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ABSTRACT 

 

Thermodynamic equilibrium calculations using the HSC-Chemistry program were 

performed to determine the distribution and mode of occurrence of potentially toxic and 

corrosive trace elements in gases from coal gasification processes. The influence of 

temperature, pressure and gas atmospheres on equilibrium composition was evaluated. 

In these reducing conditions, the behaviour of the trace elements is complex, but some 

form of organization can be attempted. Elements were classified into three groups. 

Group A includes those elements that, according to thermodynamic data at equilibrium, 

could probably be condensed in coal gasification. Mn is classified in this group. Group 

B contains those elements that could be totally or partially in gas phase in gas cleaning 

conditions, and can be divided into two subgroups, depending on whether the cleaning 

conditions are hot or cold. Co, Be, Sb, As, Cd, Pb, Zn, Ni, V, Cr are elements in this 

group. Group C contains those elements that could be totally in gas phase in all the 

possible conditions, including flue gas emissions. Se, Hg and B are the elements that 

make up this group. 
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INTRODUCTION 

Potentially hazardous air polluting elements such as Be, Cr, Mn, Co, Ni, As, Se, Cd, Sb, 

Hg and Pb, and potentially corrosive elements such as V, Zn or Pb are present in coal in 

concentrations lower than 0.1% (trace elements), but nevertheless they may give rise to 

various environmental or technological problems during coal utilisation for energy 

production. In order to be able to address these problems and to develop suitable 

systems to their reduction, it is necessary to understand trace element behaviour during 

the coal combustion and gasification processes. Although trace element behaviour in 

conventional coal combustion systems is reasonably well known [1-8], there is a lack of 

similar knowledge in coal gasification, especially in the case of Integrated Gasification 

Combined Cycles (IGCC) for which gases reaching the gas turbine need to be as clean 

as possible. 

The behaviour of volatile species in the reducing conditions of coal gasification 

may be different to that which occurs during combustion. For instance, trace elements, 

which are able to form hydrides such as B2H4, SeH2, AsH3, can be expected to increase 

volatility in reducing conditions [9]. In order to ascertain precisely how this behaviour 

differs, trace element partitioning among ashes, particles and gases in different coal 

gasification processes has been evaluated [1,7-13], the distribution of elements 

depending on the gasification conditions and the mode of occurrence of trace elements 

in coal. It has been observed that during the atmospheric pressure entrained flow 

gasification of a bituminous coal, a significant mass fraction of As, Se, Sb, Pb and Hg 

vaporized, whereas Cd, Cr, Co, Mn, Ni, U and Th remained relatively non-volatile [12]. 

Although Ag, As, B, Cd, Hg, Pb, Se and Zn have been identified in the raw gases from 

coal gasification processes [1,11], emissions of trace elements were predominantly 

associated with the particulate phase rather than with the vapour phase, the smallest 
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particles being enriched in some of these elements (As, B, Cd, Cu, Pb, Sb and Zn) [1]. It 

was also observed that As, Cd, Se and Pb showed increased volatility as the C:O ratio 

diminished and the gasification temperature rose [10], and that the concentrations of As, 

Cd, Hg and Sb in flue gases increased in gasifiers with particulate recycling [13]. It 

should be noted that the studies on trace element behaviour were mainly focused to 

evaluate the emission of trace elements into the environment via flue gases. However, 

the technological problems that some of these elements may produce, mainly in IGCC, 

and the interactions in gas cleaning systems at low and high temperatures, also need to 

be considered. It is important to be able to predict the trace element composition in 

gases from coal gasification at temperatures higher than those of the flue gases emitted 

into the atmosphere.  

