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Abstract

We consider a signaling model where the receiver is able to update his belief about the sender’s

type after the signaling stage. We introduce Bayesian learning in a variety of environments ranging

from simple two-period to continuous time models with stochastic production. Signaling equilibria

present two major departures from those obtained in models without learning. First, new mixed-

strategy equilibria involving multiple pooling are possible. Second, pooling equilibria can survive

the Intuitive Criterion when learning is fast enough.

1 Introduction

Signaling models are concerned with situations where an agent is able to send messages about infor-

mation that he could not otherwise credibly reveal. Private information is valuable to the extent that

it helps to predict the outcome of the transaction between the sender and the receiver. When the

relationship involves repeated interactions, observing each outcome allows the receiver to update his

belief. He is therefore able to gather knowledge about the sender after the signaling stage, a possibility

that is usually excluded in signaling games. We argue that this omission is not inconsequential by

embedding Bayesian learning in a standard signaling model and establishing that: (i) qualitatively

new equilibria emerge; and (ii) forward induction (as captured by the Intuitive Criterion) loses part

of its predictive power.
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These features arise because expectations about future payoffs do not solely depend on the equilib-

rium belief, as is commonly assumed in the literature, but also on the sender’s type. Even when agents

are indistinguishable right after the signaling stage, their expectations vary with their productivity

because they know that it will be identified over time. The standard premise that senders are equally

rewarded in pooling equilibria is therefore violated.

For the sake of concreteness, this general mechanism and its ramifications are illustrated in a job-

market signaling model along the lines of Spence’s (1973) seminal work. We consider an economy where

workers are better informed about their ability than prospective employers. In order to signal their

capacity, talented individuals have an incentive to invest in education. Alternatively, they may decide

to save on educational costs and trust that their actual productivity will be revealed by performances

on-the-job. Spence’s model does not take into account this countervailing incentive because it assumes

that all information is collected prior to labor market entry. Most of the ensuing theoretical literature

follows Spence’s approach and has ignored employer learning.1 Econometricians, on the other hand,

have devised ingenious tests for unobservable characteristics in order to estimate the efficiency of signal

extraction in labor markets. Empirical evidence documented in Lange (2007) shows that employers

are not only able to elicit information about workers’ abilities but that the speed at which they do so

is quite fast, with nearly 95% of the statistically significant information being collected after solely 3

years.2

This finding suggests that it is important to assess whether the outcomes of the signaling game

are indeed unaffected by the learning process. We show in this paper that it is not the case. Firstly,

qualitatively new types of equilibria may arise where more than one common level of education is

acquired by both types of workers with positive probability (multiple pooling). Secondly, the standard

1The paper by Gibbons and Katz (1991) is a notable exception. They do not focus on the game theoretical analysis

but on the implications of asymmetric information for layoff decisions. Although not directly concerned with learning,

the paper by Feltovich et al. (2002) also allows correlated information to be revealed after the signaling stage. They

consider a set-up with three types and show that high types may pool with low types at the lowest level of education.

More recently, Voorneveld and Weibull (2011) have studied markets for lemons in which buyers receive a private noisy

signal of the product’s quality; whereas Daley and Green (2009) have analyzed a signaling model with grades using the

D1 criterion. We discuss some of Daley and Green’s findings in Section 4.
2Lange (2007) is among the latest contributions to a strand of literature measuring the speed of employer learning.

Earlier works are discussed in Section 3. Available measures do not distinguish between symmetric and asymmetric

learning. This is why Pinkston (2009) can use an approach similar to that of Lange (2007) to estimate a model

of asymmetric learning in which all firms receive a private signal but the current employer always accumulate more

information about the worker. Hence, empirical models of employer learning do not test job market signaling. Yet, as

explained by Lange (2007), the estimated speed of learning can be used to place an upper bound on the contribution of

signaling to the gains of schooling.

2



refinement argument embodied in the Intuitive Criterion does not bite when employer learning is

sufficiently fast.

The second observation is particularly relevant from a game-theoretic point of view. The mul-

tiplicity of equilibria in Spence’s model has been a motivation for the vast literature on refinement

concepts. For signaling games with only two types, the Intuitive Criterion of Cho and Kreps (1987)

is the most commonly used refinement because it excludes all but one (separating) equilibrium. We

prove that this does not always hold true when employers are able to update their beliefs. The key

difference between the two environments is that learning yields higher asset values for talented indi-

viduals even when pooling is the equilibrium outcome. The gap increases with the efficiency of the

updating process as low and high types become less and more optimistic, respectively. The stronger

the correlation between a worker’s ability and his observable performance, the more attractive it is

for high types to reveal their ability on-the-job instead of paying the educational costs.3 This is why

high types find it optimal to pool with low types when learning is fast.

In order to illustrate the generality of this mechanism, we set-up our model in the most par-

simonious fashion. Our framework embeds Spence’s original game into a framework where firms

receive additional, post-education signals on the worker’s productivity; including dynamic settings

with Bayesian learning on the side of firms. Workers of different abilities can acquire education before

entering the labor market. We assume that their abilities are either high or low. The two types

case enables us to concentrate on the conceptual differences between our model and basic signaling

games because the Intuitive Criterion delivers a clear prediction that can be used as a benchmark.

By contrast, allowing for more than two types would distract us from our main focus since we would

have to consider more elaborate and diverse refinement concepts.

For similar reasons, we do not investigate all the potential interactions induced by the learning

process but instead specify some generic correlations between signaling and workers’ expected incomes.

Then we show that these properties are fulfilled by the simplest model of passive learning where the

worker’s only signal is education and firms update their beliefs using Bayes’ rule, so that types are

gradually revealed over time. Under this interpretation, our set-up bears similarities to Jovanovic’s

(1979) matching model with the crucial difference that uncertainty is not match-specific but worker-

specific. Hence it bridges the gap between the theoretic literature on signaling games and the labor

market literature. This suggests that, even though our description of the labor market is admittedly

stylized, the general properties laid out in Section 2 are likely to hold true in most models featuring

3On the other hand, the incentive for low types to send misleading signals, and thus to acquire education, increases with

the speed of employer learning. Haberlmaz (2006) proposes a partial equilibrium model which underlies the ambiguity

of the relationship between the value of job market signaling and the speed of employer learning.

3



signaling and learning.

To sum up, we do not attempt to characterize all the implications of signal extraction because it is

our conviction that such a task is beyond the scope of any paper. We also do not share the objective

of the “refinement program” by aiming at uniqueness results under powerful refinement concepts. We

view our work as a parsimonious step towards making signaling models more realistic in a direction

whose importance has been widely documented in the labor economics literature. It is our hope that

our previously unforeseen findings will pave the way for a more systematic program of research.

The paper is organized as follows. Section 2 lays out the model’s set-up. To underline the generality

of the results, we initially adopt a reduced form approach. We define workers’ value functions and

specify, using intuitive arguments, which key properties they should fulfill in order to capture the

learning process. To fix ideas, we provide a first, simple example called the Reports Model. In

Section 3, we analyze the equilibria in pure and mixed strategies of our model. Here we show the

existence of qualitatively new mixed-strategy equilibria (“multiple pooling”) and outline some of their

implications for empirical research. In Section 4, we discuss the conditions under which the Intuitive

Criterion can refine the set of equilibria and explain why they are not met when employer learning

is efficient enough. Then, Section 5 illustrates how the key properties of the workers’ value functions

can be derived from first principles, describing the signal extraction problem in examples with both

discrete and continuous time settings. Section 6 concludes. Proofs are relegated to the Appendix.

2 Signaling and Employer Learning

Workers differ in their innate abilities. They can be of different types which determine their productiv-

ity. Nature initially selects types according to pre-specified probabilities. The main ingredient of the

model is information asymmetry: Workers know their abilities whereas employers must infer them.

The game is as follows. In a first step, the worker chooses an education level. In a second step, the

industry offers a starting wage based on beliefs derived from the education signal. In Spence’s static

framework, the game ends as the worker enters the labor market. In our set-up, in contrast, a third

step is added, where the relationship develops, with the industry being able to extract information from

noisy realizations of the worker’s productivity. Rather than proposing a particular dynamic model,

we adopt a reduced-form approach to employer learning and delay its microfoundation to Section 5.

I. Education decision: We restrict our attention to cases where workers (senders) are of only two

types, i = h (high) or i = l (low). Nature assigns a productivity p ∈ {pl, ph} to the worker with

ph > pl. High-types account for a share µ0 < 1 of the population. For simplicity, we assume that
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workers are infinitely lived and that they discount the future at the common rate r. Before entering

the labor market, workers choose their education level e ∈ [0,+∞). To isolate the effect of signaling,

we do not allow education to increase productivity. Its only use is to signal abilities which are initially

unobserved by the industry (receiver).

Let the function c : R++×R
+ → R

+ specify the cost of acquiring education. That is, c(p, e) is the

cost that a worker with innate productivity p has to pay in order to acquire education level e.4 The

cost function is twice differentiable with ce(p, e) > 0 and cee(p, e) ≥ 0, hence strictly increasing and

convex in the level of education. As commonly assumed in the literature, we also let cp(p, e) < 0 and

cpe(p, e) < 0, so that total and marginal costs of education are strictly decreasing in ability. The last

requirement ensures that low types have steeper indifference curves than high types because it implies

the submodularity condition

c(ph, e
′′)− c(ph, e

′) < c(pl, e
′′)− c(pl, e

′) whenever e′′ > e′ ,

which is commonly referred to as the Single Crossing Property.

II. Wage setting: As in Spence’s model, a worker is paid his expected productivity. This wage

setting rule is justified as a proxy for a competitive labor market or a finite number of firms engaged

in Bertrand competition for the services of the worker. Under the first possibility, one can make sense

of the condition by assuming a single player in place of the industry, with payoffs given by a quadratic

loss function −(w − p)2. In any Perfect Bayesian Equilibrium, optimal behavior of this player will

lead to a wage offer equal to the expected productivity.5 Under the second possibility, where Bertrand

competition among multiple firms is explicitly introduced, the equilibrium concept must be refined to

ensure that all firms share the same beliefs about the worker.6 Let µ(e), which we abbreviate by µ

when no confusion may arise, denote the probability that the industry attaches to the worker being

of the high type given education signal e. The initial wage is given by w(µ) = (1 − µ)pl + µph. We

can therefore use the equilibrium belief of the industry to denote its response to a particular signal.

III. Expected income: The key departure from Spence’s model is the third step where we specify

the sender’s expected income. We adopt in this section a reduced-form approach: Given the actual

4Even though workers will only have productivity levels in {pl, ph}, it is convenient to define the cost function for all

potential productivities.
5Even though the resulting game is properly specified, there is no economic interpretation for the payoff function

−(w − p)2 but rather for the result of the optimization problem.
6This is the approach adopted by Mas-Colell et al (1995) in Section 13.C of their textbook. Notice that common

beliefs follow from the concept of sequential equilibrium but not of Perfect Bayesian Equilibrium. However, sequential

equilibrium is only defined for finite games.
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productivity p and the employer’s prior µ = µ(e), expected earnings are given by a value function7

v(p, µ) which captures the impact that employer learning has on future income.8

For the purposes of enabling comparative statics, we explicitly introduce two additional parameters.

