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Abstract

Compelling evidence indicates the existence of bidirectional communication between astrocytes and neurons. Astrocytes, a
type of glial cells classically considered to be passive supportive cells, have been recently demonstrated to be actively
involved in the processing and regulation of synaptic information, suggesting that brain function arises from the activity of
neuron-glia networks. However, the actual impact of astrocytes in neural network function is largely unknown and its
application in artificial intelligence remains untested. We have investigated the consequences of including artificial
astrocytes, which present the biologically defined properties involved in astrocyte-neuron communication, on artificial
neural network performance. Using connectionist systems and evolutionary algorithms, we have compared the
performance of artificial neural networks (NN) and artificial neuron-glia networks (NGN) to solve classification problems.
We show that the degree of success of NGN is superior to NN. Analysis of performances of NN with different number of
neurons or different architectures indicate that the effects of NGN cannot be accounted for an increased number of network
elements, but rather they are specifically due to astrocytes. Furthermore, the relative efficacy of NGN vs. NN increases as the
complexity of the network increases. These results indicate that artificial astrocytes improve neural network performance,
and established the concept of Artificial Neuron-Glia Networks, which represents a novel concept in Artificial Intelligence
with implications in computational science as well as in the understanding of brain function.
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Introduction

In Artificial Intelligence, connectionist systems are based on

networks of interconnected artificial neurons that emulate brain

neuronal networks [1,2]. Astrocytes have recently emerged as

cellular elements actively involved in the transfer and integration

of information in the brain. Indeed, astrocytes receive, process and

regulate synaptic information which had led to a new concept in

neuroscience, i.e., that brain function results from the coordinated

activity of astrocytes and neurons in neuron-glia networks [3–7].

However, the design of artificial neuron-glia networks, where

astrocytes exchange information with neurons and which are

endowed with similar properties of astrocyte-neuron communica-

tion in biological systems, is still lacking. Based on our current

knowledge of nervous system function, such novel design seems a

logical step to be followed by future artificial intelligence. We

therefore designed artificial neuron-glia networks and investigated

the consequences of the presence of artificial astrocytes on the

performance of artificial neural networks.

Results

Artificial astrocytes improve neural network performance
We used multilayer feed-forward artificial neural networks with

3 to 5 layers (including input and output layers). We compared the

performance efficiency to solve problems of artificial pure neural

networks and the corresponding artificial neuron-glia networks,

which included astrocytes that sensed and modulated neuronal

connections. Artificial astrocytes were designed to resemble the

signaling properties of biological astrocytes, which respond to

neurotransmitters released under high synaptic activity [6,8–11]

and regulate neurotransmission in a larger temporal scale (i.e.

hundreds of milliseconds and seconds) than fast neuronal and

synaptic signaling (i.e. milliseconds) [6]. Consequently, artificial

astrocytes 1) were stimulated by highly active neuronal connec-

tions, and 2) regulated neuronal connections with slow temporal

time course. Hence, 1) astrocytes were stimulated when the

associated neuronal connections were active for at least n out of m

iterations (n: 2 to 3; m: 4, 6, 8), and 2) considering the time unit as

a single iteration, astrocytic effects lasted 4 to 8 iterations, and the

neuronal connection weights gradually increased (25%) or

decreased (50%) if the associated astrocyte was active or inactive,

respectively. Present neuron-glial networks had an artificial

astrocyte for each neuron, and each astrocyte only responds to

the activity of the associated neuron and modulates the

connections of that neuron with neurons of the next (adjacent)

layer. For simplicity, spatial spread of the astrocyte signal to other

neurons or communication between astrocytes were not consid-

ered (see Discussion).
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Artificial networks were challenged to solve four classification

problems (obtained from the University of California Irvine

Machine Learning Repository [12]) with different characteristics

and complexities defined by the number of input variables and

output parameters: 1) In Heart Disease (HD) problem, networks

detected the presence or absence of disease analyzing 13

parameters from 303 patients (i.e., they were fed with 13 inputs

and provided a single binomial output); 2) In Breast Cancer (BC)

problem, they predicted the presence of cancer from 9 properties

from 699 patients (i.e., 9 inputs; a binomial output); 3) In Iris

Flower (IF) problem, networks classified 150 flowers displaying 4

characteristics (width and length of petals and sepals) into 3

different species (i.e., 4 inputs; 3 possible outputs); 4) In the

Ionosphere (IS) problem, networks defined ‘‘good’’ or ‘‘bad’’ radar

signals according to the state of the ionosphere analyzing 34

characteristics of 351 radar signals (i.e., 34 inputs; a binomial

output).

