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Abstract  

The comparative study of the corrosion behaviour of the AZ31 magnesium alloy with 

different grain sizes immersed in simulated body fluids was made in chloride solutions 

(8g/L) and Phosphate Buffer-containing Solution (PBS). The influence of the 

immersion time was also analysed. Electrochemical techniques such as the open circuit 

potential, polarization curves, current transients and electrochemical impedance 

spectroscopy, complemented with scanning electron microscopy and energy dispersive 

spectroscopy were used. Immediately after the immersion in the corrosive media the 

corrosion resistance was similar for both grain sizes of the AZ31 alloy and higher in 
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NaCl solutions than in PBS. However, this corrosion behaviour was reversed after 

longer periods of immersion due to the stabilizing of the corrosion products of MgO 

and/or Mg(OH)2 with P-containing compounds. These P-compounds contribute to a 

higher level of protection by hindering the aggressive action of chloride ions.  The best 

corrosion behaviour of the AZ31 alloy was obtained for the finest grain alloy associated 

with the highest transfer resistance value, after long periods of immersion in PBS.   

 

Keywords: AZ31 Mg alloy; Grain size; Biomaterial; Corrosion; Electrochemical 

techniques; Aggressive ions  

 

1. Introduction 

 

Magnesium is present in high concentration in sea water and is the eighth most 

abundant element on Earth. It has also excellent specific strength and a low density,  

only 2/3 that of aluminium, so Mg and its alloys can be used in many applications 

including computer parts, mobile phones, aerospace components, handheld tools and so 

on [1-2]. Magnesium alloys are also potentially useful for bone implants and stent 

applications due to their low density, inherent biocompatibility and adequate 

mechanical properties including a fracture toughness higher than that of ceramics [3-6]. 

Additionally, its elastic modulus (40-45 GPa) is closer to that of human bones (10-40 

GPa) than other commonly used implant materials. As a result, the stress-shielding 

phenomena caused by current metallic implants made of stainless steel or titanium alloy 

can be minimized [7].  

Another advantage of magnesium in relation to other metallic implants is the 

degradability of magnesium alloys which offers the possibility of better physiological 
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repair and better reconstruction of vascular compliance with minimum inflammatory 

response. It has been shown that magnesium apatite precipitates on the surface of the 

modified pure Mg [8,9] and osteoblasts respond by degrading magnesium alloys in the 

guinea pig femur [10]. Magnesium alloys have also shown osteoconductive and 

osteoinductive properties, thus offering a less invasive repair and temporary support 

during tissue recovery. The alloys are gradually dissolved or absorbed by the body. In 

this regard, they are superior to permanent implants, which may cause mismatches in 

behaviour between the implant and the body as well as physical irritation and chronic 

inflammatory reactions. As degradable materials, they will not remain as permanent 

implants in the body nor would need a second surgical operation after the tissue is 

repaired.  

The major drawback of magnesium alloys is that they tend to corrode very quickly 

in the physiological pH (7.4-7.6) environment thereby losing their mechanical integrity 

before the end of the period necessary for bone tissue healing. Therefore, the promising 

future of Mg and its alloys is dependent on the corrosion control rate in the body fluids.  

Several treatments to protect magnesium against corrosion have been proposed such 

as magnesium purification [11], fluoride conversion coatings [12], alloying with other 

elements, anodizing, [1,11,13], etc. Several studies [14-20] have shown that the 

corrosion behaviour of Mg alloys is significantly dependent on the microstructure and 

particularly on the amount and distribution of the intermetallic phases and the grain 

size. Attempts at improving the corrosion resistance of Mg alloys by reducing grain size 

have been proposed by means of laser fusion technology. However, the results obtained 

by various authors are contradictory [21, 22]. Microcrystallization has been also 

proposed as a way to improve resistance in chloride media [23].   
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It can therefore be concluded that the reduction of the corrosion rate, by grain size 

refinement, and the change of this rate as a function of the physiological media is not 

well established in the case of Mg alloys.  The aim of this work is to evaluate these two 

effects in an attempt to develop a magnesium alloy with improved corrosion resistance. 