Thermodynamic equilibrium studies using different computer programmes have 

been carried out to compensate for the lack of experimental data in gasification [8, 12, 

14-17]. Using different programs it has been estimated that As, Se, Hg, and Pb are 

present in gas phase between 200 and 1600ºC at 1 atm of pressure [12], and that much 

greater proportions of Cd, Pb, Hg and Zn are volatilised under atmospheric fluidised-

bed gasification conditions than under fluidised bed combustion [8]. It has also been 

inferred that Hg, Sb and Se form gaseous species between 25 and 1700ºC, whereas As, 

B, Be, Cd, Co, Cr, Ga, Ge, Ni, P, Pb, Sn, Ti, V and Zn may form both condensed and 

gaseous compounds depending on the temperature [14]. In a similar way, a theoretical 

method based on thermodynamic data in equilibrium was used in this work to evaluate 

the composition of the trace element species formed during coal gasification processes 

at different temperatures and pressure, and to assess the influence of sulphur and 

chlorine compounds present in gas phase on the equilibrium composition. On the basis 

of these data it may be possible to estimate the trace element composition in the gasifier 
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and in the gases at high and low temperatures, and to establish suitable conditions for 

retaining trace elements in gas cleaning systems.  

 

METHOD AND CALCULATION PROCEDURE  

Thermodynamics provides a powerful method of calculation for studying the effects of 

different process variables on a chemical system in equilibrium state. However, the 

calculations do not give the reaction time, which is necessary for this theoretical 

equilibrium state to be reached. There is no complete general theory or basic data 

available, which would successfully combine thermodynamics, non-ideality and 

kinetics for all chemical processes. For the equilibrium calculation, HSC-Chemistry 4.0 

software was used in this work. HSC software was employed to make conventional 

thermodynamic calculations based on the minimisation of the free Gibbs energy in 

order to simulate chemical reaction equilibrium and processes.  

Thermodynamic equilibrium calculations were used to identify the possible 

forms of vapour-phase trace elements produced in the gasification processes at a 

number of points within an IGCC system. The elements studied were As, Be, Cr, Mn, 

Co, Ni, Se, Cd, Sb, Hg, Pb, Zn, V and B. The calculations were performed in typical 

coal gasification atmospheres, at a range of pressure between 1 and 40 atm, and a 

temperature interval between 1600-0ºC. This range of temperatures includes gasifier 

operation temperatures (1600-1200ºC for conventional gasifiers and 900-800ºC for 

fluidised bed gasifiers) hot (800-600ºC) and low (500-200ºC) temperatures in gas 

cleaning systems and flue gas emission temperatures (<200ºC). For input conditions, the 

coal gasification atmosphere and the different trace elements concentrations are given in 

Tables 1-2. The coal gasification atmospheres used, differ in their H2S and HCl content 

(Table 1). The trace element compounds were similar to those most frequently found in  
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Table 1. Synthetic coal gasification atmospheres used for equilibrium calculations. 

Atmosphere CO CO2 H2 H2O HCl H2S N2 
Mixture I 4.16E-05 2.55E-06 1.51E-05 6.24E-06 — — 6.66E-06
Mixture II 4.16E-05 2.55E-06 1.51E-05 6.24E-06 6.67E-08 — 6.59E-06
Mixture III 4.16E-05 2.55E-06 1.51E-05 6.24E-06 — 7.27E-07 5.93E-06
Mixture IV 4.16E-05 2.55E-06 1.51E-05 6.24E-06 6.67E-08 7.27E-07 5.87E-06

 

coal, their concentrations being close to that expected for a coal (Table 2). Equilibrium 

composition was determined for each element individually whereas interactions 

between elements or the condensation of species on fly ash particles were not 

considered. This is one possible approach to the problem as heterogeneous reactions 

may take place in the system. In the discussion of the results the species evaluated were 

those that contribute by more than 1% to the total number of compounds of the element 

at equilibrium. 

 

Table 2. Trace element concentrations and solid compounds used for equilibrium 

calculations. 