The first one is the common discount rate r of workers whose interpretation depends on the particular

model behind the value function. We adopt the convention that the forward-discounted value is given

by w/r when the agent receives a constant wage w, as in a continuous-time model with r > 0. The

second parameter, s > 0, measures the informativeness or precision of additional, post-education

signals on worker’s productivity.9 Thus we will write v(p, µ|r, s) whenever we wish to discuss the

effect of those two parameters.

Let us now specify the properties that should be imposed on value functions and the rationales

behind them. As employment histories unfold, employers observe the cumulative outputs produced

by workers and use this information to revise their priors. Consider how the updating process affects

the expectations of low types. For every µ ∈ (0, 1), they are offered an initial wage w(µ) that is above

their actual productivity pl. On average, realized outputs will induce the industry to lower its belief

and thus wages. Their expected income v(pl, µ) is therefore smaller than the forward discounted value

of the starting wage w/r, but larger than the value pl/r that they would have obtained if the industry

had known their type with certainty. A symmetric argument holds for high types because their initial

wage is lower than their actual productivity. On the other hand, when industry’s beliefs collapse to

certainty,10 that is µ ∈ {0, 1}, further information will be ignored and the initial wage will never be

altered. Since we want to encompass Spence’s model as a particular case, we first introduce a weak

implication of this argument:

7From a purely game-theoretic point of view, the value function needs to be interpreted as an equilibrium device, in the

sense that, given a specific microfoundation (i.e. a specification of the part of the game which the function summarizes),

the computation of the outcome delivered by the function must rely on the explicit use of a uniquely defined equilibrium

concept. As we will show in Section 5, alternative value functions can be obtained from different models.
8The value function depends on the industry’s prior rather than the initial wage because, as commented before, we use

the belief of the industry to denote its response to the education signal. This relies on the equilibrium requirement that

beliefs uniquely determine wages. Strictly speaking, out-of-equilibrium behavior for the industry might involve wages

which are not consistent with beliefs. This possibility, however, is inconsequential for the analysis because of the game

structure. Alternatively, one can simply consider that Spence’s modeling device, which yields a wage of w(µ) is replaced

by v(p, µ) in our model.
9A microfoundation for s is derived in the continuous time model of Section 5. It shows that s can equivalently be

interpreted as the speed of employer learning.
10Observe that, since we are describing the game and not an equilibrium outcome, we do not assume that beliefs are

correct and thus define the value function of the low (high) type when µ = 1 (µ = 0).
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P0. For all µ ∈ (0, 1),
ph
r

> v(ph, µ) ≥
w(µ)

r
≥ v(pl, µ) >

pl
r
.

Further, when µ ∈ {0, 1}, v(ph, µ) = v(pl, µ) = w(µ)/r.

Because of learning, we will actually expect a stronger variant of this property to hold:

P1. For all µ ∈ (0, 1),
ph
r

> v(ph, µ) >
w(µ)

r
> v(pl, µ) >

pl
r
.

Further, when µ ∈ {0, 1}, v(ph, µ) = v(pl, µ) = w(µ)/r.

Property P1 ensures that firms are able to update their beliefs towards the realization of the

randomly assigned productivity. We will show in Section 5 that this is a general consequence of

Bayesian learning.

Compare now two industries whose correlated signals have different precision. Workers whose

productivity is overestimated prefer being employed in the industry where signal extraction is slow.

Conversely, workers whose productivity is underestimated would rather choose the industry where

actual abilities are quickly recognized. The following property captures this intuition.

P2. For all µ ∈ (0, 1), we have that ∂v(ph, µ|r, s)/∂s > 0 and ∂v(pl, µ|r, s)/∂s < 0, hence

v(ph, µ|r, s) is strictly increasing in s whereas v(pl, µ|r, s) is strictly decreasing in s.

We will show in Section 5 how to derive s from primitive parameters describing the production

process and prove that its impact on v(·) is as postulated in P2.

Finally, consider limit cases where precision is very low or very high. As s goes to zero, employers

have no possibility to update their initial beliefs: Wages are never revised and the value functions

converge to their original specification in Spence’s model. Conversely, when s goes to infinity, types

are immediately recognized and signaling becomes redundant.

P3. For all µ ∈ (0, 1), lim
s→0

v(p, µ|r, s) = w(µ)/r and lim
s→∞

v(p, µ|r, s) = p/r.

Definition 1. A value function is a mapping assigning a lifetime income v(p, µ) to each belief

µ ∈ [0, 1] and productivity p ∈ {pl, ph}. It is assumed to be strictly increasing and twice differentiable

in µ, and to fulfill property P0.

A value function is said to exhibit weak learning if it fulfills the more demanding property P1.

It exhibits strong learning if it fulfills properties P1, P2, and P3.
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V. Reports model: Spence’s problem is encompassed in our framework when the value function

v(p, µ) = w(µ)/r, with the interpretation that the starting wage is final and no further adjustments (of

wages or beliefs) are possible. This function fulfills the basic conditions in Definition 1. Alternatively,

it can be interpreted as a limit case of a value function with strong learning when s goes to 0. The

stronger properties listed in Definition 1, which capture the basic intuition on employer learning,

can be shown to follow from Bayesian learning in a setting where employers receive an additional,

informative but imprecise signal on workers’ productivity.

In order to clarify the exposition, we relegate the dynamic microfoundations of the model to

Section 5. Those include explicit learning based on actual production in multi-period or continuous-

time settings. Here we present an illustrative model which allows for considerably simpler computa-

tions, and which we call the Reports Model.

In this particular model, we assume that updating occurs only once over the labor market career

of a given worker. The employer has access to a detection technology which delivers a signal about the

agent’s type. We call this signal a “report” in order to avoid confusion with the education decision.11

In this model, the parameter s is literally the informativeness of a post-education signal on the worker’s

productivity.

The report is extracted as soon as the agent starts working.12 There are two possible reports,

G(ood) and B(ad). If the productivity of the worker is high, a good report is delivered with probability

d(s) > 1/2 for s ∈ (0,+∞), and a bad report is delivered with the complementary probability.

Similarly, when the worker’s productivity is low, the likelihoods of a good or bad report are 1−d(s) < 1
2

and d(s), respectively. The function d(s) is strictly increasing in s with the following lower and upper

bounds: lims→0 d(s) = 1/2 and lims→∞ d(s) = 1. Since d is essentially a change of variable, we will

simply write d = d(s).

Firms use reports to update their beliefs and then pay workers their expected productivity over

an infinite horizon.13 Thus the expected lifetime income of an employee with ability i is simply

v(p, µ|r, s) = 1

r
E[w(µ′)|p, µ, s] , (1)

where µ′ denotes the updated belief of the industry and E[·|p, µ, s] is the expectation operator condi-

tional on the industry’s prior, worker’s type and precision of the correlated information s.

11That is, actual production by the worker does not influence learning. A possible justification is that output cannot

be traced back to each individual. However, we insist that this is merely a “toy model”. The reader is referred to

Section 5 for more realistic microfoundations.
12One may think of the report as resulting from the worker’s performance during his job interview, a trial period, etc.
13These timing conventions are introduced for consistency with the dynamic models discussed in Section 5 below but

are inessential to the analysis. For the Reports Model, nothing changes if one merely sets r = 1.
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As the updated belief µ′ is formed according to Bayes’ rule, we have

µ′(µ,G) =
µd

µd+ (1− µ)(1− d)
and µ′(µ,B) =

µ(1− d)

µ(1− d) + (1− µ)d
.

Wages w(µ, S) = w(µ′(µ, S)) therefore depends on the signal S ∈ {B,G} in the following way

w(µ,G) =
µdph + (1− µ)(1− d)pl
µd+ (1− µ)(1− d)

and w(µ,B) =
µ(1− d)ph + (1− µ)dpl
µ(1− d) + (1− µ)d

.

Weighting these two payoffs with their respective probabilities yields the expected wage in the second

period

E[w(µ′)|pl, µ] = (1− d)w(µ,G) + dw(µ,B) and E[w(µ′)|ph, µ] = dw(µ,G) + (1− d)w(µ,B) .

Straightforward but cumbersome computations show that v(p, µ|r, s) fulfills all the requirements for

strong learning listed in Definition 1.

An alternative, slightly more involved model would be obtained if firms cannot immediately update

their beliefs because reports are delivered e.g. at the end of a first period of production. In such a

“two-period Reports Model”, the expected lifetime income of an employee with ability i is given by14

v(p, µ|r, s) = 1

1 + r

(
w(µ) +

E[w(µ′)|p, µ, s]
r

)
. (2)

The Value function now displays weak and not strong learning. Indeed, one can verify that v(p, µ|r, s)
now violates property P3 because lims→∞ v(p, µ|r, s) 6= p/r. This is because employer learning matters

solely for earnings after the non-negligible first period. Whether the model generates weak or strong

learning crucially depends on the timing of the report. We note here that, in a model with infinitely

many production periods (e.g. production in continuous time), the initial beliefs and wages become

negligible in the limit, and so strong learning is restored (see Section 5). The contrast between the

one- and two-period version of the Reports Model, however, shows that this is not due to the difference

between finite and infinite horizon, but to whether or not beliefs before the first additional signal have

a negligible impact on lifetime income.

VI. Equilibrium concept: The equilibrium concept is just Perfect Bayesian Equilibrium for the

game as specified before.15 Combining the value and cost functions yields the payoff function for work-

ers: u(e, µ|p) , v(p, µ) − c(p, e). As discussed in subsection II, industry’s payoffs are inconsequential

as long as the specification leads to wage offers equal to the expected productivity given the beliefs.

14The scale factor 1/(1+ r) is immaterial to the analysis and has been introduced for consistency across specifications,

since it ensures that receiving the wage w forever yields a value of w/r.
15There is some confusion in the older game-theoretic literature with respect to the Perfect Bayesian Equilibrium

(PBE) concept. For games with the structure of signaling games, PBEs coincide with “Weak PBEs” which are defined as
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We will consider equilibria in pure and mixed strategies (“hybrid equilibria”). The very formaliza-

tion of both Spence’s model and ours is such that the industry never has an incentive to randomize.

An equilibrium in mixed strategies can be defined as follows.

A signaling equilibrium is made out of a pair of probability distributions (q(·|p))p∈{pl,ph} on R
+

describing the education levels chosen by both types, and a belief system (µ(e))e∈R+ describing the

priors of the industry given any possible signal, that satisfies the following properties:

• Sequential rationality for the workers: For p ∈ {pl, ph}, if e∗ belongs to the support of q(·|p),
then e∗ ∈ arg maxe∈R+ u(e, µ(e)|p).

• (Weak) consistency of beliefs: The industry’s initial beliefs µ(e) are consistent with Bayes’ rule

for any educational attainment e in the support of either q(·|ph) or q(·|pl).