 

2. Materials and methods 

2.1. Material 

 

The AZ31 alloy was received from Magnesium Elektron in the form of a rolled 3 

mm  thick sheet in the O-temper condition (annealed at 345 oC) and also in the form of 

a cast ingot. The nominal composition of the AZ31 alloy is: 3 % wt. Al, 1% wt Zn, 0.2 

% wt Mn and balance Mg. The alloy was solution-heat treated at 450 oC for 30 minutes 

and water quenched. Rolled sheet disks of 10 mm in diameter were spark machined; 

these samples were termed Type I.   

Slabs, machined out from the ingot were processed by Equal Channel Angular 

Extrusion (ECAE). The first pass was made at 250oC using a square die of 12x12 mm, 

with an intersection angle of Φ = 90o and a plunger speed of 0.1 mm/s [24]. The die was 

heated in situ during the Equal Channel Angular Pressing (ECAP) process and the 

temperature of the die was maintained stable. The samples were heated successively to 

300oC and rolled by applying a reduction in thickness from 12 mm to a final thickness 

of 3 mm in one rolling pass. Rapid cooling (quenching) took place during rolling, since 

the rolling mill was at room temperature. From the rolled slabs, disks of 10 mm in 

diameter were machined out; these samples are termed Type II.  

 

2.2 Microstructural characterization 
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The microstructures of the alloy in the different stages of processing were examined 

by optical microscopy (OM). The sample preparation consisted of grinding on SiC 

paper, followed by mechanical polishing with 6 and 1 μm diamond paste and short final 

polishing using colloidal silica. The grain structure was revealed by subsequent etching 

using a solution of ethanol (100 ml), picric acid (5 g), acetic acid (5 ml) and water (10 

ml).  

Additionally, microstructural and compositional characterization of the alloy surface 

was carried out by scanning (SEM) and energy-dispersive X-ray spectroscopy (EDX) 

microanalysis, after immersion tests in the corrosive media.  

 

2.3 Corrosive media and electrochemical techniques 

 

The following solutions were used as electrolytes: a) NaCl solution: 8 g/L and b) 

Phosphate Buffer Solution (PBS): 0.2 g/L KCl, 0.2 g/L KH2PO4, 8 g/L NaCl and 

1.150g/L Na2HPO4 (anhydrous). 

A conventional three electrode electrochemical cell with a platinum wire as a 

counter electrode and Ag/AgCl as a reference electrode was used. The working 

electrodes were the AZ31 disks. The surface was ground with SiC abrasive paper of 

increasing grain size from 600 to 1200 in water and finally polished with 1 µm diamond 

suspension. Finally, AZ31 samples were rinsed ultrasonically in ethanol. Single sweep 

potentiodynamic polarization curves were performed at 37ºC at 10 mV/s, between -1.9 

V and different anodic limits. The passivation currents and breakdown potentials (Ebd) 

were determined. At least five polarization curves were generated for each condition 
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(Types I and II in PBS and NaCl solutions). Transient currents were recorded at -1.60 V 

after a potential step between -1.9 V and -1.6 V. 

Electrochemical Impedance Spectroscopy (EIS) was carried out after 2 hours, 24 

hours and 2, 3, 4 and 6 days testing time. Before the EIS measurements, the corrosion 

potential was registered over 10 minutes until the potential was stabilised. The EIS 

experiments were performed at the corrosion potential by applying a sinusoidal wave of 

10 mV in amplitude in a frequency range from 2x104 to 10-2 Hz spaced logarithmically 

(five per decade). A 1280 Solartron frequency response analyzer was used to perform 

the electrochemical tests.  

The EIS results were analysed by fitting the experimental impedance data with 

different equivalent circuit models. The equivalent circuit parameters were calculated 

by fitting the impedance function to the measured spectra by a Non-Linear Least-

Squares program (NLLS program) for all the frequencies measured. The criteria used in 

estimating the quality of the fitting were evaluated firstly with the lower chi-square 

value, and secondly with the lower estimative errors (in %) for all the components.  