Element Compound kmol g-1 coal Element Compound kmol g-1 coal 

As FeAsS 1.47 E -10 Cd CdS 4.45 E -12 

Be Be 2.22 E -10 Sb Sb2S3 1.89 E -11 

Cr Cr2O3 3.85 E -10 Hg HgS 4.99 E -13 

Mn Mn 1.09 E -09 Pb PbS 2.61 E -10 

Co Co3S4 1.02 E -10 Zn ZnS 1.71 E -09 

Ni NiS 2.98 E -10 V V 1.28 E -09 

Se Se 1.39 E -11 B B 4.16 E -09 
 

RESULTS 

Equilibrium composition profiles calculated for the different trace elements, at different 

gas composition, pressure and temperature are shown in Figures 1-12. If the variables 

did not influence the composition of the element at equilibrium, and the composition 

were similar that in Figures 1-12, the graphs were not provided. 
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Arsenic 

Equilibrium composition for arsenic depends on temperature, gas atmosphere and 

pressure. As can be observed in Figure 1 at temperatures higher than 1000ºC, all the 

arsenic is present as AsO(g) and at these temperatures variations in pressure and gas  
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Figure 1.- Equilibrium compositions for arsenic in (a) mixture III at 25 atm; (b) mixture 

II at 25 atm and (c) different pressures at 600ºC. 
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atmosphere do not modify the equilibrium composition. When temperature decreases, 

that is to say, at those temperatures at which gas cleaning could be carried out, different 

condensed and gas phase compounds may be present. Between 500 and 800ºC AsO(g), 

AsH3(g), As4(g) and As2(g) are the species formed in gas phase. These are the dominant 

species in a gas atmosphere containing H2S(g) (Figure 1a), but if the gas atmospheres do 

not contain H2S(g) (Figure 1b) the dominant species are the condensed FeAs and FeAs2. 

Between 300-500ºC, As2(g), As4(g) AsH3(g), FeAsS, FeAs and FeAs2 are the most 

stable species. When pressure increases, the concentration of AsH3(g) increases 

significantly while AsO(g), As2(g) and As4(g) decrease slightly (Figure 1c). In an 

atmosphere free of H2S(g), As4(g) is not formed and the FeAsS is reduced to FeAs and 

FeAs2. In this case, at atmospheric pressure, the condensed species are the most stable 

between 200 and 700ºC, whereas only AsO(g) is present at temperatures higher than 

700ºC. At temperatures lower than 200ºC at atmospheric pressure, only condensed As is 

formed. From these theoretical results all the arsenic present in the coal can be expected 

to evaporate in the gasifier at temperatures higher than 1000ºC and also partially 

evaporate in gas phase in gas cleaning conditions. However at the low temperatures at 

which gases are emitted only condensed phases may be expected. 

Beryllium 

The equilibrium composition of the beryllium species does not change at pressures 

between 40 and 1 atm and in the different gas atmospheres studied, but it changes with 

temperature (Figure 2). It should be noted that, only at temperatures higher than 1000ºC, 

is the gaseous Be(OH)2(g) present at equilibrium. This is the dominant species at 

temperatures over 1300ºC. At lower temperatures only the condensed allotropic forms 

BeO and BeO(B) are present in significant amounts. Consequently the fraction of  

 



 

 8

1600 1200 800 400 0
Temperature (ºC)

0

20

40

60

80

100
Pe

rc
en

ta
ge

 o
f B

e 
sp

ec
ie

s 
(%

)
Be(OH)2(g)
BeO
BeO(B)

 

Figure 2.- Equilibrium compositions for beryllium in all the conditions considered in 

this work. 

beryllium evaporated in the gasifier can be expected to condense before gas cleaning 

systems and the flue gas emissions cease to have beryllium in gas phase. 

Mercury 

Mercury species at equilibrium are all in gas phase (Figure 3a). Above 400ºC the 

dominant species is Hg(g) but at lower temperatures Hg(CH3)2(g) may also be formed, 

their relative proportions depending on pressure (Figure 3b). This composition does not 

vary when the gas atmosphere contains HCl(g) and H2S(g). Mercury is present in gas 

phase and is mostly emitted in flue gases. 
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Figure 3.- Equilibrium compositions for mercury (a) in the different atmospheres and 

temperatures and (b) at different pressures and at 350ºC. 
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Chromium 