NN were trained using genetic algorithms (GA) [13–15] and

NGN were trained using a learning hybrid method combining GA

and the neuron-glia algorithm (see Materials and Methods). We

quantified the following parameters: 1) Training and Test

accuracies: the accuracies reached during training and test; 2)

Steady Training and Test accuracies: the training and test

accuracies, respectively, reached at the end of the process (60,

210, 16 and 240 minutes for HD, BC, IF and IS problems,

respectively); 3) Training and Test times: the mean time at which

95% of the respective steady accuracy was reached.

When solving the IS problem (Figure 1A), both training and test

accuracies of the NN increased over time until reaching a

maximum at the end of the processes (Figure 1B, 1C). Similar

behaviours were observed for the other problems. A similar

developmental profile of both parameters over time was observed

in NGN (Figure 1B, 1C). However, striking differences in the

parameters were shown by NN and NGN.

The steady training accuracies of NGN were higher than the

respective NN in all problems (Figure 1D). The steady test

accuracy of NGN was also higher than NN when solving IS and

BC problems, whereas it was reduced for HD problem, or

unchanged for IF problem. Both training and test times of NGN

and NN, yet in some cases significantly different, had similar

values (,6 min) for HD, IF and BC problems (Figure 1E). In IS

problem, which displayed long training and test times, both were

shorter in NGN than in NN. These results indicate that astrocytes

influenced the performance of the networks, without largely

affecting or rather reducing their learning velocity. They also

suggest that such influence depended on the network architecture

and the problem tested.

The improvement of network performance is specifically
due to artificial astrocytes

Because the performance enhancement of NGN vs. NN might

not be specifically due to astrocytes but to the presence of

additional elements, we tested whether additional neurons in NN

produced similar improvements. We analyzed the performances of

NN with different architecture and number of neurons (Figure 2).

We designed NN with 1, 2 or 3 hidden layers (NN1, NN2 and

NN3) and with 44, 87 and 87 neurons (Figure 2A). In three

problems (HD, IF and BC), no differences were found between the

different NN (Figure 2B, 2C). In IS problem, accuracies were

higher in NN2 and NN3 respect to NN1, but they were lower in

NN3 than in NN2, which had the same number of neurons but

different architectures, which is inconsistent with an improved

performance as the number of neurons increase. Likewise, no

trends were observed in training and test times (Figure 2D). These

results indicate that NN performance did not correlate with the

number of neurons or the architecture, suggesting that differences

in NN and NGN performances cannot be accounted for an

increased number of elements, but they are specifically due to

astrocytes.

Network performance improvement by artificial
astrocytes increases as the network complexity increases

We next investigated whether astrocyte effects depended on the

network complexity. We used networks with different levels of

complexity (defined by their different number of neurons, hidden

layers and connections) and compared their performances with the

corresponding NGN. To quantify NGN vs. NN performance, we

defined performance index as the ratio between steady accuracies

of NGN and the corresponding NN. First, we analyzed the impact

of astrocytes on three networks with different hidden layers for

each problem tested (Figure 3A). The steady test and training

accuracies of NGN and the corresponding NN were different, and

their relative values were also different among the three networks

(for each problem tested) (Figure 3A). Then, to estimate the

astrocyte effects irrespective of the problem, we pooled together

the performance indexes of the four problems and plotted vs. the

number of hidden layers (Figure 3B). Both training and test

performance indexes increased as the number of hidden layers

increased (Figure 3B), indicating that the impact of astrocytes

increased as the complexity of the network increased.