• Sequential rationality for the industry : Given any education level e, the industry offers an initial

wage equal to w(µ(e)).

In the pure strategy case, the support of the distributions q(·|p) is a singleton, implying that a

signaling equilibrium in pure strategies can be described by a belief system as before, and a strategy

profile (el, eh) describing the deterministic education levels chosen by both types.16

3 Equilibrium Analysis

Having provided alternative microfoundations for the assumptions laid out in Section 2, we proceed

to characterize the signaling equilibria of the game. We start with pure strategy equilibria, which are

fully described by the beliefs µ(e) and the education levels selected by both types, el and eh. If el 6= eh,

one speaks of a separating equilibrium, while the equilibrium is called pooling if el = eh. In the second

pairs of beliefs and strategy profiles such that actions at any information set maximize payoffs given the beliefs (sequential

rationality) and beliefs are consistent with strategies through Bayes’ rule along the equilibrium path (weak consistency).

This is the equilibrium concept that the Intuitive Criterion aims to refine. Unfortunately, some of the earlier literature

called PBEs “sequential” in reference to the sequential rationality requirement. The concept of sequential equilibrium

(Kreps and Wilson 1982), however, is defined for finite games only and hence does not apply in our framework.
16For the mixed-strategy case, we require workers to randomize among optimal education levels only. This eliminates

from the onset technical difficulties associated with the inclusion of suboptimal strategies with zero probability in the

support of the equilibrium strategies. The typical examples we have in mind at this point involve randomization over

finitely many education levels. For such equilibria, belief consistency amounts to the assertion that, if there exists a

p ∈ {pl, ph} such that q(e|p) > 0, then µ(e) = µ0q(e|ph)/[µ0q(e|ph) + (1− µ0)q(e|pl)]. A priori, however, an equilibrium

strategy might prescribe a randomization over an infinite set.
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subsection, we characterize mixed-strategy equilibria and then discuss their empirical implications in

the third subsection.

3.1 Pure-strategy equilibria

Separating equilibria are such that abilities are perfectly revealed: Depending on the education signal,

the beliefs of the industry on the equilibrium path are either µ = 0 or µ = 1. It follows that each type

receives an initial wage equal to his productivity and P1 implies that v(pi, 1) = pi/r for i ∈ {l, h}.
In other words, employer learning does not affect separating equilibria, and the proof of the following

Proposition follows from standard arguments (we hence omit it).

Proposition 1. Consider any value function. An education profile (el, eh) with el 6= eh can be

sustained as a (separating) signaling equilibrium if and only if

(i) el = 0, and

(ii) eh ∈ [eh, eh] where eh > eh > 0 and these two education levels are uniquely defined by

c(pl, eh)− c(pl, 0) =
1

r
(ph − pl) = c(ph, eh)− c(ph, 0) .

Accordingly, the set of separating equilibria does not depend on the value function.

In pooling equilibria, both types select the same education level ep and are therefore offered the

same initial wage w(µ0). Contrary to the model without learning, Bayesian updating leads to different

lifetime incomes, v(ph, µ0) > v(pl, µ0). As shown in the following proposition, this implies that the set

of pooling equilibria shrinks as information precision increases.

Proposition 2. Consider any value function. A common education level ep can be sustained as a

pooling equilibrium if and only if ep ∈ [0, ep] where ep > 0 is uniquely defined by the equation

c(pl, ep)− c(pl, 0) = v(pl, µ0)−
pl
r

.

The upper bound fulfills ep < eh, where eh is as defined in Proposition 1. Further, under strong

learning, ep is strictly decreasing in the precision s and lims→∞ ep = 0.

The set of pooling equilibria is given by a subset of the one in Spence’s model. Learning lowers

the upper-bound ep because the incentives for low types to mimic high types decrease as the ability

of firms to detect them improve. Under strong learning and as informativeness s goes to infinity,

firms ignore education levels in favor of information collected after the signaling stage. There is no

reason to spend resources on signaling which explains why the set of pooling equilibria collapses to

the minimum level of education.
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3.2 Mixed-strategy equilibria

As usual in signaling games, the model admits a plethora of mixed-strategy equilibria. Those are

often referred to as partial pooling or hybrid equilibria. The following proposition shows that learning

supports mixed-strategy equilibria which are qualitatively different from those possible in Spence’s

model.

Proposition 3. Consider any value function. For any mixed-strategy signaling equilibrium, there

exists a set of education levels Ep ⊆ [0, eh], where eh is as defined in Proposition 1, such that the

following properties hold:

(i) The support of the low types’ strategy consists of Ep and at most a further education level, el = 0,

such that el < e for all e ∈ Ep.

(ii) The support of the high types’ strategy consists of Ep and at most a further education level eh,

such that eh > e for all e ∈ Ep.

(iii) The industry’s beliefs µ are strictly increasing on Ep.

In Spence’s model, Ep contains at most one education level, but this is not true for general value

functions.17

Equilibria with Ep = ∅ are the separating equilibria of Proposition 1. The pooling equilibria of

Proposition 2 are such that Ep = {ep} where no additional education levels are chosen. In Spence’s

model, the set Ep (if nonempty) always consist of a unique education level, but this is not true in

general for other value functions. Correlated information qualitatively enriches the set of outcomes:

multiple pooling may arise, i.e. equilibria with more than one education level chosen by both types.

Although the set of mixed-strategy equilibria might be large and capture complex phenomena as

multiple pooling, such equilibria are far from being arbitrary. In particular, the monotonicity property

(iii) shows that there can be no counterintuitive correlation. Education remains informative in the

sense that a higher (equilibrium) education level is always associated with a higher probability that

the worker is of the high type.

17Proposition 3 can be refined assuming that, for all µ ∈ (0, 1), ∂2v(ph, µ)/∂µ
2 < ∂2v(pl, µ)/∂µ

2, a property that can

easily be established in the reports and two period models (and is also illustrated in Figure 4 in Section 5). Then, P1

implies that there exists a unique belief µ∗ ∈ (0, 1) such that ∂v(pl, µ
∗)/∂µ ⋚ ∂v(ph, µ

∗)/∂µ if and only if µ ⋚ µ∗. It is

then straightforward to show that, under weak or strong learning, µ(e) > µ∗ for all e ∈ Ep except possibly the minimum

education level in Ep (if a minimum exists).
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Before looking at multiple pooling equilibria in more detail, let us briefly explain why they may

arise. Consider first the model without correlated information. The argument for the impossibility of

multiple pooling is as follows. If a given type chooses two different levels of education with positive

probability, then he must be indifferent between those two education levels, implying that the difference

in expected income must equal that in educational costs. Without employer learning, each level

of education results in identical incomes for both types. By the single crossing property, however,

differences in educational costs across signals are higher for low types. Hence both types cannot

randomize over the same set.

The contradiction disappears with employer learning because, even when priors are identical,

lifetime earnings differ across types. Then the difference in the increase in education costs required by

the single-crossing property can be compensated by different gains in lifetime earnings across types.

We remark that the set of equilibria is also enriched if one moves away from the classical signaling

setting by relaxing the single crossing property.18 Then, the contradiction mentioned above does not

follow because differences in educational costs across signals can be identical for both types. Araujo

and Moreira (2010) establish that a violation of the single crossing property may lead to continuous

pooling in adverse selection problems. It would be interesting to apply their methodology to signaling

models in order to distinguish the impact of the signaling technology from that of the learning process.

Multiple pooling equilibria with linear costs. We now present an extended example to better

understand multiple pooling equilibria. We consider the Reports Model with linear cost functions

c(p, e) = g(p)e, where g′(p) < 0. Suppose that a mixed-strategy equilibrium exists and let e1, e2 ∈ Ep

with e1 < e2. By definition, both types have to be indifferent between e1 and e2, i.e.

v (pi, µ (e1))− g(pi)e1 = v (pi, µ (e2))− g(pi)e2 ,

for i ∈ {l, h}. Combining both equations, one obtains

v (ph, µ (e2))− v (ph, µ (e1)) =
g(ph)

g(pl)
[v (pl, µ (e2))− v (pl, µ (e1))] .

Thus if we define the function

h (µ) , v (ph, µ)−
g(ph)

g(pl)
v (pl, µ) , (3)

a necessary condition for the existence of mixed-strategy equilibria is that there exist µ1, µ2 ∈ [0, 1],

with µ1 6= µ2, such that

h (µ1) = h (µ2) . (4)

18That is, allowing cpe(p, e) to be positive over some region of the parameter space.
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We will use the function h (µ) for an informal discussion here, relegating the exact characterization

of multiple pooling equilibria to the Appendix. Figure 1 depicts the function h (µ) for a particular

set of parameters. It can be shown (see the proof of Proposition 4 in the Appendix) that h is strictly

concave, i.e. the qualitative features of the figure hold in general. It follows that condition (4) can only

hold true for a pair of beliefs, establishing that the set Ep contains at most two signals. Furthermore,

h (µ) features an interior maximum. Thus, as illustrated by the horizontal dashed lines, beliefs that

are close enough to the maximum can be matched so as to meet condition (4).

0 0.25 0.5 0.75 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

µ

h
(µ

)

µ
min

Figure 1: Beliefs supporting mixed-strategy equilibria. Parameters: pl = 0, ph = 1, g(pl) = 0.15,

g(ph) = 0.1, d = 3/4, r = 1.

The set of PBE crucially depends on the share µ0 of high types in the population. Let µmin < 1 be

such that h(µmin) = h(1) as in Figure 1. If µ0 > µmin, one can always pick a pair of beliefs {µ1, µ2} such
that µ0 ∈ (µ1, µ2) and h(µ1) = h(µ2). Then it is straightforward to construct a “bipolar” equilibrium

where neither type separates by sending a third education level. The randomization strategies q(e|p)
supporting the equilibria are uniquely pinned down by weak consistency of beliefs, because q (e1| pl)
and q (e1| ph) leave us with two linear equations and two unknowns. The participation constraint of

the low types19 delivers an upper bound for the actual value of e1 (while e2 is uniquely determined

19As usual in signaling problems, the high types’ constraint is redundant due to the single crossing property.
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from e1 by indifference), resulting in a set of possible multiple pooling equilibria for the selected µ1, µ2.

Consider now cases where µ0 < µmin. Then it must be true that µ0 < µ1 < µ2, which can be

satisfied in equilibrium if and only if low types randomize on Ep and the additional separating signal

e0 = 0. In other words, “bipolar” equilibria cannot anymore be sequentially rational. Consistent

randomization strategies can nevertheless be constructed for appropriate values of q (0| pl). In fact,

the construction is then easier, since one has a further degree of freedom. Hence, when µ0 < µmin, there

exists a continuum of randomization strategies associated to any equilibrium beliefs. The education

levels, by contrast, are uniquely determined. Given that low types also separate by acquiring zero

education, their participation constraint u(e1, µ1|pl) ≥ pl/r will bind, pinning down the value of e1.