Minimal variations in chromium species at equilibrium were observed with temperature 

and pressure. In all the conditions studied, at temperatures between 1400 and 300ºC, 

chromium remains in the form of condensed Cr2O3 (Figures 4a-b). At temperatures 

higher than 1500ºC, at pressures ranging between 1-5 atm the formation of Cr(g) takes 

place, its concentration depending on gas the atmosphere. At temperatures lower than 

60ºC and 1 atm some Cr(CO)6(g) may form in the absence of HCl(g). In short; 

chromium species in gas phase may form in the gasifier, but they cannot be expected to 

do so in gas cleaning systems. However, a minor proportion of chromium may be 

emitted into the atmosphere in some particular cases. 
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Figure 4.- Equilibrium compositions for chromium between 1 and 25 atm in (a) a 

gasification atmosphere containing HCl (mixtures II and IV) and (b) in a gasification 

atmosphere without HCl (mixtures I and III). 

 

Manganese 

Manganese is a low volatile element, which according to thermodynamic equilibrium 

data, in the gasification atmospheres studied, only forms MnC2, whose equilibrium 

composition is not modified by variations in pressure, temperature and gas composition. 

Boron 

Boron is a highly volatile element which, theoretically, forms species in gas phase over 

the whole range of temperatures HBO(g) being the most stable. Equilibrium 

composition does not depend on temperature, gas composition or pressure, and boron in 

gas phase may be present in all the situations relevant to this study. 
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Vanadium 

Vanadium is a low volatile element. The equilibrium composition for vanadium 

depends on temperature and pressure but not on gas atmosphere. The condensed species 

are stable at the different conditions studied (Figure 5a). At temperatures higher than 

1400ºC and low pressures (<10 atm) VO2(g) may be formed (Figure 5b). V2O3 is the 

most stable at temperatures higher than 500ºC. At lower temperatures the dominant 

species is VC. Vanadium species in gas phase cannot be expected in the gasifiers at 

high temperature, or in gas cleaning systems and gaseous emissions. 
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Figure 5.- Equilibrium compositions for vanadium for the different gas atmospheres at 

(a) 25 atm and (b) at 1 atm. 

 

Selenium 

Selenium is present in gas phase over the whole range of temperatures (Figure 6a-b). 

The composition at equilibrium is not affected by variation in the gas atmosphere. 

However, temperature and pressure may modify the relative proportions of selenium 

compounds, though mainly at low pressure and high temperature. Consequently these 

factors do not significantly affect the gas composition in the gasifier, gas cleaning 

systems or flue gas emissions. H2Se(g) is the main species present in these conditions. 

Se(g) may form at high temperatures, its concentration depending on pressure. 
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Figure 6.- Equilibrium compositions for selenium in the different gas atmospheres (a) at 

1 atm and (b) at different pressures and at 1500ºC. 

 

Nickel  

Nickel composition depends on temperature, pressure and the gas atmosphere (Figure 

7). The range of temperatures at which nickel species in gas phase may be formed 

depends on the atmosphere and pressure. In general nickel may occur in gas phase at 

temperatures higher than 1400ºC (Ni(g), NiS(g), NiCl(g))  and at temperatures lower 

than 400ºC at high pressure (NiCO4(g)). The gaseous species always coexist with 

condensed species, their concentrations depending on pressure. In general the gaseous 

species are found in minor concentrations except at temperatures below 300ºC and at 

high pressure (25 atm), in which case Ni(CO)4(g) is the dominant species. Other nickel 

species that may be present in gas phase at high temperature are Ni(g) (in all 

atmospheres), NiS(g) (when H2S(g) is present in the gas atmosphere) (Figure 7a) and 

NiCl(g) (when the gas atmosphere contains HCl(g)) (Figure 7b). Between 400 and 

1200ºC only the condensed species are stable according to thermodynamic data. In a 

gasification atmosphere free of H2S(g), different allotropic forms of nickel (Ni, 

Ni(FCC)) are dominant whereas, when the atmosphere contains H2S(g), Ni3S2 is the 

dominant species and NiS0.84 and NiS also form in minor proportions. From these 

results it can be concluded that in gasification conditions the nickel content in the coal 
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may be partially in gas phase. However, in gas cleaning systems it is condensed. At 

temperatures lower than 150ºC and 1 atm in the absence of H2S(g), a gaseous species 

may be present. 
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Figure 7.- Equilibrium compositions for nickel in (a) mixtures III and IV at 25 atm; (b) 

mixture II at 25 atm; (c) mixture I at 25 atm and (d) at different pressures at 1500ºC. 