Relative network performance improvement by artificial
astrocytes depends on the problem tested

We next asked whether astrocyte effects depended on the

problem (Figure 4). In all cases (except IF problem, 1 hidden

layer), the steady training accuracy and the performance index was

increased in NGN vs. the respective NN, in all the problems and

networks (Figure 4A, 4B). However, the steady test accuracy of

NGN vs. NN displayed more variability depending on the

problem (Figure 4A). To quantify the astrocyte impact irrespective

of the network architecture, for each problem we pooled together

the performance indexes of the three networks (Figure 4B). While

the relative training accuracy was higher for IF and IS problems,

the relative test accuracy increased following the sequence HD-IF-

BC-IS (Figure 4B). This result indicates that the impact of

astrocytes also depended on the problem tested.

NGN performance improvement depends on intrinsic
properties of astrocytes

Above results were obtained using a constant paradigm of

astrocytic activation, i.e., astrocytes were stimulated when the

associated neuronal connections were active for at least 3 out of 6

iterations. To investigate if NGN performance improvement

depended on intrinsic properties of astrocytes, we analyzed

whether different patterns of astrocytic activation influenced the

performance indexes. We defined two variables in the artificial

neuron-glia interaction: 1) Astrocytic Sensitivity as the number of

times the neuronal connection was required to be active to

stimulate the associated astrocyte, i.e., 2,m is more sensitive than

3,m (being m = 4, 6 or 8); 2) Neuron-glia Connection Power as the

number of iterations in which the neuronal connections are

possibly active to stimulate the astrocyte (for example, if n,m = 3,6,

at least 3 activations of the neuron had to occur during 6

consecutive iterations to stimulate the associated astrocyte),

consequently, the strength is: n,8.n,6.n,4 (being n = 2 or 3)

because the ability of a neuron to stimulate the associated astrocyte

is higher for m = 8 than m = 6 and m = 4. Figure 4C shows that the
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Figure 1. Artificial astrocytes enhance neural network performance. (A) Schematic drawing representing the design of artificial neural
networks without (left) and with artificial astrocytes (red stars; right) designed to solve the Ionosphere (IS) problem. (B) Representative example (left)
and mean training accuracy (n = 100) vs. time for the (NN) and (NGN) solving the IS problem. (C) Representative example (left) and mean test accuracy
(n = 100) vs. time for the NN and NGN solving the IS problem. (D) Mean steady training and test accuracies (left and right, respectively; n = 100) of NN
and NGN solving the four problems tested. (E) Mean training and test times (left and right, respectively; n = 100) of NN and NGN solving the four
problems tested. *P,0.05, **P,0.01 and ***P,0.001. Values represent mean 6 S.E.M.
doi:10.1371/journal.pone.0019109.g001
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relative performance of NGN vs. the corresponding NN is variable

depending on the sensitivity and the neuron-glia connection

power, and is different for each problem, indicating that the

relative improvement of NGN vs. NN depends on intrinsic

properties of the astrocytes, i.e., their sensitivity to neuronal

connection activity and the strength of the neuron-glia connection.

We finally investigated whether assigning specific values to the

intrinsic properties of astrocytes and neuron-glia connections

would further enhance the performance of NGN. We selected

the best configuration of the neuron-glia interaction and

compared it with the averaged non-selected configurations

(Figure 4D). In all problems, the performance of the specifically

designed NGN was enhanced vs. the corresponding NN

(performance indexes .1) as well as vs. the corresponding

NGN with non-selected configuration.

Discussion

Present results show that the performance of artificial networks

is improved by artificial astrocytes, which is in agreement and

support recent experimental findings that propose a direct

involvement of astrocytes in brain information processing [3–7].

The improvement provided by artificial astrocytes increases as the

network complexity increases, which agrees with the gradual

increase of the glia proportion observed in the phylogeny as the

nervous system complexity increases [5,16]. The specifically

Figure 2. Neural network performance does not depend on the number of neurons or the architecture of the network. (A) Schematic
drawing representing the design of three artificial neural networks with different number of neurons and different architectures. (B and C) Mean
steady training and test accuracies, respectively (n = 100) of each NN for each problem tested. (D) Mean training and test times (left and right,
respectively; n = 100) of each NN for each problem tested. *P,0.05, **P,0.01 and ***P,0.001. Values represent mean 6 S.E.M.
doi:10.1371/journal.pone.0019109.g002
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designed neuron-atrocyte properties provide a better network

performance than indiscriminate properties, indicating that the

interaction properties in these artificial tripartite synapses are

relevant, which supports the notion that neuron-glia interaction

in biological synapses represents a fine tuned communication

[10].

