionary relationships 
(McNab  2003; Purvis 2008). We followed three different approaches 
using PGLSs, taxonomically corrected generalized linear mixed mod- 
els (GLMMs) and non-corrected regression trees. Phylogenetic cor- 
rection is generally preferable to taxonomic  correction  (if a good 
phylogeny exists); however, our estimate of data availability best fits 
a negative binomial distribution which, to our knowledge, cannot be 
modelled using frequentist  phylogenetic models. Thus, we defined 
PGLSs  log-transforming our dependent  variable  (using procedures 
corpagel and gls in R). However, analyses based on the transformed 
dependent variables are problematic (O’Hara & Kotze 2010), thus we 
also  fitted  GLMMs including  taxonomic   random   effects  (nested 
effects of order, family and genus) with a negative binomial distribu- 
tion (in sas 9Æ2 SAS Institute Inc., Cary, NC, USA). We fitted univari- 
ate  and   multivariate   PGLSs   and   GLMMs.  Finally,   using  the 
complete data set, we built a regression tree with the procedure rpart 
(package rpart in R), log-transforming the number of data available 
to meet the normality  requirement. Missing data were handled with 
surrogate splits as described by Breiman (1984). The tree was pruned 
using 40 sets of 10-fold cross-validations to produce an optimal tree 
based on the modal number of splits corresponding to the 1 SE rule 
(Breiman 1984; De’ath & Fabricius  2000). By comparing  the results 
from all three alternative,  imperfect methods, we aimed to assess the 
overall agreement and ideally identify some general (non-method 
dependent) patterns to explain data availability. 
 
 
H OW D O D A T A B I A S E S A F FE C T CO MP A R AT IV E 

A NA LY S E S ?  

To understand how data limitations affect our understanding of the 
links between intrinsic species traits and vulnerability  to extinction, 
we explored  how  results  from  a standard comparative approach, 
PGLSs, differed among distinct data sets. For simplicity, we selected 
a priori four species’ traits that have been consistently linked to vul- 
nerability to extinction in mammals: adult body mass, distribution 
range area, gestation length and population density (see Introduction 
for a reference list). We defined a group  including  all species with 
estimates available for all four traits in the median data set of 
PanTHERIA (N = 636). This  group  represents  the  total  sample 
available for multivariate regression analyses based on the four traits. 
We compared  this group with two other data sets: the PanTHERIA 
data set, which includes all data available for each trait (see Table 1 
for number of species per trait), and an imputed data set, with data 
on all four traits for 5016 mammalian  species. The imputed data set 
was  populated using  the  phylogenetic  data  imputation technique 
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Table 1. Coefficient estimates for univariate GLMMs and phylogenetic generalized least square models (PGLSs) describing the number of data 
entries available  in the mammalian  database  PanTHERIA as a function  of intrinsic species traits.  N indicates number  (and percentage)  of 
species with available data for each trait from the total 5415 mammals studied 

 
Coefficient (SE) 

 
Variable  N (%) GLMMs  PGLSs 

 
 

Activity cycle 
Nocturnal 

 

1657 (30Æ6) 
732 

 

 
– 

 