 

3. Results 

3.1 Microstructural characterization 

 

The microstructure of Type I and Type II AZ31 alloy is shown in Figure 1(a) and 

1(b) respectively. True grain sizes were measured by the linear intercept method using a 

correction factor of 1.74. The mean grain sizes were d = 25.7 and 4.5 μm for Type I and 

Type II samples respectively. In both, Type I and II samples, some particles of Mn-rich 

phase (Al6Mn) still remained present in the microstructure after processing. Their 

volume fraction was estimated by image analysis to be close to 3 x 10-3.  
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3.2 Initial stages of corrosion 

 

Polarization curves recorded immediately after the immersion of Type I AZ31 

samples in NaCl and PBS are shown in Figure 2. Higher cathodic current and slightly 

higher breakdown potential is observed for the NaCl than for the PBS solutions. The 

curves corresponding to Type II samples are depicted in Figure 3. The breakdown 

potential measured in both solutions is similar for these samples.  

The transient current recorded at a -1.60 V in NaCl for Type II AZ31 alloy is shown 

in Figure 4. The figure reveals that initially the current decreases, remains stable for a 

few seconds and then increases rapidly. Conversely, in the case of PBS, after the initial 

decrease, the current increases immediately. 

Figures 5 and 6 show the Nyquist impedance plots in NaCl and PBS, after 2 hours 

of immersion, for Type I and II samples, respectively. In the impedance plot for Type I 

samples (Figure 5), a depressed semicircle at high frequencies and an inductive loop at 

low frequencies are observed, independently of the medium, PBS or NaCl. In the 

impedance plot for Type II (Figure 6), the capacitive arc is followed by a possible 

second arc that could be influenced by a diffusion process. Considering that the kinetics 

information, referring to the corrosion behaviour is estimated from the capacitive arc 

obtained in the high frequency (HF) and medium frequency (MF) ranges, the analysis of 

the impedance data will be focused on this part of the spectra. By comparing the 

diameter of the capacitive arcs, obtained in Figures 5 and 6, higher diameters for 

samples immersed in NaCl than those immersed in PBS were found, thus showing a 

higher corrosion resistance in NaCl medium. 
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This fact is corroborated by the examination of the surface by optical and electron 

microscopy. Figure 7 shows micrographs of the formation of a pit after 1 h immersion 

in PBS for Type II samples. The optical micrograph, Figure 7a, shows that the surface is 

covered by a dark protective layer with white circles inside. Figure 7b shows a pit, 

around which, precipitation has taken place. The mapping of the elements detected in 

this area can be seen in Figures 7c-7j. The small pit is formed close to the intermetallic 

AlMn deposit (Figures 7b, d, and e). High P signals around the pits are observed in 

Figure 7g. However, after 1 h immersion, Type II samples did not show the formation 

of pits in NaCl. This observation reveals that the phosphate included in the PBS initially 

accelerates the corrosion of the AZ31 alloy.  

 

3.3 Evolution over time of the corrosion kinetics 

 

Figure 8 shows the impedance plots for Types I and II in PBS after 6 days 

immersion. A higher diameter for Type II samples is obtained.  

Analysis of experimental impedance data shows that more than one time constant is 

necessary to describe the corrosion behaviour since the impedance data do not produce 

a simple semicircle in the capacitive half plane. Figure 9 shows the equivalent circuits 

used to simulate the impedance data of the AZ31 alloy of both Types of samples, I and 

II, immersed in NaCl or PBS solutions. The HF-MF arc was simulated by using a 

simple Randles circuit (Figure 9a) consisting of the electrolyte resistance, Rs, in series 

with a Constant Phase Element, CPE, simulating a non-ideal behaviour of the capacitor 

due to the sum of the oxide layer capacitance and the double-layer capacitance, in 

parallel with the transfer charge resistance, R1. In order to simulate the low frequency 

(LF) range, a second branch is added in the Randles circuit (Figure 9b), in which an 
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inductive element L1, appears to describe the corrosion behaviour at low frequencies. 