This heuristic reasoning suggests that the set of mixed-strategy equilibria can be thoroughly char-

acterized. The following proposition describes the actual features of such equilibria and provides an

explicit, necessary and sufficient condition for the existence of multiple pooling equilibria. Intuitively,

this condition requires correlated reports to be precise enough so the model sufficiently differs from

Spence’s.

Proposition 4. Consider the Reports Model with linear costs, c(p, e) = g(p)e and 0 < g(ph) < g(pl).

Let µ0 be the share of high types in the population. Multiple pooling equilibria exist if and only if

d >
1

2

[
1 +

√
g(pl)− g(ph)

g(pl) + 3g(ph)

]
. (5)

Further,

(a) in any multiple pooling equilibrium, both types randomize on a common set containing exactly

two signals, Ep = {e1, e2} with 0 < e1 < e2. Moreover, high types randomize exclusively among

those two signals, i.e. there is no additional separating signal for high types;

(b) there always exist multiple pooling equilibria where low types randomize on Ep and an additional

separating signal e0 = 0; and

(c) there exists a µmin such that “bipolar” equilibria, where the low types randomize exclusively

among the two signals in Ep, may arise if (and only if) µ0 > µmin.

As expected, pooling over more than one signal is ruled out when there is no correlated informa-

tion (d = 1/2). Conversely, reducing the gap in educational costs between both types enlarges the

parameter set over which mixed-strategies are sequentially rational. This is because differences in

the slope of the value functions have to offset those in educational costs. As the latter is reduced,

less requirements are imposed on the value functions. In the limit case where the two cost functions

converge, g(pl) → g(ph), the necessary and sufficient condition (5) is always fulfilled.
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3.3 Empirical Implications of Multiple Pooling

The previous sections were devoted to the theoretical analysis of the game. We now turn our attention

to its empirical content and illustrate how it helps to rationalize the statistical discrimination docu-

mented in, e.g. Farber and Gibbons (1996) or Altonji and Pierret (2001). Both papers show that firms

update their initial beliefs about the ability of their employees. The identifying assumption is that

econometricians have access to a correlate of abilities that is not available to employers.20 The impact

of this correlate on wages increases with labor market experience, indicating that firms do learn over

time. For learning to occur on-the-job, relevant information must be hidden after the signaling stage.

In other words, some education levels have to be chosen by both types.

In pure pooling equilibria, educational choices do not convey any information. It is as if the sig-

naling stage never occurred so that labor market outcomes are indistinguishable from those described

in Jovanovic’s (1979) model when skills are transferable across jobs and not match-specific. The up-

dating process, and consequently wage dynamics, are independent of the educational choice. Instead,

they depend solely on the informativeness of the production technology.

The multiple pooling equilibria described in Subsection 3.2 restore a connection between labor

market and educational outcomes. According to Property (iii) in Proposition 3, expected earnings

increase with educational attainments. The returns to education for each type are exogenously pinned

down by their cost functions. In the data, however, one can only observe the pool of workers that

have reached a given level of education. Observable returns are therefore affected by a composition

effect.21 It is most easily characterized in the Reports model with linear costs. By definition, expected

returns are given by E[v|e] −E[v|0], where

E[v|e] = µ(e)v(ph, µ(e)) + (1− µ(e))v(pl, µ(e)) ,

i.e. E[·|e] is the expectation operator conditional on education, which captures the information avail-

able to econometricians. Consider situations where precision is high enough for equation (5) to hold.

Then workers may randomize over three education levels and the indifference requirement for low

types implies that v(pl, µ(e)) − pl/r = g(pl)e. Observable returns are therefore equivalent to

E[v|e] − E[v|0]
e

= g(pl) + µ(e)
v(ph, µ(e)) − v(pl, µ(e))

e
.

The second term captures the composition effect, showing that it depends on two mechanisms. First,

high types account for a larger share of workers as education, and consequently µ, increase. This

20In practice, most papers use the Armed Forces Qualification Test scores of workers.
21We thank an anonymous referee for bringing this mechanism to our attention.
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raises the education premium because high types have higher expected earnings than low types. On

the other hand, the gap in earnings decreases with education because high types also have lower

marginal costs.22 Whether observable returns are positively correlated with education depends on

which of these two channels dominate. In most configurations, however, the second channel turns

out to be stronger so that the expression above decreases in e.23 This negative composition effect

might help to explain empirical evidence about the slim premium commanded by PhDs over master’s

degrees.24

Mixed-strategy equilibria also imply that wage dynamics will differ across education levels. The less

precise the initial belief, the more weight is assigned to information revealed on-the-job. This implies

that wages are the most volatile when low and high types are equally likely to chose a given level of

education, i.e. when the industry’s belief is equal to 1/2. Whether this maximum is approximated at

the upper or lower end of the educational choices depends on the exogenous parameters of the model

as well as on the workers’ randomization strategies.25

Human capital accumulation does not generate such correlation between educational attainments

and wage volatility. Identifying it in the data could therefore be used as a test of job market signaling.

We are not aware of papers investigating this question, probably because empirical studies usually

rely on Informational equilibria rather than Perfect Bayesian equilibria.26 Given that Informational

equilibria are such that types perfectly separate, one needs to introduce other sources of uncertainty in

order to generate employer learning. But since there is no reason to believe that the additional noise

is correlated with the education level, Informational equilibria deliver learning speeds that are indis-

tinguishable across educational groups in a given industry. As a consequence, the empirical literature

has focused on sorting across industries with presumably different speeds of employer learning.27

22This immediately follows from the indifference requirement across signals since v(ph, µ(e2)) − v(pl, µ(e2)) −
[v(ph, µ(e1))− v(pl, µ(e1))] = [g(ph)− g(pl)](e2 − e1) < 0 .

23A straightforward computation shows that the composition effect is negative when g(pl)e/µ(e) = (v(pl, µ(e)) −
v(pl, 0))/µ(e) increases in e. It is therefore sufficient that the average slope of the value function for low types increases

when equilibrium beliefs are raised from µ(e1) to µ(e2).
24Recent evidence on the premia across education levels can be found in Casey (2009).
25These features are easily established in the continuous-time model of Section 5. It can deliver wage volatilities that

are increasing, decreasing or even inverted U-shaped in the level of education. It may also exhibit separation, and thus

constant wages, at the highest and lowest qualification. The only general restriction is that U-shaped segments can be

excluded because beliefs are increasing in education.
26See Riley (1979a, 1979b) for a thorough treatment of Informational equilibria in the context of signaling problems.

As discussed above, econometricians have used this concept to study the interaction between the speed of learning and

signaling, e.g. Farber and Gibbons (1996), Altonji and Pierret (2001), and more recently Kaymak (2006).
27We investigate this question in the working paper version of this article where we extend our model by assuming

that workers are imperfectly aware of their productivity. We find that returns to ability and signal precision may have
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4 The Intuitive Criterion

Even without introducing correlated information, signaling games typically have a large set of equi-

libria. In order to narrow it, a number of refinement concepts have been developed. The Intuitive

Criterion (Cho and Kreps 1987), however, remains a milestone in the analysis of signaling games.

When there are only two types, it is well known that the Intuitive Criterion confers a predictive power

to Spence’s model by ruling out all but one separating equilibrium, known as the Riley equilibrium.

The purpose of this section is to show that this does not hold true when beliefs can be updated after

the signaling stage. More precisely, we prove that, even though the Riley equilibrium retains its im-

portance as the only separating equilibrium fulfilling the Intuitive Criterion, it is in general not true

that all pooling (or mixed) equilibria are ruled out.

A signaling equilibrium is said to fail the Intuitive Criterion if some type could strictly profit by

sending a non-equilibrium signal, provided that the sender adopts non-equilibrium beliefs satisfying

the following requirement: Assign probability zero to types which could never conceivably profit

by sending the considered signal. In our set-up, the Intuitive Criterion amounts to the following.

Fix a signaling equilibrium. Say that an unused signal e is equilibrium-dominated for type p if the

equilibrium payoff of type p is strictly larger than the payoff that type p would receive with signal e,

given any conceivable (non-equilibrium) belief of the industry µ′(e). The equilibrium is said to fail

the Intuitive Criterion if there exists a signal e and a type p such that the equilibrium payoff of type

p is strictly smaller than the minimum payoff that this type could get by sending signal e, given any

possible (non-equilibrium) beliefs µ′(e) of the industry which concentrate on the set of types for which

signal e is not equilibrium dominated.

Separating equilibria. In the absence of employer learning, the Riley equilibrium is the only sepa-

rating equilibrium which survives the Intuitive Criterion: Low types do not acquire any education and

high types send the signal eh defined in Proposition 1, implying that low types are indifferent between

their equilibrium strategy and acquiring education eh in order to receive v(pl, 1) = ph/r. Given that

separating equilibria do not depend on the value function, it is not surprising that the result carries

over to our set-up.28

opposite and potentially countervailing effects on the relationship between education levels across industries and the

informativeness of the production process. This finding stands in sharp contrast to predictions based on Informational

equilibria. It implies that conclusive evidence cannot be drawn from inter-industry data without disentangling the two

components of the signal/noise ratio.
28The proof of Proposition 5 is not included in the Appendix because it follows from standard arguments.
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Proposition 5. Consider any value function. The only separating equilibrium which survives the

Intuitive Criterion is the Riley equilibrium.

Survival of pooling equilibria. We now focus on pooling equilibria and use ep to denote the

common level of education. First, notice that no signal e < ep can be equilibrium dominated for

either type. Further, if a deviation to e > ep is equilibrium-dominated for the high type, it is never

profitable for the low type (in the sense of the Intuitive Criterion) to choose e. For such a deviation

would induce industry’s beliefs µ(e) = 0 and low types would obtain lower payoffs (pl/r) than at the

pooling equilibrium but incur strictly larger educational costs.

Hence, a pooling equilibrium with education level ep fails the Intuitive Criterion if and only if

there exists a signal e > ep such that it is equilibrium dominated for the low types but would result

in a better payoff than in equilibrium for the high types when the industry places zero probability on

the event that the sender is of the low type given signal e, i.e.

ph
r

− c(pl, e) < v(pl, µ0)− c(pl, ep) (equilibrium dominance for the low type), (ED)

ph
r

− c(ph, e) > v(ph, µ0)− c(ph, ep) (profitable deviation for the high type). (PD)

The equilibrium dominance condition (ED) implies that, even in the best-case scenario where the

worker could forever deceive employers, deviating to e is not attractive to low types. The firm can

therefore infer by forward induction that any worker with an off-equilibrium signal e has a high

productivity. The “profitable deviation” condition (PD) implies in turn that credibly deviating to e

is indeed profitable for the high type. Thus such an ep fails the Intuitive Criterion, or, following the

terminology of Kohlberg and Mertens (1986), is not stable.