 
– 

Crepuscular, cathemeral 486 0Æ57 (0Æ067)** 0Æ45 (0Æ071)** 
Diurnal 439 0Æ32 (0Æ081)** 0Æ13 (0Æ094) 
Terrestriality 2634 (48Æ6)   
Fossorial 1144 – – 
Above-ground  1490 )0Æ29 (0Æ062)** 0Æ06 (0Æ075) 
Trophic level 2159 (39Æ9)   
Herbivore 781 – – 
Omnivore 739 0Æ20 (0Æ058)** 0Æ23 (0Æ061)** 
Carnivore  639 )0Æ29 (0Æ069)** )0Æ26 (0Æ088)* 
Neonate body massa 1083 (20Æ0) 0Æ09 (0Æ027)** 0Æ13 (0Æ031)** 
Weanling body massa 487 (9Æ0) 0Æ13 (0Æ012)** 0Æ09 (0Æ045)† 
Adult body massa 3539 (65Æ4) 0Æ30 (0Æ020)** 0Æ27 (0Æ036)** 
Neonate head–body lengtha 226 (4Æ2) 0Æ24 (0Æ090)* 0Æ31 (0Æ123)* 
Weanling head–body lengtha 47 (0Æ9) 0Æ40 (0Æ222) 0Æ28 (0Æ264) 
Adult head–body lengtha 1939 (35Æ8) 0Æ64 (0Æ065)** 0Æ70 (0Æ123)** 
Adult forearm lengtha 903 (16Æ7) 1Æ80 (0Æ283)** 1Æ29 (0Æ300)** 
Teat numbera 639 (11Æ8) 0Æ22 (0Æ224) 0Æ57 (0Æ243)* 
Age at eye openinga 474 (8Æ8) )0Æ01 (0Æ028) )0Æ22 (0Æ139) 
Weaning agea 1161 (21Æ4) 0Æ21 (0Æ057)** )0Æ06 (0Æ084) 
Sexual maturity agea 1049 (19Æ4) 0Æ22(0Æ050)** )0Æ06 (0Æ082) 
Age at first birtha 445 (8Æ2) 0Æ22 (0Æ073)* 0Æ15 (0Æ114) 
Dispersal agea 143 (2Æ6) 0Æ09 (0Æ116) 0Æ06 (0Æ138) 
Maximum longevitya 1011 (18Æ7) 0Æ42 (0Æ068)** 0Æ81 (0Æ102)** 
Gestation lengtha 1359 (25Æ1) 0Æ19 (0Æ058)* 0Æ07 (0Æ115) 
Interbirth intervala 695 (12Æ8) 0Æ18 (0Æ066)* 0Æ07 (0Æ111) 
Litter sizea 2498 (46Æ1) 0Æ08 (0Æ091) 0Æ93 (0Æ122)** 
Litters per yeara 893 (16Æ5) 0Æ10 (0Æ122) 0Æ40 (0Æ154)* 
Diet breadth 2159 (39Æ9) 0Æ16 (0Æ015)** 0Æ14 (0Æ014)** 
Habitat breadth 2722 (50Æ3) 0Æ30 (0Æ048)** 0Æ30 (0Æ045)** 
Group sizea 388 (7Æ2) 0Æ12 (0Æ044)* 0Æ19 (0Æ050)** 
Social group sizea 705 (13Æ0) 0Æ42 (0Æ072)** 0Æ46 (0Æ089)** 
Population densitya 954 (17Æ6) )0Æ09 (0Æ021)** 0Æ02 (0Æ034) 
Home rangea 705 (13Æ0) 0Æ07 (0Æ018)** 0Æ11 (0Æ029)** 
Home range individuala 624 (11Æ5) 0Æ07 (0Æ019)** 0Æ10 (0Æ030)** 
Distribution range areaa 4664 (86Æ1) 0Æ64 (0Æ016)** 0Æ22 (0Æ006)** 
†P < 0Æ10, *P < 0Æ05, **P < 0Æ001. 
aLog10-transformed. 

 
 

implemented   in  the  program   phylopars  (Bruggeman,   Heringa   & 
Brandt  2009). We used available data  from PanTHERIA assuming 
allometric relationship among traits and the phylogeny supertree 
mentioned earlier (Fritz, Bininda-Emonds & Purvis 2009). The 
supertree describes phylogenetic relationships  for 5016 species listed 
by Wilson & Reeder  (2005), and  thus  data  for the remaining  399 
species could not be imputed using this approach. When running 
phylopars, we assumed no phenotypic variation,  that is, no measure- 
ment error, to avoid re-estimation  of already available data. Leave- 
one-out  cross-validation analyses were used to estimate bias (mean 
differences  between  observed  and  estimated  values)  and  absolute 
error (mean of the absolute differences between observed and 
estimated)  for each trait.  Both bias ()0Æ005 to 0Æ002) and absolute 
errors (0Æ06–0Æ88) were generally low. 

To compare data sets, we first plotted the distribution of values in 
each of the four traits for the subset group, the PanTHERIA data set 

and the imputed  data  set. Second, using PGLSs,  we estimated  the 
relationship  between the four traits and vulnerability to extinction as 
defined by the IUCN  Red List category (International Union for 
Conservation of Nature 2010). We used the same phylogenetic super- 
tree with randomly  resolved polytomies.  For  each trait,  we defined 
univariate  PGLSs for the sample of 622 species with data  available 
for all four traits, with a Red List category (not including Data 
Deficient) and represented  in the phylogenetic  tree (henceforth  the 
‘multivariate subset’). To explore the range of expected values, 
univariate  PGLSs were also defined for 500 samples of 622 species 
each. Species were selected at random  from  the imputed  data  set. 
This analysis was repeated drawing random  samples from the 
PanTHERIA data  set. Following  Purvis et al. (2000), the Red List 
categories were converted to a continuous index: Least Concern = 0, 
Near Threatened = 1, Vulnerable  = 2, Endangered = 3, Critically 
Endangered = 4 and Extinct in the Wild ⁄ Extinct  = 5. For analyses 
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that  included  data  on range area,  we removed  species listed under 
IUCN  Red List criteria B (small geographic range or area of occu- 
pancy) to avoid circularity.  This resulted in a subset of 584 species 
which were compared to 500 random samples of 584 species each. 