The fitting of the first arc (HF-MF range) gives valuable information about the 

corrosion kinetics of the AZ31 alloy. Table 1 shows fitting values obtained with the 

equivalent circuits and experimental values obtained from the impedance data. The 

Table summarises the values obtained for both Types of samples, I and II, in both 

corrosive media at two hours and after 6 days immersion. The increase of Rs over time 

is higher in PBS than in NaCl solutions and this occurs independently of the type of 

sample. In addition, an improvement in R1 over time for Type I samples immersed in 

NaCl and PBS solutions is seen. The same is observed in Type II samples but the effect 

is more pronounced in PBS. On the other hand, Type II samples immersed in NaCl 

show that the capacitance slightly increases whereas in PBS the capacitance is nearly 

constant.  

 

4. Discussion 

 

The application of Mg and its alloys as biomaterial for temporal implants in the 

form of plates and screws would be effective when the corrosion kinetics are understood 

and controlled in body fluids. A possible route to reduce the corrosion rate could be the 

reduction of the grain size. With this goal in sight, the research developed in this work 

consisted mainly in the evaluation of the corrosion behaviour of Type I and Type II 

AZ31 magnesium alloy of different grain size in two electrolyte media. The Al present 

in the AZ31 alloy, 3% in weight, increases the corrosion resistance of Mg by stabilizing 

the passive layer [14, 25-26]. Larger amounts of Al are not recommended since 

aluminium ions can easily combine with inorganic phosphates, leading to a lack of 

phosphate in the human body and inducing dementia [11,27]. Furthermore, the 
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relatively small amount of Al ensures the presence of only one phase in the alloy thus 

avoiding second phases that may be detrimental for the corrosion behaviour. The Zn 

content in the alloy makes for satisfactory mechanical properties and can at the same 

time be tolerated in the human body. So this Zn content increases the corrosion 

resistance and retards the biodegradation of magnesium alloys [11, 14].  

 Type I AZ31 samples are in the O-temper condition corresponding to the annealed 

and recrystallized microstructure. The processing route used to obtain Type II samples 

leads to a fine grain size, 4.5 μm, which is similar to that obtained with severe plastic 

deformation techniques. The processing temperature of the rolling pass, 300oC, is above 

the solvus temperature for aluminum in this alloy. Therefore, the Al is in solid solution 

during rolling. Due to the rapid cooling that takes place after rolling and since the 

rolling mill is at room temperature, no precipitation of the beta-phase, Mg17Al12, takes 

place. Compositional maps obtained by EDX show that Zn and Al are homogeneously 

distributed in the Mg matrix in both Types I and II samples. After the processing route 

[28], some particles of Mn-rich phase (Al6Mn) still remained present in the 

microstructure as can be seen in Figure 7.  

Results for the initial stages of immersion show that the corrosion behaviour of 

Types I and II samples depends on the testing media, NaCl or PBS. The polarization 

curves obtained in 8 g/l NaCl (Figures 2 and 3) show a pseudo-passive region followed 

by a sharp current increase at the breakdown potential due to the action of chloride. 

Correspondingly, the current transients for Type II (Figure 4) and Type I (not shown) 

recorded at -1.60 V in NaCl show that the current decreases initially, probably due to 

the formation of the pseudopassive layer of Mg(OH)2. The current remains low during 

20 s for Type II in NaCl and then increases due to the localised corrosion induced by 

chloride ions. Later, pitting spreads laterally. The current “plateau” is not observed in 
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PBS. In this case, the current increases immediately because the high pH needed for 

Mg(OH)2 formation is not reached. In the same way, after a short immersion period (30 

min) pits are only observed in PBS. These results agree with the transfer resistance, R1 

values (Table 1 at 2 hours) obtained from impedance diagrams (Figures 5 and 6) which 

show a higher value in NaCl than in PBS. This different behaviour is attributed to the 

electrochemically dissolution of Mg in the surrounding areas (anodic zones) of the 

intermetallic inclusions (cathodic areas).  

The kinetics data of the corrosion behaviour of the samples are shown in Table 1 

that summarises the charge transfer resistance, R1, values obtained from the HF-MF 

capacitive arc at two hours testing. The diameter of the first capacitive arc at high 

frequency (Figures 5 and 6) can be ascribed to the R1 value that includes the resistance 

of the passive film and/or the layer of corrosion products [29]. The value of the 

semicircle diameter closely corresponds to the R1 value, only if the resistance of the 

passive film is much lower than the charge transfer resistance [29]. The capacitance 

values obtained at the maximum of the semicircle are 7.8 and 12.6 μF/cm2 in NaCl and 

PBS respectively, for the Type I samples (similar values are also obtained for Type II 

samples). These values are lower than those obtained for the electrochemical double 

layer which are about 20-50 μF/cm2 [29].  