 

Cobalt 

The equilibrium composition of cobalt is clearly influenced by temperature, pressure 

and the atmosphere (Figure 8). The formation of Co(g) occurs at temperatures higher 

than 1200ºC in a gas atmosphere free of H2S(g) (Figure 8a), its concentration decreasing 

with pressure (Figure 8b). In a gas atmosphere containing H2S(g), Co(g) is formed at 

temperatures higher than 1400ºC and at low pressures. The presence of HCl(g) in the 

gas atmosphere (Figure 8c) favours the formation of species such as CoCl2(g), and 

CoCl(g). CoCl2(g) is formed at temperatures higher than 800ºC, its  concentration 

increasing with pressure. CoCl(g) is formed at temperatures higher than 1200ºC but its 

concentration is not influenced by any variation in pressure. Regarding the condensed 
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species, in a gas atmosphere containing H2S(g) (Figure 8d), Co3S4 forms over the whole 

range of temperatures and pressures studied. In a gas atmosphere free of H2S(g) at 

temperatures between 500 and 1200ºC the main species is Co. It should be noted that in 

all the atmospheres studied, at temperatures close to 200ºC the cobalt species occur in 

condensed phase. In coal gasification conditions, and also in hot gas cleaning 

conditions, some of the cobalt may be in gas phase. However, in flue gas emission 

conditions, only condensed species may be expected. 
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Figure 8.- Equilibrium compositions for cobalt in (a) mixture III at 1 atm; (b) mixture II 

at 1 atm; (c) mixture I at 1 atm and (d) at different pressures at 1500ºC in mixture II. 

 

Antimony 

Antimony equilibrium composition depends on the temperature and gas atmosphere. 

Minor variations are observed with pressure. At temperatures higher than 300ºC this 

element is mainly present in gas phase, SbO(g) being the dominant species (Figure 9). 

Between 200 and 500ºC other gaseous antimony species might be present. The presence 

of HCl(g) or H2S(g) in the atmosphere favours the formation of SbCl(g), SbCl3(g) and 
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Sb3S2 (g), Sb4S3(g) (Figures 9a-c). However in the absence of H2S in the gas 

atmosphere, condensed Sb forms between 400 and 500ºC depending on the pressure. 

This condensed Sb is the dominant species in an atmosphere free of HCl(g) and H2S(g) 

and at temperatures lower than 400ºC (Figure 9d). Pressure variations at high and 

medium temperatures do not produce equilibrium modifications, while at low 

temperatures some modifications may be observed when HCl(g) is in the gas 

atmosphere. According to these data antimony species in gas phase may occur in the 

gasifier, gas cleaning systems and flue gases in different proportions depending on the 

conditions and gas composition. If the gas atmosphere did not contain HCl(g) and 

H2S(g), gaseous antimony would not be emitted into the environment. 
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Figure 9.- Equilibrium compositions for antimony at 1 atm in (a) mixture IV; (b) 

mixture III; (c) mixture II and (d) mixture I. 
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Cadmium 

The theoretical calculations for this compound show that its composition in equilibrium 

depends on the temperature and the gas atmosphere (Figure 10). Minor modifications 

were observed with pressure variations. In all cases Cd(g) is the dominant species at 

temperatures higher than 500ºC while at lower temperatures this depends on the gas 

atmosphere. When H2S(g) is present, the condensed CdS could be the dominant specie 

at temperatures lower than 300ºC. Between 300 and 500ºC Cd(g) and CdS coexist 

(Figure 10a). However, if HCl(g) is in the gas atmosphere (Figure 10b) the formation of 

CdCl2(g) takes place between 300 and 600ºC at high pressure and between 200 and 

500ºC at atmospheric pressure. From these data it may be concluded that the emission 

of cadmium compounds in flue gases is not probable. However, some gas compounds of 

cadmium may be formed in gas cleaning conditions. 
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Figure 10.- Equilibrium compositions for cadmium at 25 atm in (a) mixture I and (b) 

mixture II. 