We also defined multivariate  PGLSs  including all four traits  for 
different subgroups  of the multivariate subset (drawing 300 random 
replicates per subgroup).  Each subgroup  was defined to conform to 
the distribution of values observed for a given trait  in the imputed 
data set, while trying to maximize the number of species per subgroup 
(the number was limited when the distributions were very dissimilar). 
Defining a subgroup  that conformed to all four trait distributions at 
once was not  possible; thus,  we defined four  subgroups  each con- 
forming to a single trait and ran four separate  multivariate PGLSs. 
We compared  parameter estimates of these subgroups  with those 
obtained  from a multivariate  PGLS based on the entire multivariate 
subset. Sampling to conform to the distribution of a given trait often 
altered the distribution of the other traits and in some cases increased 
the deviation  from the general distribution observed with all data. 
This analysis was repeated  conforming  to the distribution of values 
in the PanTHERIA data set (non-imputed data). 

 
 
Results 

 

 
A RE T HE R E B I A S E S I N D A T A A V A I LA B I L I T Y ?  

 
We found no data for 1211 (22Æ4%) of the 5415 extant mam- 
malian   species  recognized   by  Wilson  &  Reeder   (2005), 
whereas 438 species have a single entry in the raw data  file, 
and 401 have two entries. On the other hand, the highest 
number of data entries is 443 for the deer mouse (Peromyscus 
maniculatus, Rodentia). Missing data  are prevalent,  occur- 
ring in all studied traits, often at high frequencies (14–99% of 
missing cases, Table 1), and with no species having complete 
data for all 29 studied traits (all species are missing informa- 
tion for at least one trait). 

 
 

Taxonomic and phylogenetic bias 
 

The number of data entries per species differs among orders 
(Kruskal–Wallis  test,  v2  = 880Æ1,  d.f. = 28,  P < 0Æ0001. 
Fig. S1),  families  (v2  = 1351Æ1,  d.f. = 152,  P < 0Æ0001) 
and genera (v2  = 2463Æ0, d.f. = 1229, P < 0Æ0001). Species 
without  data  belong  primarily  to the orders  Rodentia and 
Soricomorpha (no data for 29 and 46% of their species, 
respectively). On the other hand, among carnivores and 
ungulates  <7% of species have no data. Analyses based on 
phylogenetic  relationships  also  indicate  similar  data 
availability among closely related species. The estimate of the 
parameter k (0Æ510), which characterizes  the degree of 
phylogenetic  correlation,  is  significantly  different  from  0 
(v2  = 1379Æ8, d.f. = 5015, P < 0Æ001). 

 
 

Other biases 
 

More  information is available  for some types of data  than 
others     (Kruskal–Wallis    test,     v2  = 3851Æ6,     d.f. = 4, 
P < 0Æ0001. Fig. S2). Generally, morphological data are the 
most abundant (1Æ86 ± 2Æ34, mean ± SD number of entries 

per species), followed by reproduction (1Æ27 ± 2Æ44), ecology 
(0Æ94 ± 1Æ61),  development  (0Æ66 ± 1Æ40)  and  spatial  data 
(0Æ33 ± 1Æ19). However, there is some variation  among taxa 
in the relative abundance of each data type (e.g. spatial data 
are not the least abundant for the Erinaceomorpha; Fig. S2). 
We  also  find  differences  in  data   availability   among  the 
different threat categories defined by the IUCN Red List 
(Kruskal–Wallis  test,  v2  > 502Æ5,   d.f. = 3,  P < 0Æ0001. 
Fig. S3). In particular, the number  of entries per species is 
higher for non-threatened species (classified as Least Concern 
or Near Threatened, N = 3420 species) than for threatened 
species (classified as Critically  Endangered, Endangered or 
Vulnerable, N = 1070). In fact, there is no data available for 
29% of the mammalian  species classified as Endangered or 
Critically   Endangered,  whereas  only  16%   of  the  Least 
Concern and 14% of the Near Threatened species lack data 
(23% of Vulnerable species lack data). Not surprisingly, there 
are fewer data for species classified as Data  Deficient (N = 
731) or Extinct (N = 67), with many species in these catego- 
ries having no data at all (39% and 48%, respectively). 

Finally, there is evidence of spatial biases in data availabil- 
ity with species living in the northern hemisphere,  particu- 
larly  in  North   America  and  Europe,   being  considerably 
better  studied  than  those  in  tropical  or  southern   regions 
(Fig. 1b). This contrasts  with the pattern  of species richness 
(Fig. 1a),  so that,  on  average,  there  are  fewer studies  per 
species in those areas with the highest diversity of mammals. 
Moreover,  less-studied  areas  often  have  high  variation  in 
data   availability   among   species  (Fig. 1c)  and   include 
relatively high percentages (20–60%) of species with <3 data 
entries (very poorly studied species). 
 