The best electrochemical results at the initial stages, obtained in samples immersed 

in NaCl with respect to the PBS medium, can be attributed to the electrochemical 

dissolution of Mg thus favouring the production of OH- ions as a result of the hydrogen 

gas formation in the cathodic reaction. The presence of OH- ions causes an increase of 

pH in the medium and facilitates the formation and precipitation of MgO and/or 

Mg(OH)2 as corrosion products. In the case of AZ31 samples immersed in PBS, the 

phosphate ions ((HPO4)2-) possibly capture the OH- that is produced by the cathodic 



 12

reaction and consequently the high alkaline pH (that favours the massive precipitation 

of Mg hydroxide) cannot be reached. On the other hand, the phosphate precipitation 

hinders the action of chloride and Mg dissolution is slower.  

The change of Ecorr over time (Figure 10) is more important in Type II and is 

probably related to its higher surface reactivity being more evident during the first 

hours. The most marked differences between Type I and Type II samples could be 

observed in the EIS measurements. After the first capacitive arc that appears in both 

samples, Type I and II, (Figures 5 and 6) the shape of the impedance diagrams is 

different. The Type I samples show an inductive arc in both media, NaCl and PBS 

(Figure 5). The Type II samples show a possible second arc (Figure 6).  

The inductive loop (Type I) is assumed to be due to the formation of the Mg(OH)2 

and/or MgO, already mentioned, and to the coverage due to an adsorbed intermediate 

(probably Mg(OH )+
ads ) or Mg(OH)2 [14,29]. The presence of this loop has been 

attributed, in the bibliography, to pitting processes [30] and also to the formation and 

precipitation of a salt film [31]. In our case, a discrete thin film is formed in the air and 

pitting corrosion may easily be initiated in the presence of chloride ions. It is the 

dissolution of this film that yields to the formation of corrosion products on the 

electrode surface. This behaviour agrees with the observation of other authors on the 

same alloy, AZ31 immersed in 3.0 wt% of NaCl [1,32]. 

The second arc observed for Type II samples (Figure 6) in both solutions, NaCl and 

PBS, could be attributed to mass transport in the solid phase due to the growth of the 

corrosion product layer [14], facilitated by the finer grain size. This diffusion process 

slows down the corrosion reaction, giving rise to an increase in the corrosion resistance, 

i.e., to a decrease of the corrosion rate.  



 13

The corrosion behaviour at initial stages is reversed when immersion time is 

increased and after six days the corrosion resistance is improved. R1 increases its value 

for samples immersed in PBS with respect to those immersed in NaCl (Table 1). This 

evolution of the corrosion behaviour with the immersion time is due to the accumulation 

of corrosion products, forming a layer that promotes a diffusive control of the corrosion 

process of the samples. After 6 days testing in PBS, the released PO4
- coprecipitates as 

Mg phosphate (Figure 7) together with the Mg oxide and hydroxide that is formed. The 

presence of phosphates has been detected, by Fourier Transform Infrared FTIR 

spectroscopy [33]. The increase of R1 over time could be related to the formation of a 

mixed layer that is increasingly thick and more compact with time hindering the 

diffusion of ions, particularly in case of Type II.  

Summarizing, the best corrosion behaviour of the AZ31 is obtained for the finest grain 

alloy, Type II. This good result is attributed to a more negative corrosion potential than 

that of Tipe I, giving rise to a fast electrochemical reaction and the formation of a layer 

of corrosion products, which protects from the diffusion of aggressive ions to the 

electrode surface. Immediately after the immersion, the corrosion resistance is higher in 

NaCl solution than in PBS, but this behaviour is reversed after longer periods of 

immersion due to the stabilization of the layer by P-containing compounds. These 

compounds contribute to a higher protection than that of the magnesium hydroxide 

formed in NaCl solution because they hinder the detrimental action of chloride ions. 