Let e∗(ep) denote the minimum education level that does not trigger a profitable deviation for low

ability workers, so that (ED) holds with equality at e∗(ep). Condition (ED) can then be rewritten

as e > e∗(ep). Analogously, let e∗∗(ep) be such that (PD) holds with equality, then (PD) can be

rewritten as e < e∗∗(ep). These two thresholds always exist because c(p, e) is continuous and strictly

increasing in e.29 There exists an education level satisfying both conditions (ED) and (PD) if and only

if e∗(ep) < e∗∗(ep). This condition provides us with a straightforward proof that all pooling equilibria

fail the Intuitive Criterion in the model without learning. Assume that ep is stable, so that condition

29To see this, observe first that, because v(pl, µ0) < ph/r, we have ph/r − c(ph, ep) > v(ph, µ0) − c(ph, e) for e = ep.

Further, the cost function c(p, e) is continuous, strictly increasing, and convex in e, hence the inequality is reversed for

e large enough. This implies that e∗(ep) and e∗∗(ep) are well-defined. It also follows that e∗(ep) > ep and e∗∗(ep) > ep.
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(PD) is not satisfied at e∗(ep). This can be true if and only if

v(ph, µ0)− v(pl, µ0) ≥ c(pl, e
∗(ep))− c(pl, ep)− [c(ph, e

∗(ep))− c(ph, ep)] . (6)

In Spence’s model or as s → 0, we have v(pl, µ0) = v(ph, µ0) = w(µ0)/r. The left hand side of

inequality (6) converges to zero while the right-hand side is strictly positive by the single crossing

property. The contradiction illustrates that, in the basic signaling model, one can always find a

credible and profitable deviation for high types.

When workers’ abilities are also revealed on-the-job, the premise leading to a contradiction is no

longer true. As stated in property P1, the expectations of high types are higher than those of low

types. In other words, v(ph, µ0|r, s) > v(pl, µ0|r, s) for all s > 0, and so inequality (6) can hold true

for some parameter configurations. We summarize these observations in the following result.

Proposition 6. The Intuitive Criterion rules out all pooling equilibria in the absence of learning, but

this is no longer true for value functions with either weak or strong learning.

In order to complete the proof of the statement, we need to show that indeed pooling equilibria

might survive the Intuitive Criterion. While it is easy to provide numerical examples, we can provide

more general results. According to property P2, the more precise correlated information is, the wider

the gap in expected income between low and high types. This suggests that a pooling equilibrium is

more likely to be stable when signal extraction is efficient. The following proposition substantiates

this intuition, showing that any pooling equilibrium is stable when precision is high enough. For the

particular case of linear costs, we find an even sharper result: if precision is high enough, all pooling

equilibria will survive the Intuitive Criterion.

Proposition 7. Consider a value function with strong learning.

(a) For any education level ep, there exists a precision s∗(ep) such that, for any s ≥ s∗(ep), if ep can

be sustained as a pooling equilibrium then it survives the Intuitive Criterion.

(b) If costs are linear, there exists a precision s∗ such that, for any s ≥ s∗, every pooling equilibrium

survives the Intuitive Criterion.

Figure 2 illustrates the mechanism behind Propositions 6 and 7. It displays the indifference curves

of high and low types when s = s∗(ep) and when s = 0. The dotted curves correspond to the former

case, the undotted curves to the latter one, that is, Spence’s model. The level of education e∗(ep|s)
where condition (ED) holds with equality is given by the point where the indifference curve of low

types crosses the horizontal line with intercept ph/r. Similarly, the level of education e∗∗(ep|s) where
condition (PD) holds with equality is given by the point where the indifference curve of high types
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crosses the same horizontal line. The pooling equilibrium ep fails the Intuitive Criterion if and only if

e∗(ep) < e∗∗(ep). We can therefore conclude that ep is not stable when the indifference curve of low

types intersects the horizontal line with intercept ph/r before the indifference curve of high types .
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Figure 2: Workers’ indifference curves.

Consider first the basic model without learning. At the pooling level of education ep, the two

types enjoy the same asset value w(µ0)/r. The single-crossing property implies that e∗(ep) lies to the

left of e∗∗(ep), as shown in Figure 2. Thus any pooling equilibrium fails the Intuitive Criterion when

there is no learning. Consider now what happens when the precision s increases. As high types are

more quickly recognized, their asset value increases and their indifference curve shifts up. Conversely,

the indifference curve of low types shifts down. These opposite adjustments shrink the gap between

e∗(ep|s) and e∗∗(ep|s). The threshold precision s∗(ep) is identified by the point where the gap vanishes

as the two indifference curves concurrently cross the horizontal line with intercept ph/r. For any

value function, property P3 ensures that one can always find such a point for any given ep because

lims→∞ v(ph, µ|r, s) = ph/r. Figure 2 also illustrates the fact that s∗(ep) is unique.

The economics behind Proposition 7 makes intuitive sense. When learning is fast, firms easily

infer the actual type of their employees. Then the benefits derived from ex-ante signaling are not

important. Conversely, when learning is slow, firms learn little from observed outputs. This leaves

fewer opportunities for high types to reveal their ability after the signaling stage and thus raises
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their incentives to send a message. In the extreme case where precision goes to zero, all the relevant

information is collected prior to labor market entry.

According to Proposition 7, when the precision is high enough, the Intuitive Criterion does not

rule out any pooling equilibrium. Proposition 2, however, states that the set of pooling equilibria

shrinks as precision increases. Taken together, these results imply that there are three possibilities:

(i) if learning is slow, there is a large set of pooling equilibria, almost all (or all) of which fail the

Intuitive Criterion; (ii) if learning is fast, pooling equilibria would survive the Intuitive Criterion, but

the set of such equilibria is small; and (iii) for intermediate values of s, there exists a sizeable set of

pooling equilibria which survive the Intuitive Criterion.

This qualitative classification can be made more precise by assuming that the log of the derivative

of c(p, e) with respect to e has (strictly) decreasing differences in (p, e) or, in other words, that ce(p, e)

is (strictly) log-submodular:30

ce(ph, e
′′)

ce(ph, e′)
>

ce(pl, e
′′)

ce(pl, e′)
, whenever e′′ > e′.

Proposition 8. Let ce(·) be strictly log-submodular, and consider any value function with strong

learning. Let ep(s) be as in Proposition 2. Then, there exists an s∗(0) > 0 and an s > s∗(0) such that

(a) For all s ∈ [0, s∗(0)[, all pooling equilibria fail the Intuitive Criterion.

(b) For all s ∈ [s∗(0), s[, there exists ẽ(s), strictly decreasing in s, such that (i) ẽ(s) < ep(s), (ii) all

pooling equilibria with education level ep ∈ [0, ẽ(s)] survive the Intuitive Criterion, and (iii) all

pooling equilibria with education level ep ∈]ẽ(s), ep(s)] fail the Intuitive Criterion.

(c) For all s ≥ s, all pooling equilibria survive the Intuitive Criterion.

If ce is log-linear, the result holds with s∗(0) = s, i.e. case (b) cannot occur.

This result is illustrated in Figure 3. Whereas the statement in Proposition 7 is local, assuming

log-submodularity allows for a global characterization of the region where the Intuitive Criterion bites.

Log-submodularity is more stringent than the single crossing property because it implies that marginal

educational costs diverge. If that property were not satisfied, an increase in the level of education

could restore the stability of some pooling equilibria. This is why, when ce(p, e) is not log-submodular,

equilibrium stability does not always divide the (s, e) space into two non-overlapping regions.

30This assumption might seem restrictive but it is actually satisfied by the functions commonly used to illustrate the

single crossing property. Textbook examples of cost functions usually exhibit log-linear marginal costs which, as stated

at the end of Proposition 8, yields an even simpler division of the parameter space.
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Figure 3: Graphical interpretation of Proposition 8. A pooling equilibrium with education level e

exists if and only if e ≤ e(s). It satisfies the Intuitive Criterion if and only if e ≤ ẽ(s). Parameters:

r = 0.2, pl = 0.5, ph = 1, µ0 = 0.5 and c(p, e) = exp(e/p) − 1.

Survival of Mixed-strategy Equilibria. Mixed-strategy equilibria may survive the Intuitive Cri-

terion for the same reason as pooling equilibria. One simply has to verify that conditions (ED) and

(PD) are fulfilled when the share µ0 of high types in the population is replaced by the equilibrium

belief µ(e) resulting from the senders’ randomization strategies. Furthermore, one does not need to

tediously go through each and every equilibrium signal. As stated in the following proposition, it is

sufficient to pick an arbitrary signal that is sent by both types and check its stability.

Proposition 9. A mixed-strategy equilibrium (with Ep 6= ∅) fails the Intuitive Criterion if and only

if for some ep ∈ Ep, there exists an education level e such that

ph
r

− c(pl, e) < v(pl, µ(ep))− c(pl, ep) ,

ph
r

− c(ph, e) > v(ph, µ(ep))− c(ph, ep) .

As an example, consider the Reports Model with linear costs as in Section 3.2, and focus on the

mixed-strategy equilibria with three education levels exhibited in Proposition 4. Note that a failure

of the Intuitive Criterion must involve a deviation to a signal e > e2. Then equilibrium dominance for
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the low types reduces to

pl
r

>
ph
r

− g(pl)e ⇒ e >
1

rg(pl)
[ph − pl] > 0 ,

which provides a lower bound for the deviation e > e2. That deviation would be strictly profitable for

the high types if and only if

v(ph, µ(e2))− g(ph)e2 <
ph
r

− g(ph)e ⇒
ph/r − v(ph, µ(e2))

g(ph)
+ e2 > e .

Given that e is bounded below and v(ph, µ(e2)) → ph
r when the signal precision goes to infinity, both

conditions are incompatible when signal precision is high enough; hence the equilibrium will survive

the Intuitive Criterion.

Further Equilibrium Refinements. We have focused on the Intuitive Criterion because of its

relevance for Spence’s model. However, once one moves away from the two-type setting, and even

without employer learning, the Intuitive Criterion fails to select a unique signaling equilibrium for

general signaling games (Cho and Kreps 1987). This problem has been addressed in the literature

through the introduction of more sophisticated refinement concepts, and it would be natural to in-

vestigate the predictive power of those refinements in our setting. Although such a task is beyond

the scope of this paper, we offer here two observations, focusing on two different avenues: Universal

Divinity and the Undefeated Criterion.