 
D O S P E C IE S T RA IT S E X P LA I N T H E B I A S I N D A T A 

A VA ILA B IL IT Y?  

Univariate analyses identify many traits as significant in 
explaining data availability (Table 1). Results from GLMMs 
and PGLSs are generally similar, although some traits are 
identified as significant under one approach but not the other 
(Table 1). Nevertheless,  there  are no contradictory results, 
that  is, no traits  identified as significant have opposite  esti- 
mated  effects. Results  from the multivariate models, based 
on data  from 266 species, are very similar using taxonomic 
and  phylogenetic  correction,  although  significance  is 
marginal   for   some  traits   using   phylogenetic   correction 
(Table 2). Both approaches suggest that the number of data 
entries is generally greater  for diurnal  or crepuscular 
mammals  with larger  body  mass, bigger litter  sizes, earlier 
sexual  maturation age and  longer  life spans.  Species with 
more data also have a wider distribution range area and live 
above-ground at higher population densities. 

Regression  coefficients are generally similar in univariate 
and multivariate analyses, although  as expected, some vari- 
ables are significant in the univariate  analyses but not in the 
multivariate models (Table 1). In addition,  there is a qualita- 
tive change  in the  estimated  effect based  on  GLMMs for 
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Fig. 1. Global distribution of terrestrial  mammalian  species and data availability. Panels: (a) species richness calculated as the total number of 
terrestrial mammals per cell; (b) data richness calculated as the mean number of data entries per terrestrial mammal per cell; (c) coefficient of var- 
iation in the number of data entries per terrestrial mammal per cell. Species range distribution maps were obtained from the IUCN  spatial data 
base. Grid size is equivalent to 2° · 2° near the equator. 

 
 

three traits (terrestriality, sexual maturity age and population 
density). Noticeably, these traits are not significant in the uni- 
variate  PGLSs.  To  test  whether  the  changes  are  simply 
because of changes in sample size and composition (i.e. which 
species are represented), we re-ran univariate GLMMs analy- 
ses using only the 266 species included  in the multivariate 
models. Using these data, all three coefficients are not signifi- 
cantly different from zero suggesting there is an effect of sam- 
ple  size and  composition,   but  also  a  possible  interaction 
among variables in the multivariate model that leads to 
significant  coefficients.  The  non-corrected approach based 
on regression trees gives similar results, although fewer traits 
are associated  with data  availability.  The final tree reveals 
that  the highest mean number  of data  entries is associated 
with species having larger distribution areas and greater body 
mass (Fig. 2). On the other hand, species with smaller distri- 
bution  area,  small body mass and reduced  habitat  breadth 
have the fewest data  entries. The tree explains 34Æ9% of the 
variance  in the  number  of entries  (calculated  as 1-relative 
error). Overall, based on the three different approaches, two 

variables appear as clearly linked with data availability: adult 
body mass and distribution range area. Other traits such as 
activity pattern, terrestriality, sexual maturity age, maximum 
longevity, litter size, population density and habitat  breadth 
are also likely relevant predictors. 

Although  these analyses had to be limited to species with 
trait data, the main observed relationships  appear  to extend 
to those species missing data. For example, there is a strong 
and  positive  relationship   between  the  median  adult  body 
mass in each taxonomic family (calculated from available 
species data)  and the proportion of species with body mass 
data    in   that    family   (Spearman    correlation    r = 0Æ39, 
P < 0Æ001, N = 153 families; for families with 10 or more 
species  r = 0Æ45,  P < 0Æ001,  N = 69  families).  In  other 
words, families with the smaller, on average, species such as 
rodents  or shrews have fewer species with body  mass esti- 
mates available. Therefore, missing data appear to not be 
missing at random,  but rather the likelihood of having infor- 
mation  on a given trait  is affected  by the trait  value itself 
(smaller species are less likely to have body mass estimates). 
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Table 2. Coefficient    estimates    for    multivariate    GLMMs   and 
phylogenetic generalized least square models (PGLSs) describing the 
number of data entries available in the mammalian  database 
PanTHERIA as a function  of intrinsic  species traits.  Models  are 
based on 266 species for which data  were available (from the total 
5415 mammals studied) 

 
Coefficient (SE) 

within  a family  (median  CV within  families = 0Æ17)  than 
estimates of adult body mass (0Æ10). 
 
 
H OW D O D A T A B I A S E S A F FE C T CO MP A R AT IV E 

A NA LY S E S ?  