Several mechanisms and physiological consequences of astro-

cyte-neuron communication occur [6,17]. Under what conditions

Figure 3. Network performance improvement by artificial astrocytes increases as the network complexity increases. (A) Mean steady
training and test accuracies (left and right, respectively; n = 100) of NN and NGN with 1, 2 or 3 hidden layers to solve the four problems tested.
(B) Performance indexes (i.e., NGN values relative to NN values) of the training and test accuracies (left and right, respectively). Red symbols represent
the corresponding averaged values (n = 16). *P,0.05, **P,0.01 and ***P,0.001. Values represent mean 6 S.E.M.
doi:10.1371/journal.pone.0019109.g003
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Figure 4. Relative network performance improvement by artificial astrocytes depends on the problem tested. (A) Mean steady
training and test accuracies (left and right, respectively; n = 100) of NN and NGN with 1, 2 or 3 hidden layers to solve the four problems tested.
(B) Performance indexes (i.e., NGN values relative to NN values) of the training and test accuracies (left and right, respectively). Red symbols represent
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one specific modulatory effect takes place in a particular neural

network remains unknown [17]. For simplicity and as a first

approximation to a complex problem, present work focused in

modelling astrocyte-induced synaptic potentiation to investigate

whether artificial astrocytes improve artificial neural network

performance. Once this proof of concept is established, the

development of future models of astrocyte-neuron interaction that

incorporate the richness of biological interactions, e.g., astrocyte-

induced synaptic depression, or depression and potentiation

altogether, as well as spatial spread of the astrocyte signalling

and astrocyte-astrocyte communication, are required to test

whether they provide similar, or even better, improvements of

neural network performances. Likewise, future work is necessary to

investigate the impact of astrocytes in more complex neural

networks that include e.g., inhibitory neurons and/or feed-back

neuronal communication.

In conclusion, the performance of artificial neural networks is

improved when they include artificial astrocytes that are endowed

with biologically-defined neuron-glia communication properties.

Present results serve as foundation for the establishment of

Artificial Neuron-Glia Networks, which represents a novel concept

in Artificial Intelligence. Future developments of artificial neuron-

glia networks will help to improve the efficacy of artificial networks

as well as to better understand the role of astrocytes in brain

function.

Materials and Methods

Architecture and Parameters
Table 1 shows the NN architectures used. In NGN, every

astrocyte was associated with the neuronal connections of each

neuron (i.e. HD, 1 hidden layer architecture, NN: 13-4-1 vs NGN:

13(13)*-4(4)*-1, where (n)* refers to n astrocytes).

The activation function was the hyperbolic tangent in all the

layers, except in the output layer where the threshold function was

used with a threshold value of 0.5 and an expected binary output.

The same initial population of individuals was used for each

problem and architecture. The population sizes were 150

individuals (except for HD problem that was 100). The following

techniques were employed: the Montecarlo method for the

selection of individuals; the Darwinian substitution method; a

single crossover point; a crossover rate of 90%; and a mutation

rate of 10%.

The network architectures as well as GA parameters were

selected for their simplicity [18] and to establish the same

conditions for comparing NN and NGN.

Hybrid learning method
We designed a new hybrid learning method for training the new

NGN that searched for optimal connection weights in two phases.

In one phase, the weight values were modified using rules based on

neuron-glia communication properties [19]. In the other phase,

the weights were adjusted through GA.