The first observation is that existing results based on forward-induction refinements do not always

help refine the equilibrium set, so that further research is needed. To substantiate this claim, consider

the classical uniqueness result of Cho and Sobel (1990). That result concerns three particularly

appealing refinement concepts: criterion D1 (Cho and Kreps 1987), Universal Divinity (Banks and

Sobel 1987), and Never a Weak Best Response (NWBR; Kohlberg and Mertens 1986). It provides a

set of necessary conditions ensuring that those three refinements select a unique signaling equilibrium

within a subclass of signaling games known as monotonic signaling games (Cho and Sobel 1990,

p. 387). A monotonic signaling game is such that, for every fixed signal, all types have the same

preferences over the actions of the receiver. This condition is fulfilled by job-market signaling games,

with or without employer learning.31 Proposition 3.1 in Cho and Sobel (1990) then states that the

three refinements mentioned above coincide, and their main result establishes uniqueness.32 The

only non-technical condition in their uniqueness theorem is A4, which, in Cho and Sobel’s words,

31In our setting, this is implied by the fact that v(p, µ) is strictly increasing in µ for both p = ph and p = pl
32Esö and Schummer’s (2008) Vulnerability to Credible Deviations provides an alternative interpretation of this selection

result within the context of monotonic signaling games.
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“is crucial to [the] analysis. It states that if two signal-action pairs yield the same utility to some

type of Sender, and one signal is greater (componentwise) than the other, then all higher types prefer

to send the greater signal.” The formal condition reads as follows: if p < p′ and e < e′, then

u(e, µ|p) ≤ u(e′, µ′|p) ⇒ u(e, µ|p′) < u(e′, µ′|p′).
In Spence’s model, this condition is implied by the single-crossing property, for the wage given

an education level is independent of the type. Hence, Universal Divinity (or D1) will always select a

unique equilibrium. By contrast, this condition is not always fulfilled in our setting. With employer

learning the link fails because lifetime earnings differ across types. Further, it is immediate that, if a

signaling game satisfies condition A4, there cannot be equilibria with multiple pooling, for two types

cannot be simultaneously indifferent between two signal-action pairs with different signals. In other

words, whenever multiple pooling equilibria exist, A4 must be violated.

In our view, Condition A4 would place strong restrictions on a model with employer learning.

With two types, it implies that, whenever v(pl, µ
′)−v(pl, µ) ≥ c(pl, e

′)−c(pl, e), it must also hold that

v(ph, µ
′)− v(ph, µ) > c(ph, e

′)− c(ph, e). Further, this must hold for all µ, µ′, e, e′ with e′ > e. When

lifetime incomes are independent of the type, this reduces to a condition on the cost function. With

employer learning, it implies a condition on the relation between lifetime incomes (as a function of

beliefs) and costs (as a function of education). However, in a model where education does not affect

productivity, there is no direct relation between the former and the latter, and so the condition can

only hold if the set of possible value and/or cost functions is restricted.33

As an illustration, consider the value functions for high and low types depicted in Figure 4 below.

Focus on beliefs relatively close to µ = 1. With employer learning, high-productivity workers face a

tradeoff between signaling through education and letting their performances on-the-job reveal their

type. This is why the marginal return of an increase in the receiver’s belief should eventually decrease,

which is not true for low-productivity workers. It is therefore natural to expect that, for certain action-

signal pairs, low-type workers prefer an education and belief increase while high-type workers do not.

This kind of effect is excluded by A4 because this condition prescribes that, whenever an increase in

education is (weakly) attractive for the low types, it must be (strictly) attractive for the high types.

Since A4 fails in our model, the analysis and uniqueness result in Cho and Sobel (1990) do not

apply. As those authors point out, condition A4 is the crucial one behind their uniqueness result,

33Suppose we fix a value function and then require Condition A4 to hold for any cost functions fulfilling the single-

crossing property. Selecting the education levels in such a way that low types are indifferent and making the cost

differences arbitrarily close across types, a limit argument leads to v(ph, µ
′) − v(ph, µ) ≥ v(pl, µ

′)− v(pl, µ) for all pairs

µ′, µ. Hence, ∂v(ph, µ)/∂µ ≥ ∂v(pl, µ)/∂µ. However, this contradicts P1: for µ ∈]0, 1[, v(ph, µ) > v(pl, µ) and the

inequality between the derivatives imply that ph/r = v(ph, 1) > v(pl, 1) = ph/r.
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and so there is a priori no reason to expect refinements like D1, Universal Divinity, or NWBR to

generically restore equilibrium uniqueness in the absence of strong additional restrictions. Indeed, one

can build (cumbersome) examples showing that, for general cost and value functions, those criteria do

not necessarily refine the set of equilibria. In other words, any attempt to further refine the equilibrium

set using standard (stronger) refinement concepts must rely on additional conditions. This has also

been observed by Daley and Green (2009), who use the D1 criterion to analyze a signaling game with

grades which is isomorphic to our static Reports model. Although they rely on a more demanding

notion of equilibrium stability, they find that uniqueness of the equilibrium is not always ensured.

They propose a condition under which correlated information is precise enough relative to the cost

advantage of high types. They label it RC-Informativeness and show that when it is satisfied, a unique

equilibrium emerges if D1 is used as a refinement concept. Hence, their analysis also illustrates that

forward induction is vulnerable to the introduction of correlated information after the signaling stage

and that it crucially depends on the relation between expected income and signaling costs.

Our second observation is related to welfare concerns and the Pareto-efficiency of equilibria. Es-

sentially, we will argue below that pooling equilibria in our model survive the Intuitive Criterion only

if the Riley separating equilibrium is Pareto-dominated. This delivers a connection between our re-

sults and a different kind of equilibrium refinement criteria, built on a basic message of the signaling

literature, namely that signaling might lead to inefficiencies. Mailath, Okuno-Fujiwara, and Postle-

waite (1993) postulate the Undefeated Criterion as an alternative to the Intuitive Criterion and argue

in favor of pooling equilibria when they Pareto-dominate the Riley equilibrium. The key argument

is that, for some parameter constellations, the pooling equilibrium with zero education level might

Pareto-dominate the Riley equilibrium: in the latter, high types overeducate to avoid low-type wages

even though they would be better off with a pooling wage and minimal education.34

Suppose some pooling equilibrium survives the Intuitive Criterion. Then, as our analysis shows, the

pooling equilibrium with e = 0 will also survive this criterion. By definition of the Riley equilibrium

education level eh, the low type is indifferent between sending eh in order to obtain the wage ph and

34The Undefeated Criterion is more involved than Pareto-dominance. Mailath, Okuno-Fujiwara, and Postlewaite

(1993) restrict attention to pure-strategy signaling equilibria. Within this class, an equilibrium (σ′, µ′) is defeated if a

new equilibrium (σ, µ) can be built where a previously unused signal m is used by some types, in such a way that (i)

the new equilibrium is a Pareto-improvement for those types (all of them being weakly better off, and at least one being

strictly better off), and (ii) for some type using m in (σ, µ), the receiver’s out-of-equilibrium belief in (σ′, µ′) that the

sender is of that type on seeing m can not be explained through conditioning on the set of sender types who do use m in

(σ, µ), even allowing for the possibility that indifferent types might have randomized. In the context of Spence’s model,

for certain parameter values the Riley equilibrium is defeated by pooling equilibria with education levels close to zero,

while pooling at zero is undefeated. For other parameter values, the Riley equilibrium is undefeated.
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receiving the wage pl at an education level of zero. The payoff at the pooling equilibrium with e = 0

is strictly larger than the latter and so the Riley signal eh is always equilibrium-dominated for the low

type. If pooling at e = 0 survives the Intuitive Criterion, it follows that the payoff of the high types at

the pooling equilibrium with e = 0 must be weakly better than at the Riley equilibrium. It follows that

the pooling equilibrium with e = 0 Pareto-dominates the Riley equilibrium. Repeating the argument

for pooling equilibria with e close to zero, it can be shown that, if any pooling equilibrium survives

the Intuitive Criterion, the Riley equilibrium is defeated in the sense of Mailath, Okuno-Fujiwara, and

Postlewaite (1993).35

A similar connection between welfare and equilibrium stability is identified in Daley and Green

(2009). They show that when correlated reports are RC-Informative, D1 always select equilibria that

Pareto dominate the Riley equilibrium. These results suggest that learning restores a link between

signaling and efficiency. Recent work by Atkeson et al. (2010) study a related issue in a model where

firms may invest in product quality but cannot signal their choice. They find that learning mitigates

the ‘lemons problem’ as it introduces reputation incentives such that some firms find it profitable to

invest. They also show that welfare can be improved by the intervention of a regulator. Accordingly,

it would be interesting to investigate whether existing labor market regulations, such as income taxes

and contractual obligations, can be welfare enhancing in our setup.

5 Bayesian Learning

In this last section, the microfoundation of the learning process are discussed in more detail. We

propose two models where beliefs are explicitly derived from output realizations. We show that they

deliver value functions satisfying the properties listed in Definition 1.

Note that output realizations are not decisions of the workers, but rather objective signals observed

by the industry. Thus the microfoundations developed here concern employer learning but do not

correspond to further signaling stages on the side of the workers.36

Two period model. We first consider a set-up that maintains the timing conventions of the Reports

model, so that two periods are sufficient to characterize a worker’s career. The only difference is that

35Observe, however, that any pooling equilibrium with e > 0 is defeated by the pooling equilibrium with e = 0. Hence,

in our framework, there will be defeated equilibria which survive the Intuitive Criterion.
36Models where signaling can occur over several periods give rise to a different game-theoretic structure. For example,

Bar-Isaac (2003) analyzes a signaling game where a monopolist sells a good whose quality is uncertain. Whether the

actual quality of the product will be revealed over time or not becomes a question to be answered in equilibrium, rather

than a postulated property of the learning process.
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output is observed by the industry at the end of the first period. Realizations are not deterministic37

but randomly drawn from a continuous density gi(·) with a mean equal to the worker’s type pi

for i ∈ {l, h}. The sampling distributions share the same support and are common knowledge. The

randomness might be inherent to the production process or to the imperfect precision of the monitoring

technology.

Lifetime incomes follow, as in the two-period version of the Reports Model, from equation (2).

On the other hand, the updating rule differs because second period beliefs now depend on the output

density

µ′(x, µ) =
µgh(x)

µgh(x) + (1− µ)gl(x)
,

whereas wages w(µ) = pl + (ph − pl)µ are given by an affine function of beliefs. In spite of these

additional features, the two-period model yields predictions that are similar to those of the more

stylized Reports model.

Proposition 10. The value function for the two-period model satisfies property P1 and so exhibits

weak learning.

We have not given a specific definition for s in the discrete time model because it would require

further parametric restrictions on the g(·) distributions.38 In any case, learning is weak in the sense

of Definition 1 because P3 does not hold for any conceivable measure of s. To see this, consider the

limit case where uncertainty becomes negligible as gh(·) and gl(·) converge to Dirac delta functions.

Then learning is at its most efficient because types are perfectly revealed at the end of the first period.

Nevertheless, the lifetime income of high types converges to 1
1+r [w(µ) + v(ph, 1)] < v(ph, 1) = ph/r.

39

As in the Reports models, the upper limit property in P3 is not fulfilled because first-period earnings

solely depend on the prior and thus do not vary with the precision of correlated information.

Continuous time model. In the two period model, the length of time required to elicit information

is treated as a primitive parameter. This is an artifice of the discrete time structure as industries where

learning is more efficient should also be characterized by shorter periods of information acquisition.