From  the 5415 extant  mammals,  adult  body mass data  are 
only available for 65Æ4% of the species, range area for 86Æ1%, 

Variable 
 

Activity cycle 

GLMMs  PGLSs population  density   for  17Æ6%   and   gestation   length   for 
25Æ1%. However, the subset of species with data on all four 
traits  is much  smaller,  including  only 636 species (11Æ7%). Nocturnal                               –                                  – 

Crepuscular, cathemeral              0Æ21 (0Æ072)*                0Æ13 (0Æ075)† 

Diurnal                                          0Æ24 (0Æ084)*                0Æ18 (0Æ094)† 

Terrestriality 
Fossorial                                     –                                  – 
Above-ground                            0Æ22 (0Æ088)*                0Æ17 (0Æ094)†

 

Trophic level 
Herbivore                                   –                                  – 
Omnivore                                      0Æ05 (0Æ094)                  0Æ06 (0Æ095) 
Carnivore                                    )0Æ08 (0Æ132)                  0Æ05 (0Æ131) 
Adult body massa                                        0Æ18 (0Æ061)*                0Æ19 (0Æ069)* 

a 

From  this  subgroup,  622 species (the  multivariate subset) 
also have Red List status and defined phylogenetic relation- 
ships; thus,  the subset of species available  for multivariate 
PGLSs  is quite  small compared  to the overall mammalian 
biodiversity.  In addition,  species with data on all four traits 
are  not  a  representative   sample  of  all mammals  (Fig. 3). 
These species represent 22 of the 29 mammalian orders (nota- 
bly excluding all 84 species from the order Cetacea) and 91 of 
the 153 families. The multivariate subset includes <7%  of 

Weaning age 0Æ01 (0Æ126) )0Æ07 (0Æ145) the  species  from  the  most  populous   families  (Muridae, Sexual maturity agea                          )0Æ33 (0Æ146)*             )0Æ29 (0Æ154)†
 

Maximum longevitya     0Æ50 (0Æ19)*   0Æ66 (0Æ190)** 
Gestation lengtha )0Æ05 (0Æ130) )0Æ14 (0Æ189) 
Litter sizea     0Æ63 (0Æ176)**   0Æ90 (0Æ195)** 
Diet breadth  )0Æ03 (0Æ025) )0Æ02 (0Æ023) 

 Habitat breadth 
Population densitya 

)0Æ01 (0Æ053) 
0Æ16 (0Æ040)** 

0Æ03 (0Æ056) 
0Æ11 (0Æ042)* 

Distribution range areaa 0Æ16 (0Æ039)** 0Æ19 (0Æ042)** 
 

†P < 0Æ10, *P < 0Æ05, **P < 0Æ001. 
aLog10-transformed. 

 
 

 
 

Fig. 2. Regression tree showing the number of data entries available 
in the mammalian  database  PanTHERIA based on diverse intrinsic 
species traits.  On each node,  the threshold  value and  name  of the 
splitting trait  are indicated.  Data  on the leaves (represented  by cir- 
cles) provide the average number of data entries and the number  of 
species in the group. 

 
The relationship  is not  as clear for distribution range  area 
(Spearman  correlation r = 0Æ15, P = 0Æ06, N = 153 fami- 
lies), likely because  range  area  is available  for many  more 
species (considering  only families with species missing data, 
r = 0Æ32, P = 0Æ02, N = 79 families) and because range is a 
more flexible ‘trait’ (less constrained  by evolution).  In fact, 
estimates  of  range  area  are  more  variable  among  species 

 

n = 730,  and  Cricetidae  n = 681) but  >51% of  the  35 
canids (Canidae).  In general, the subset includes mammals 
with higher body mass (following a bimodal distribution), 
larger range areas, lower population densities and longer 
gestation periods (Fig. 3). 

Univariate PGLSs associating Red List status with each of 
the four  traits  show that  the parameter estimates  obtained 
for the multivariate subset are generally not representative  of 
the relationships  expected for all mammals (Fig. 4) and they 
would be rarely, if ever, observed when using representative 
(random) samples. Intercept values estimated using the 
multivariate subset are higher than  those based on all data. 
Therefore,  analyses based on the subset appear  to overesti- 
mate  the  baseline  extinction  risk  (measured  by  Red  List 
status).  In addition,  although  there are no changes in slope 
sign (the relationships  between each trait and Red List status 
are qualitatively  the same), the slope values, which estimate 
the  strength   of  the  relationship,  vary.  In  particular,  the 
increase in Red List status predicted in response to a reduc- 
tion in range area or population density is more pronounced 
for the multivariate subset than  when considering  all data, 
suggesting that the subset overestimates the influence of these 
traits on the extinction risk. On the other hand, the multivari- 
ate subset appears  to underestimate the rate  of increase in 
Red List status associated with longer gestation periods. The 
estimates of the relationship between body mass and Red List 
status are similar for all data and the multivariate subset. 
Results  are  qualitatively   the  same  when  the  multivariate 
subset results are compared with random samples from the 
PanTHERIA data set (non-imputed data, Fig. S4). 