  

 

5. Conclusions 
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1.  At initial stages, pits are associated with the presence of AlMn intermetallics. The 

monophasic AZ31 alloy shows pitting corrosion that spreads laterally for both Types 

of samples.   

2. For short periods, the initiation of localized corrosion occurs earlier in PBS than in 

NaCl. However, the precipitation of P-containing salts in PBS decreases the 

corrosion rate over time for both Types of samples.  

3. The best performance corresponds to the AZ31 alloy with the finest grain size in 

PBS. It reveals the lower initial corrosion potential and higher charge transfer 

resistance values at long immersion periods. This could be related to the presence of 

a mixed compact layer of P-containing compounds, together with magnesium 

hydroxide, that promote protection against the action of chloride ions.  
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FIGURE CAPTIONS 

 

Figure 1.- Microstructure of AZ31 samples: Type I (a) and Type II (b).  

 

Figure 2.- Potentiodynamic polarization curves of Type I AZ31 alloy at 1 mV/s in NaCl 

and PBS.   

 

Figure 3.- Potentiodynamic polarization curves of Type II AZ31 alloy at 1 mV/s in 

NaCl and PBS .   

 

Figure 4.- Transient currents recorded at -1.60 V(SCE) in Type II AZ31 alloy in NaCl and 

PBS. 

 

Figure 5.- Nyquist plots of Type I AZ31 alloy in NaCl and PBS for two hours 

immersion time.  

 

Figure 6.- Nyquist plots of Type II AZ31 alloy in NaCl and PBS for two hours 

immersion time.  

 

 

Figure 7.- Micrographs of the formation of a small pit after 30 min of immersion for 

Type II AZ31 alloy in PBS. a) optical microscopy, b) electron secondary image, c) 

mapping of Mg, d) mapping of Al, e) mapping of Mn, f) mapping of Fe, g) mapping of 

P, h) mapping of Cl, i) mapping of Na and j) mapping of O. 
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Figure 8.- Nyquist plots of Type I and Type II AZ31 alloys in PBS solution for six days 

immersion time .  

 

Figure 9.- Equivalent circuits. Rs is the electrolyte resistance; CPE1 is the oxide film 

capacitance and the double layer capacitance; R1 is the charge transfer resistance and 

the oxide film resistance; L1 is the inductive element. 

 

Figure 10.- Corrosion potential, Ecorr, of Type I and Type II AZ31 alloy in PBS over 

immersion time. 

 

TABLE CAPTION 

 

Table 1.- Results obtained from the impedance diagrams for the Type I and II AZ31 

alloys in NaCl and PBS over immersion time and fitted data of the equivalents circuits 

of Figure 9.   

 

 



 

 

Figure 1. Microstructure of AZ31 samples: Type I (a) and Type II (b). 

 

 

 

 

Figure 2. Potentiodynamic polarization curves of Type I AZ31 alloy at 1 mV/s in NaCl and PBS . 

 



 

 

Figure 3. Potentiodynamic polarization curves of Type II AZ31 alloy at 1 mV/s in NaCl and PBS. 

 

 



 

 

 

Figure 4. Transient currents recorded at ‐1.60 V(SCE) in Type II AZ31 alloy in NaCl and PBS. 

 

 



 

Figure 5. Nyquist plots of Type I AZ31 alloy in NaCl and PBS for two hours immersion time. 

 

Figure 6. Nyquist plots of Type II AZ31 alloy in NaCl and PBS for two hours immersion time. 

 



 

 

 



 

Figure 7. Micrographs of  the  formation of a  small pit after 30 min of  immersion  for Type  II 
AZ31 alloy  in PBS. a) optical microscopy, b) electron secondary  image, c) mapping of Mg, d) 
mapping  of Al,  e) mapping  of Mn,  f) mapping  of  Fe,  g) mapping  of  P,  h) mapping  of  Cl,  i) 
mapping of Na and j) mapping of O. 

 

 

 

Figure 8. Nyquist plots of Type I and Type II AZ31 alloys in PBS solution for six days immersion 
time 
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Table I. Results obtained from the impedance diagrams for the Type I and II AZ31 alloys in NaCl 
and PBS over immersion time and fitted data of the equivalents circuits of Figure 9.   