This issue can be addressed using a continuous time set-up and establishing that it gives rise to strong

learning in the sense of Definition 1.40 The key difference, however, is not continuous vs. discrete time,

37Otherwise learning would be perfect by the end of the first period.
38For example, it is shown in next subsection that when both gi(·) distributions are normal with common variance σ2,

a natural measure for s is the signal/noise ratio: (ph − pl)/σ
2.

39Conversely, the lifetime income of low types converges to 1

1+r
[w(µ) + v(pl, 0)] > v(pl, 0) = pl/r.

40We thank an anonymous referee for suggesting an alternative way to obtain strong learning in a continuous time

set-up: Let reports of the type described in Subsection 2 arrive at the rate 1/σ. Then strong learning would follow when
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but rather the fact that in the continuous-time model there are infinitely many future updates at any

given point in time, while in a two-period setting there is exactly one update and the production

period before that update never becomes negligible41

We assume that output realizations are random draws from a Gaussian distribution with a time

invariant average productivity.42 Thus the cumulative output Xt of a match of duration t with a

worker of type i ∈ {l, h}, follows a Brownian motion with drift

dXt = pidt+ σdZt ,

where dZt is the increment of a standard Brownian motion. The cumulative output 〈Xt〉 is observed
by both parties. The employer uses the filtration

{
FX
t

}
generated by the output sample path to revise

his belief about pi. The variance σ is constant across workers for otherwise firms would be able to

infer types with arbitrary precision by observing the quadratic variation of 〈Xt〉.43 Starting from a

prior µ0 equal to the fraction of high ability workers in the population, the employer applies Bayes

rule to update his belief µt , Pr
(
p = ph| FX

t

)
. His posterior is therefore given by

µ (Xt, t|µ0) =
µ0gh(Xt, t)

µ0gh(Xt, t) + (1− µ0)gl(Xt, t)
, (7)

where gi(Xt, t) , e−
(Xt−pit)

2

2σ2t is the rescaled44 density for a worker of type i.45 The analysis is simplified

by the change of variable θt , µt/(1 − µt). θt is the ratio of “good” to “bad” belief. Given that µt is

defined over ]0, 1[, θt takes values over the positive real line. It follows from (7) that

θ (Xt, t| θ0) = θ0
gh(Xt, t)

gl(Xt, t)
= θ0e

s
σ (Xt−

1

2
(ph+pl)t) , (8)

where s = (ph − pl)/σ is the signal/noise ratio of output. On the one hand, a larger productivity

difference between types increases the informativeness of the observations. On the other hand, a

higher variance hinders the industry’s ability to identify the mean of the output distribution. Thus

both frequency σ and accuracy s go to infinity.
41See Anderson and Smith (2010) for further detail on this point.
42One can easily verify that letting workers accumulate general human capital would not substantially modify our

conclusions.
43See, for instance, Chung and Williams (1990).
44The factor [σ

√
2πt]−1 is omitted because it simplifies in (7).

45There are well-known issues with decision problems in continuous time. We refer the reader to Faingold (2008)

for a discussion of the significance of information revelation in the limit of discrete-time games, and to Alós-Ferrer and

Ritzberger (2008) for a discussion of decision problems defined directly in continuous time. However, in our setting the

continuous-time process captures information acquisition only. Since workers take no active decisions, none of those

issues apply to our model.
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the bigger s, the more efficient learning is. By Ito’s lemma, the stochastic differential equation satisfied

by the belief ratio reads

dθ (Xt, t| θ0) =
∂θ (Xt, t| θ0)

∂Xt
dXt +

∂2θ (Xt, t| θ0)
∂X2

t

σ2

2
dt+

∂θ (Xt, t| θ0)
∂t

dt

= θ (Xt, t| θ0)
( s
σ

)
[dXt − pldt] . (9)

Replacing in (9) the law of motion of Xt, i.e. dXt = pidt + σdZt, yields the following stochastic

differential equations

(i) Low ability worker : dθt = θtsdZt ,

(ii) High ability worker : dθt = θts (sdt+ dZt) .

The belief ratio θt increases with time for high types and follows a martingale for low types.46 In

both cases, a higher σ lowers the volatility of beliefs because larger idiosyncratic shocks hamper signal

extraction.

We are now in a position to derive expected lifetime incomes as a function of beliefs. Conditional

on a given cumulative output Xt, high and low types earn the same wage. Their expected lifetime

incomes differ nonetheless because high types are more optimistic about future prospects. Using the

laws of motion above, one can derive the Hamilton-Jacobi-Bellman equations

rv (pl, θ) = w(θ) +
1

2
(θs)2 v′′ (pl, θ) ,

rv (ph, θ) = w(θ) + θs2v′ (ph, θ) +
1

2
(θs)2 v′′ (ph, θ) .

Imposing the boundary conditions, limθ→0 v (pi, θ) = pl/r and limθ→∞ v (pi, θ) = ph/r for i ∈ {l, h},
yields the following closed-form solutions for the two ordinary differential equations.

Proposition 11. For the continuous time model, the expected lifetime incomes of workers as a func-

tion of the belief ratio θ are given by

v (pl, θ) =
2σ

s∆

(
θα

−

∫ θ

0

1

(1 + x)xα− dx+ θα
+

∫ ∞

θ

1

(1 + x) xα+
dx

)
+

pl
r

and

v (ph, θ) =
2σ

s∆

(
θγ

−

∫ θ

0

1

(1 + x)xγ− dx+ θγ
+

∫ ∞

θ

1

(1 + x)xγ+
dx

)
+

pl
r

,

where α+ = 1
2 (1 + ∆), α− = 1

2(1−∆), γ+ = 1
2(−1 + ∆), γ− = 1

2(−1−∆), and ∆ =
√

1 + 8
(

r
s2

)
.

The value function satisfies properties P1, P2 , and P3, and hence exhibits strong learning.

46It may be surprising that the belief ratio θt does not drift downward when the worker is of the low type. This is

because the belief ratio θt is a convex function of µt. Reversing the change of variable shows that, as one might expect,

the belief µt is a strict supermartingale when the worker’s ability is low.
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Figure 4: Workers’ value functions in the continuous-time model. Parameters: r = 0.2, pl = 0, ph = 1.

The closed-form solution is of independent interest, and the fact that it can be derived is an addi-

tional contribution of this paper, since continuous-time models often have to be solved numerically.47

As discussed in the Appendix, the derivation crucially hinges on the change of variable from µ to θ.

This technique can be used to simplify a variety of models with continuous time learning, as illustrated

by Atkeson et al. (2009) or Daley and Green (2010).

Plots of the value functions for a particular numerical example and several values of s are shown

in Figure 4, illustrating the properties listed in Definition 1. First, for any given belief µ ∈ (0, 1), the

expected incomes of low and high types are respectively smaller and bigger than the discounted value

of their current wage, hence P1 is satisfied. Second, as stated in P2, the gap increases when learning

becomes more efficient. Finally, the value functions converge to the discounted value of current wages

when s goes to zero and to step functions when s goes to infinity, as required by P3.

47In the working paper version of this article we also show how to obtain a solution for cases where senders are uncertain

about their productivity.
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6 Conclusion

We have analyzed a labor market where a worker’s ability can be revealed either by his education or

by his performance on-the-job. The addition of this realistic feature causes the failure of standard

arguments, such as the selection of the Riley equilibrium via the Intuitive Criterion. Available evidence

on the speed of employer learning suggests that this observation could be highly relevant for applied

work in job market signaling and signaling models in general. Our findings are also relevant for

empirical research on signaling theory. Given the existence and stability of multiple pooling outcomes

when learning is efficient, tests based on the properties of separating equilibria are likely to be too

restrictive.

Our analysis has concentrated on characterizing the set of signaling equilibria and has relied on

the Intuitive Criterion as the basic refinement. From a game-theoretic standpoint, a very interesting

avenue of research concerns the relevance of more sophisticated equilibrium refinements. As argued

above, however, existing forward-looking equilibrium refinements beyond the Intuitive Criterion might

not be entirely suitable for signaling models with receiver learning after the signaling stage, which raises

a number of theoretical questions on refinements: In which special classes of games could a uniqueness

result be restored? How existing refinements can be further adapted to a context with learning on the

receiver’s side?

Another avenue for future research concerns the learning process itself, whose characteristics can

differ from one specific model (value function) to another. The general model presented in this

paper abstracts from prevalent features of labor markets. Among other simplifications, it ignores the

importance of match-specific uncertainty. This additional source of noise hampers signal extraction

and is thus likely to expand the parameter space where the Intuitive Criterion bites. Another implicit

premise of our analysis is that wages are a function of current beliefs. This is no longer true when

employers can commit to employment contracts. Changing the perspective, it would be interesting to

see whether commitment reinforces the informativeness of education signals.

Such extensions would provide a more realistic description of how signaling operates in labor

markets. Our basic findings, however, apply to any signaling environment beyond the particular job-

market model we have focused on. This suggests plenty of scope for further research on the interactions

between learning and signaling.
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APPENDIX

Proof of Proposition 2:

We first prove that the given education levels can be sustained as a pooling equilibrium by the

particular beliefs µ(ep) = µ0 and µ(e) = 0 for all e 6= ep. These beliefs together with ep = 0 lead to

pooling because any deviation yields a strictly larger cost and a strictly lower value (recall that the

value function is strictly increasing in µ). Consider ep > 0: Under the stated beliefs, selecting e = 0

is always preferred by both types to selecting any other e /∈ {0, ep}, for both yield the same lifetime

income but the cost of e = 0 is strictly smaller. Hence it suffices to check that neither of the two types

has an incentive to deviate from ep to e = 0. This yields the conditions

c(pl, ep)− c(pl, 0) ≤ v(pl, µ0)−
pl
r

and c(ph, ep)− c(ph, 0) ≤ v(ph, µ0)−
pl
r

.

By the single crossing property, c(ph, ep) − c(ph, 0) < c(pl, ep) − c(pl, 0). Weak learning, however,

implies that v(ph, µ0) ≥ v(pl, µ0) and so the first condition implies the second one. Given that costs

are strictly increasing in education, there exists a unique ep > 0 such that the first inequality is fulfilled

if and only if ep ≤ ep. By continuity, that education level is uniquely determined by the condition

given in the statement. It is straightforward to show that an education level can be sustained as

a pooling equilibrium under some belief system if and only if it can be sustained under the beliefs

specified above. Further, by P1

v(pl, µ0)− pl ≤ w(µ0)− pl = µ0(ph − pl) < ph − pl,

which, recalling the definition of eh in Proposition 1, implies that ep < eh.