Parameter estimates from multivariate PGLSs defined for 
subgroups  conforming  to  all mammal  distributions differ 
from those calculated for the multivariate subset (Fig. 5, S5). 
In particular, conforming  to the distributions of all available 
data    for   any   trait    affects   the   expected   relationship 
between body mass and Red List status. This relationship  is 
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Fig. 3. Distribution of values for four traits consistently linked to vulnerability  to extinction in mammals for all species (imputed data set and 
black solid line), for the PanTHERIA data set (grey solid line), and for the 636 species with data on all four traits (dotted line). Sample sizes for 
the PanTHERIA data set are as follows: adult body mass N = 3539, distribution range area N = 4664, population density N = 954, gestation 
length N = 1359. Imputed data are available for 5016 species. 

 
 
 
 

(a) (b) 
 
 
 
 
 
 
 
 
 
 
 
 

(c) (d) 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. Values of the intercept and slope coefficients estimated in univariate phylogenetic generalized least square models explaining Red List sta- 
tus as a function of (a) adult body mass, (b) distribution range area, (c) population density and (d) gestation length. The grey surfaces show the 
distribution of parameter estimates obtained for all mammals (imputed data set) calculated using 500 subsets of 622 species each drawn at ran- 
dom (for range area subsets had 584 species after excluding those listed under the IUCN  small range criteria). The black arrows indicate the 
parameter estimates obtained for the multivariate  subset (species with Red List status and data available for all four traits. See Fig. 3). For illus- 
tration  purposes, the arrow points are placed along the z-axis at the point of intersection with the grey surface. Note, the values in the intercept 
axis in panel (a) are reversed. 
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Fig. 5. Multivariate phylogenetic  generalized  least  square  models 
parameter estimates for subgroups of mammals with Red List status 
and data available for the four traits listed but selected to conform to 
the distribution of all mammalian  data for each trait (imputed data 
set. See Fig. 3). Symbols are the mean estimate with error bars repre- 
senting ±2 SD from 300 independent random  replicates (N in the 
legend indicates the number of species in each replicate. The sample 
size was determined  to maximize the number  of species while con- 
forming to the distribution of all data). Error  bars overlapping  with 
zero indicate the relationship  between the trait and the Red List sta- 
tus is ambiguous. Horizontal black lines represent the mean parame- 
ter estimates of a single PGLS based on the entire multivariate subset 
(622 species with data on all four traits). Grey bands represent  ± 1 
SE. Grey bands overlapping with zero indicate a trait is not linked to 
vulnerability to extinction. 

 
 

significantly positive for the multivariate subset but not for 
the conforming subgroups,  indicating body mass may not be 
a good predictor of extinction risk in mammals after all. Sim- 
ilarly, conforming  to the distribution of body mass or popu- 
lation density generally reduces the estimated effect of range 
area  on  vulnerability  to  extinction,  so that  a reduction  in 
range area is not predicted to increase Red List status as rap- 
idly. On the other hand, when conforming to the distribution 
of range area, the rate at which Red List status increases with 
a reduction in population density is greater. Finally, although 
gestation  length has been identified as important by several 
previous studies and our own univariate  analyses, the coeffi- 
cient estimate is not significantly different from zero in any of 
our  multivariate models,  suggesting  that  gestation  length 
may not be strongly associated to Red List status when other 
factors are taken into account. For other traits, the univariate 
and multivariate coefficients predict the same general 
relationships. We found no evidence of collinearity in the 
multivariate models (VIF < 1Æ55). 

 
 
Discussion 

 

 
A RE T HE R E B I A S E S I N D A T A A V A I LA B I L I T Y ?  

 
Our results show an important bias in data  availability  for 
life-history, ecological and behavioural traits in mammalian 
species, arguably the best-studied group of organisms. We 
found  that  some species are better  studied  than  others  and 
that biases have taxonomic and phylogenetic signals, so that 
related   species  have  similar  data   availability   (Amori   & 
Gippoliti  2000). As a result,  some groups  tend  to be data- 

poor, for example, Rodentia, while others are generally well- 
studied, for example, Artiodactyla (Fig. S1). Surprisingly, we 
found that non-threatened species are better studied than 
mammals of conservation  concern (Fig. S3), with data com- 
pletely lacking for nearly one-third of the most threatened 
species (Endangered and  Critically  Endangered). Although 
conservation  biologists have been at work for some time, we 
still know  more  about  common  species, possibly  those  of 
direct economic importance such as pests or game, than 
species at risk of extinction. 