In the first learning phase, every individual (consisting of as

many values as the connection weights exist in the NGN) of a

population considered by the GA was modified as each training

pattern passed on to the network, according to the activity of the

neurons during the passage of that pattern. For each individual,

every input pattern of the training set was presented to the network

during m iterations (pattern cycle = m: 4, 6 or 8). These iterations

modified the individual by applying an algorithm based on

neuron-glia communication properties. This algorithm considered

that the NGN had an artificial astrocyte for each neuron, and each

neuron had an activity counter that begun with a value of zero and

increased or decreased during each iteration in only one whole

integer (+1 or 21) until it reached the Maximum (n) or Minimum

(-n) Astrocytic Sensitivity. A neuronal connection ij connected

neuron i with neuron j. A neuronal connection was considered

active when the neuron i was active (according to its activation

function). When the activity of a neuron reached its maximum

value n, the astrocyte was activated and then increased 25% the

weight of the neuronal connections with the neurons of the next

(adjacent) layer. If a neuron that had reached this maximum value

was once again activated, the value of n was maintained and the

weights were increased another 25%. On the other hand, if the

activity counter reached a value of –n, the astrocyte was not

excited and the associated neuronal connection weights were

decreased 50%. If a neuron had reached its minimum value and

was not further activated, then the value of –n was maintained and

the weights were further decreased. Therefore, the astrocytic

effects were maintained and became gradually attenuated over

time. The combinations (Astrocytic Sensitivity, Neuron-glia power

connection: 2,4; 3,6; 2,6 y 3,8) were determined by trial-and-error,

and allowed an upper limit of 3, 4, 5 or 6 astrocytic activations,

respectively. Weight changes of 25% and 50% were chosen

because they provided satisfactory results in the initial tests and

they are in agreement with biological experimental observations,

Table 1. Architectures of NN used in each problem.

One hidden layer Two hidden layers Three hidden layers

Fig. 2, 3, 4 Fig. 1, 3, 4 Fig. 2 Fig. 3, 4 Fig. 2

Heart Disease 13-4-1 13-4-3-1 13-13-8-1 13-5-4-3-1 13-13-4-4-1

Iris Flower 4-5-3 4-5-7-3 4-4-10-3 4-7-5-7-3 4-4-5-5-3

Breast Cancer 9-7-1 9-7-5-1 9-9-14-1 9-12-8-4-1 9-9-7-7-1

Ionosphere 34-9-1 34-9-4-1 34-34-18-1 34-12-8-4-1 34-34-9-9-1

doi:10.1371/journal.pone.0019109.t001

the corresponding averaged values (n = 12). (C) Mean performance indexes of the training and test accuracies (left and right, respectively; n = 100) for
each problem tested when artificial astrocytes were stimulated by different patterns of neuronal connection activity. The notation n,m indicates that
artificial astrocytes were stimulated when the associated neuronal connections were active for at least n out of m iterations. (D) Mean performance
indexes of the training and test accuracies (left and right, respectively; n = 100) for each problem of NGN with non-selected (black bars) or with
specifically selected neuron-glia interaction parameters (red bars). *P,0.05, **P,0.01 and ***P,0.001. Values represent mean 6 S.E.M.
doi:10.1371/journal.pone.0019109.g004
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because being the increment lower than the decrement only

neuronal connections with relatively high activity would remain

reinforced [19].

Throughout the training phase, after pattern cycle finished the

associated error was calculated. After all the training patterns were

passed, the mean square error (MSE) for each individual was

calculated. This phase constitutes a non-supervised training since

the modifications of the connection weights did not consider the

error of the output, but rather took place at any time according to

the activation of astrocytes.

In the second learning phase, GA was applied to the individuals

according to their MSE obtained in the first phase. The GA

selected the new individuals with which the first and second phases

were repeated until the pre-established stop-time was reached or

no error was obtained.

During the test phase, the input patterns were presented to the

network according to the combinations (Astrocytic Sensitivity,

Neuron-glia power connection) determined in the training phase.

Validation
For each problem and for each architecture, the values for the

comparison of each NN with its corresponding NGN were the

average precisions obtained in 100 different test results. These 100

tests were performed once each network was trained with 10

disjointed sets of input patterns using the 5 iterations of 2-fold

crossvalidation method [20], and additionally employing ten

different populations of initial weights. The sets of input patterns

were divided evenly into 50% training and 50% testing patterns.

Wilcoxon test [21] was used for statistics.

The steady test accuracies were measured after a training period

that was previously established for each problem and architecture.

This time was the same for NN and NGN and was the execution

time associated with 5,000 generations of the 2,4 combination.

Table 2 shows the stop times during the training phase.

The simulations were performed with Linux operating system in

the FINISTERRAE and SVG supercomputers from CESGA

[22], Spain.
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