 

Lead 

Lead equilibrium composition depends on temperature but the gas atmosphere modifies 

lead species at equilibrium considerably (Figure 11a-b). Pressure variations only 

produce modifications in the concentration of the species. In a gas atmosphere free of 

H2S(g) and HCl(g), at temperatures higher than 900ºC lead occur totally as Pb(g), and at 
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temperatures lower than 500ºC it is found in totally condensed form as Pb, PbS or a 

mixture of both. When the atmosphere contains H2S(g), the PbS(g) coexists with Pb(g) 

at temperatures higher than 700 and with PbS between 500-600ºC. In the presence of 

HCl(g), (Figure 7d) PbCl(g) and PbCl2(g) may be formed, these being the dominant 

species at medium temperatures (500-800ºC). At temperatures higher than 700ºC all 

theoretical stable species for lead are in gas phase. Lead therefore can be expected to 

occur totally in gas phase in gasifier conditions while in gas cleaning conditions, it will 

be only partially in gas phase. At temperatures lower than 200ºC and atmospheric 

pressure only the condensed species are stable. 
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Figure 11.- Equilibrium compositions for lead at 25 atm in (a) mixture I and (b) mixture 

II. 

 

Zinc 

The equilibrium composition for zinc depends on the temperature and gas atmosphere 

(Figure 12). Minor modifications were observed with pressure. The only stable species 

in gas phase in an atmosphere free of HCl(g) is Zn(g) (Figure 12a). Its formation begins 

between 500 and 800ºC depending on the gas atmosphere. Zn(g) is the only species 

present in equilibrium at temperatures higher than 1000ºC. At temperatures between 

200-600ºC only condensed species are stable, ZnS(B), ZnS(W) and ZnS coexisting. The 

presence of HCl(g) in the atmosphere (Figure 12b) favours the formation of ZnCl2(g) 
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between 300 and 1000ºC, while the presence of H2S(g) in the gas mixture does not 

modify the equilibrium composition. Pressure modifications produce variations in the 

concentration of the different species at equilibrium. These results suggest that that the 

zinc present in coal occurs totally in gas phase in gasifier conditions and in gas cleaning 

conditions. However, zinc would not be emitted into the environment in gas phase. 
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Figure 12.- Equilibrium compositions for zinc at 25 atm in (a) mixture III and (b) 

mixture II. 

 

CONCLUSIONS 

From thermodynamic equilibrium calculations, trace elements may be classified, 

according to their volatile behaviour expected during coal gasification, such as is 

generally done using available experimental data as the basis [1]. This classification, 

which does not take into account heterogeneous reactions, would consist of three main 

groups. The trace elements in the first group (Group A), would include those that may 

be totally condensed in gasification gas cleaning and emission conditions. This is the 

case of Mn. This group would be similar to that defined as Group 1 for experimental 

coal combustion conditions [1]. The elements mainly present in gas phase in most 

conditions (Se, Hg and B) would be classified in Group C. This group is similar to 

Group 3 for combustion processes. The rest of the elements would form an intermediate 
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group (Group B). If the goal of assessing the elements in this group is to ascertain the 

possible elements in gas phase in gas cleaning conditions, two subgroups need to be 

considered; Group B1 which would include those elements that are totally or partially in 

gas phase at the  temperature of hot gas cleaning systems (500-800ºC), as is the case of 

Co and Be, and subgroup B2 which would contain the elements totally or partially in 

gas phase at low temperature gas cleaning conditions (<500ºC), i.e. Sb, As, Cd, Pb, Zn, 

Ni, Cr and V. 
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