In addition  to biases in the amount  of data  available, we 
also identify biases in the type of data gathered. For example, 
morphological data, e.g., adult body mass, are more often 
available  than  spatial  data,  e.g., home range size (Fig. S2). 
These  biases  are  likely  due  to  technological   constraints, 
which have limited our ability to track small species such as 
bats (Holland  & Wikelski 2009), and ⁄ or financial or logistic 
limitations associated with obtaining  different types of data. 
Importantly, scarcity of data for some traits likely affects the 
results of comparative  studies because a lack of power in the 
analyses may limit our ability to recognize traits  as impor- 
tant. In fact, we find that traits linked most often to vulnera- 
bility to extinction are also those with data for more species 
and which appear to explain data availability (i.e. body mass 
and range area). 

We also identify important biases in the spatial  distribu- 
tion of data availability (Fig. 1, Amori & Gippoliti  2000). 
Regions  of higher species richness, where mean data  avail- 
ability  per species is lowest, largely correspond to tropical 
areas, where the highest abundance of threatened species also 
occurs (Schipper et al. 2008). In these regions, there is also a 
greater  disparity  in data  availability  among  species, so that 
the limited number  of studies  conducted  concentrate on a 
few of the species present, likely those easier to study or more 
attractive,  while many species remain poorly known. In con- 
trast,  areas  with higher data  availability  and  where species 
are more  uniformly  studied  (lower variation  in data 
availability among them) are predominantly in developed 
countries  where  fewer endangered  species are  found 
(Schipper  et al. 2008), but  more  resources  are  invested  in 
research  leading  to  more  data  collection  and  publication 
(World Bank 2011). 
 
 
D O S P E C IE S T RA IT S E X P LA I N T H E B I A S I N D A T A 

A VA ILA B IL IT Y?  

Our analyses show that existing biases in data availability are 
in part explained by intrinsic species traits, which presumably 
influence the ease and attractiveness  of a species as a study 
organism (Matthews  et al. 2011). Interestingly,  traits associ- 
ated with higher data availability (Tables 1, 2 and Fig. 2) do 
not appear to define a single group of species but may repre- 
sent  two  general  types  of well-studied  mammals:  the  big, 
long-lived mammals occupying large range areas and the 
smaller  mammals  with an  early maturation age and  large 
litter sizes. The former, for which there is overall the largest 
amount    of   data,    probably    correspond   to   charismatic 
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megafauna,  such as the giraffe (Giraffa camelopardalis with 
275 data  entries), whereas the second group  includes com- 
mon species with a fast life history more suitable for ecologi- 
cal experiments  and manipulations such as the deer mouse 
(P. maniculatus with 443 entries). The bimodal  distribution 
of body mass values in Fig. 3 also supports  the existence of 
two types of best-studied mammals. Interestingly, a bimodal 
pattern  in body mass has been also reported regarding 
vulnerability  to  extinction  (Cardillo  et al. 2005; Davidson 
et al. 2009). In fact, these studies describe a threshold around 
3–5 kg of body mass, which coincides well with the c.3Æ5 kg 
split in our regression tree explaining data availability. 

 
 

H OW D O D A T A B IA S E S A FFEC T C O MP A R A T I V E 

A NA LYS E S ?  

We find that  the existence of biases in data  availability  has 
worrying consequences for comparative  analyses. Multivari- 
ate analyses that consider several traits associated with 
vulnerability  to  extinction  are  likely  limited  to  a  skewed 
subset of species that  are not a representative  sample of all 
mammals.  For  example,  we show that  well-studied  species 
appear to be larger, have bigger range areas, longer gestation 
periods and live at lower population densities than those less 
studied.   Comparative  analyses  that   partly   correct   these 
biases  give  different  results  than   analyses  based  on  the 
skewed subset, indicating that ignoring existing biases in the 
data  available  has  consequences  for  our  understanding of 
how species traits  influence vulnerability  to extinction.  Our 
study does not imply that previous conclusions are necessar- 
ily mistaken or erroneous,  but rather raises concern over our 
ability to accurately make broad inferences with the available 
data.  For example, large body size is perhaps  identified as a 
trait associated with higher risk of extinction because we have 
data primarily for the big and rare vs. the small and common. 

 
 

P OT E NT I A L S O L UT I O N S A N D R E C O M M E N D A T IO NS  
 

We have identified important data biases in the mammalian 
life-history  literature,  which appear  to  reflect a pattern  of 
data ‘not missing at random’. That is, the probability of not 
having information for a trait depends on the unobserved 
values of that  trait  (Little  & Rubin  2002). This presents  a 
great challenge for analysing these data  because as we have 
seen here deleting species with missing data  greatly reduces 
the available sample size and introduces biases in model esti- 
mates. However, conventional  techniques to fill gaps (such as 
multiple imputation) generally assume that data are missing 
at random  or completely at random  (Little & Rubin  2002; 
Nakagawa & Freckleton 2008). For data ‘not missing at 
random’,  it is possible to use imputation but a clear under- 
standing   of  the  mechanism   causing  the  missing  data   is 
generally necessary. However, missing data in PanTHERIA 
are likely missing as a result of multiple mechanisms. For 
example,  some species may be harder  to study  because  of 
their life history, while others may simply live in areas where 
research is complicated by the topology or political situation. 

In addition, basic research in some areas may be published in 
non-English journals or in publication  formats not as readily 
available   to  researchers   compiling   databases.   Therefore, 
filling data gaps in PanTHERIA using conventional 
approaches may be challenging. 

Alternatively, missing data may be inferred based on 
expected relationships among traits and phylogenetic rela- 
tionships   (Pagel  1999b;  Bruggeman,   Heringa   &  Brandt 
2009). We applied this approach in this study, but the method 
is not  without  challenges. First,  one must have a complete 
phylogeny,  yet  phylogenies  are  rarely  complete.  Even  for 
well-studied  species such  as mammals,  we found  c.9%  of 
extant species are not reflected in the most updated  phylog- 
eny. Second, these methods assume relatively simple relation- 
ships among traits (e.g. allometric) and evolutionary  models 
(i.e. Brownian  evolution),  which  may  not  be  realistic  for 
many ecological and behavioural traits (Blomberg, Garland 
& Ives 2003). Finally, interpolation based on a skewed sam- 
pled may generate biased data  sets, so inferences should  be 
made with caution.  For example, exploratory analyses with 
phylopars (M.  Gonzalez-Suarez, unpublished  data)  suggest 
that estimates of body mass for species with missing mass in 
the order  Carnivora (N = 34) can differ up to 2 order  of 
magnitude when imputation is performed using only data for 
small carnivores  (£3 kg) vs. only data  for large carnivores 
(>3 kg). Imputed  values are always larger when estimated 
from the large carnivore  data  set. Interestingly,  biasing the 
data set by body mass (imputing data based on large vs. small 
carnivores)  also changes  the estimates  of missing data  for 
range size, population density and gestation length. The 
implications of these challenges for our own analyses are that 
we cannot accurately quantify biases because we cannot truly 
know mammalian diversity. However, our results are consis- 
tent using imputed data or only the available data in 
PanTHERIA, thus we feel there is strong evidence that biases 
exist and that we can show their general direction. 

In conclusion, our results highlight the need for gathering 
additional  data  because  many  species,  even  within  well- 
known taxa, are poorly studied and imputing missing data is 
very challenging. In addition,  obtained data must be made 
available to others (Costello 2009). Efforts such as PanTHE- 
RIA (Jones et al. 2009), which make published data readily 
available in a convenient format, are key to understanding 
general patterns  because individual researchers are limited in 
their ability to gather  the large amounts  of data  needed for 
broad  comparative   analyses.  As  we see it,  reducing  data 
biases requires both augmenting  data collection and encour- 
aging data dissemination.  In addition,  comparative analyses 
need to acknowledge and explicitly address the bias in data 
availability, making inferences that are appropriate to the 
available data (i.e. restricted  to the subset of species used in 
the analyses). We suggest that comparative analyses incorpo- 
rate  approaches  to  explore  the  consequences  of  existing 
biases.   For   example,   as   done   here,   authors    may   use 
resampling  techniques  to incorporate uncertainty, or com- 
pare results from univariate  and multivariate models as the 
former may include considerably  more species. In addition, 
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sensitivity analyses of imputed data sets based on diverse 
missingness-causing mechanisms may be conducted (Little & 
Rubin  2002). The long-term  solution  is an increase in data 
availability, but meanwhile comparative studies should 
acknowledge the limitations in the existing information by 
implementing  approaches that  account  for data  biases, and 
authors  should be cautious  with their conclusions. Analyses 
may also focus on the best-studied groups, such as ungulates 
and  carnivores,  for which more data  are available  and  for 
which  conclusions,  even if not  as general,  may  not  be as 
biased.  Finally,  incorporating  extrinsic  factors  associated 
with extinction risk is essential to fully understand why some 
species are more vulnerable  than  others.  However,  data  on 
extrinsic  factors   influencing  vulnerability   are  also  likely 
biased and should be also explored with caution. 
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