Last, assume strong learning. To see that the set of pooling equilibria shrinks as the s increases,

simply notice that v(pl, µ0|r, s) is strictly decreasing in s by P2, hence the conclusion follows from

the equation defining ep. The fact that lims→∞ ep = 0 under strong learning follows from P3, i.e. the

requirement that lims→∞ v(pl, µ|r, s) = pl/r. �

Proof of Proposition 3:

Suppose that there are at least two education levels in the support of the low types’ equilibrium

strategy, e and e′ with e < e′. As both must be optimal, it follows that

v(pl, µ(e))− c(pl, e) = v(pl, µ(e
′))− c(pl, e

′) ,

which, since c(pl, e) < c(pl, e
′), implies v(pl, µ(e)) < v(pl, µ(e

′)). Hence, µ(e) < µ(e′) (recall that v is

strictly increasing in µ), proving that µ needs to be strictly increasing over chosen education levels.
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This is only possible if µ(e′) > 0, hence in equilibrium e′ must also be in the support of the high

types’ strategy. It follows that there exist at most one education level chosen only by low types, and it

must be the lowest one in the support of their strategy. A symmetric argument holds for high types,

thereby establishing (i) and (ii). The fact that el = 0 follows as in Proposition 1.

Suppose that also e is in the support of the high types’ strategy. Then

v(ph, µ(e)) − c(ph, e) = v(ph, µ(e
′))− c(ph, e

′).

By the single crossing property, we obtain

v(ph, µ(e
′))− v(ph, µ(e)) = c(ph, e

′)− c(ph, e) < c(pl, e
′)− c(pl, e) = v(pl, µ(e

′))− v(pl, µ(e)).

The strict inequality leads to a contradiction in Spence’s model because v(ph, µ) = v(pl, µ). One can

then conclude that low types randomize among at most two education levels, where the lower one

is only chosen by them. Symmetrically, high types randomize among at most two education levels,

where the higher one is only chosen by them.

For other value functions, the last equality does not lead to a contradiction. The analysis of the

Reports Model in the main text shows that equilibria where Ep is not a singleton are indeed possible.

It remains to show that Ep ⊆ [0, eh]. If ep ∈ Ep, low-productivity workers must weakly prefer ep

to obtaining wage pl/r while acquiring education e = 0, hence

c(pl, ep)− c(pl, 0) ≤ v(pl, µ(ep))−
pl
r

≤ 1

r
(ph − pl)

(where the last inequality follows from Property P0). Then, ep ≤ eh follows from definition of eh. �

Proof of Proposition 4:

Without loss of generality, we set the discount rate r = 1. Denote g , g(ph)/g(pl). Condition (5)

holds if and only if

d > d(g) ,
1

2

[
1 +

√
1− g

1 + 3g

]
(10)

We require a few preliminary computations. Define Dµ , µd + (1 − µ)(1 − d) ∈ [1 − d, d] and

Kd , d − g(1 − d). Observe that, d ≥ 1
2 > g(ph)

g(ph)+g(pl)
= g

1+g implies that Kd > 0. Straightforward

computations show that the function h(µ) defined in equation (3) satisfies

r · h(µ) = Kdw(µ,G) + (1− g −Kd)w(µ,B) ,

r · h′(µ) = d(1− d)(ph − pl)

[
Kd

D2
µ

+
1− g −Kd

(1−Dµ)2

]
,

r · h′′(µ) = −2(2d − 1)d(1 − d)(ph − pl)

[
Kd

D3
µ

− 1− g −Kd

(1−Dµ)3

]
.
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First, we notice that if d ≤ g(pl)
g(ph)+g(pl)

= 1
1+g , then there exists no multiple pooling equilibrium.

This is because this condition amounts to 1 − g −Kd = 1 − d − gd ≥ 0 and then it follows from the

expression above that h′(µ) > 0 for all µ ∈ [0, 1], implying that condition (4) cannot hold. Thus we

can restrict attention to d > 1
1+g from now on.

Under this restriction, or equivalently 1 − g −Kd < 0, we obtain that h′′(µ) < 0 for all µ ∈ [0, 1]

from its expression above. Hence h is strictly concave, a fact we will rely on below.

The rest of the proof proceeds in three steps.

Step 1. Condition (10) holds if and only if

∃µ1, µ2 with µ1 < µ2 and h(µ1) = h(µ2), (11)

To see this, note that by differentiability and concavity of h, (11) holds if and only if there exists

µ ∈]0, 1[ with h′(µ) = 0. Hence, we study the sign of h′(·). If µ = 1/2, then D1/2 = 1−D1/2 and from

the expression of h′(·) above, one see that h′(1/2) > 0. Since h′′(·) < 0, it follows that h′(0) > 0 and

h′(·) has a zero in ]0, 1[ if and only if h′(1) < 0. Given that D1 = d,

h′(1) < 0 ⇐⇒ Kd

d2
+

1− g −Kd

(1− d)2
< 0 ⇐⇒ d(1− d) <

g

1 + 3g
.

Observe that: (i) g/[1 + 3g] < 1/4; (ii) d(1 − d) reaches a maximum value of 1/4 at d = 1/2 and is

strictly decreasing for d ≥ 1/2. Hence the condition is fulfilled if and only if d is above the largest

root of the polynomial of second degree above. That root is actually d(g), which completes the proof

of this step.

Step 2. If a multiple pooling equilibrium exists, condition (10) is fulfilled and part (a) of the statement

holds.

To see this, note that existence of a multiple pooling equilibrium implies (11), so (10) holds by

Step 1. Concavity of h implies that, for any given value k, there can be at most two beliefs µ1, µ2 with

µ1 < µ2 and h(µ1) = h(µ2) = k. It follows that, if a multiple pooling equilibrium exists, it involves

exactly two pooling signals, as claimed in (a), i.e. Ep = {e1, e2} with e1 < e2.

To complete the proof of (a), it remains only to show that there is no additional separating signal

for high types. Suppose there were a third education level, e3, sent in equilibrium by high types only.

High types must be indifferent between e3 and e2,

v (ph, µ2)− g(ph)e2 =
1

r
ph − g(ph)e3 ⇒ e3 = e2 +

(ph/r)− v (ph, µ2)

g(ph)

while low types must weakly prefer e2, so that

e3 > e2 +
(ph/r)− v (pl, µ2)

g(pl)
.
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These conditions jointly imply

(ph/r)− v (ph, µ2)

g(ph)
>

(ph/r)− v (pl, µ2)

g(pl)
⇐⇒ h(µ2) < h(1).

This leads to a contradiction, because concavity of h and (11) imply h′(µ) < 0 for all µ ∈ [µ2, 1].

Step 3. If condition (10) is fulfilled, then a multiple pooling equilibrium as in (b) exists. Further, there

exists µmin ∈]0, 1[ such that a multiple pooling equilibrium as in (c) exists if and only if µ0 > µmin.

By Step 1, Condition (11) holds. Let µ1 < µ2 be such that h(µ1) = h(µ2). We aim to construct

multiple pooling equilibria with Ep = {e1, e2}, µ(e1) = µ1 and µ(e2) = µ2.

First, note that, for given values of {e1, µ1, µ2}, e2 is uniquely determined since

v (pl, µ1)− g(pl)e1 = v (pl, µ2)− g(pl)e2 ⇐⇒ e2 = e1 +
v (pl, µ2)− v (pl, µ1)

g(pl)
.

Second, let us consider e1. A sufficient condition for low types not to have an incentive to deviate

under some out-of-equilibrium belief system is the participation constraint

v (pl, µ1)− g(pl)e1 ≥ v (pl, 0) − g(pl) · 0 =
pl
r

or, equivalently,

e1 ≤
v (pl, µ1)− (pl/r)

g(pl)
, ẽ (µ1) .

Note that ẽ (µ1) > 0 for all µ1 > 0. If low types also send an additional separating signal in equilibrium,

it will necessarily be e0 = 0 and then indifference leads to e1 = ẽ (µ1).

The analogous condition for the high types is redundant, since v (ph, µ1) > v (pl, µ1) > pl/r +

g(pl)e1 ≥ pl/r + g(ph)e1 for all e1 ∈ [0, ẽ (µ1)]. Given that this inequality is strict, e1 > 0, i.e. 0 /∈ Ep

for any multiple pooling equilibrium. In summary, e1 ∈]0, ẽ (µ1)].

Third, let us turn to beliefs. Let q(e|p) denote the equilibrium probability of signal e sent by type

p. By Bayes’ Rule, weak consistency of beliefs implies, for j ∈ {l, h},

µj =
q (ej | ph)µ0

q (ej| ph)µ0 + q (ej| pl) (1− µ0)
,

where µ0 is the share of high types in the population. To economize in notation, consider the change

of variable θ , µ/(1 − µ) for 0 < µ < 1 (the same change of variable considered in Section 5), and

denote θk = µk/(1− µk) for k = 0, 1, 2. We can then rearrange the last equation as follows

q (ej | pl) = q (ej| ph)
θ0
θj

. (12)
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Since by the Step 1 high types randomize on Ep only, it follows that q(e1|ph) + q(e2|ph) = 1. This

means that equation (12) is equivalent to

1 ≥ q(e1|pl) + q(e2|pl) = q(e1|ph)
θ0
θ1

+ (1− q(e1|ph))
θ0
θ2

,

which, rearranging, reduces to

q(e1|ph)
[
1

θ1
− 1

θ2

]
≤
[
1

θ0
− 1

θ2

]
. (13)

It follows that an equilibrium with multiple pooling requires θ2 > θ0, or equivalently µ2 > µ0 (else

q(e1|ph) > 0 would yield a contradiction).

We are now ready to show that an equilibrium of the type given in (b) always exist.

Since h(0) = (1 − g)(pl/r) < (1 − g)(ph/r) = h(1), under Condition (10) there always exist pairs

(µ1, µ2) with h(µ1) = h(µ2) and µ2 arbitrarily close to 1. In other words, let µ be such that h′(µ) = 0

and let Γ ,]max{µ0, µ}, 1[. For any µ2 ∈ Γ, one can find a µ1 ∈]0, µ[ such that h(µ1) = h(µ2). That

is, choosing µ2 ∈ Γ, µ1 is uniquely determined by h(µ1) = h(µ2) and this guarantees that both types

are indifferent on Ep by definition of h(·).
For the strategy profiles postulated in (b), as argued above indifference with e0 = 0 for the low

types leads to e1 = ẽ (µ1) and the participation constraints are fulfilled. The only remaining task is to

show that randomized strategies q(e|p) can be specified yielding µ1, µ2. Since µ2 > µ0, our previous

analysis shows that q(e|ph) can be constructed and then q(e|pl) are given by equation (12). This

proves existence of multiple pooling equilibria as stated in part (b).

We now turn to part (c). For any e1 ∈]0, ẽ (µ1)], the participation constraints are fulfilled as

above. Given that we are focusing on bipolar equilibria, the weak inequality in (13) binds. Then,

for q(e1|ph) < 1 to hold, it must be true that µ1 < µ0. If and only if this requirement is satisfied,

consistent q(e|ph) can be constructed while q(e|pl) are given by equation (12).

Hence, it remains only to establish under which conditions do there exist pairs (µ1, µ2) with

0 < µ1 < µ0 < µ2 < 1 and h(µ1) = h(µ2). Given that h(1) = (1 − g)(ph/r) > (1 − g)(pl/r) = h(0),

there exists µ with h′(µ) = 0, and h′′(·) < 0. Thus such pairs exist if and only if µ0 > µmin where

µmin is defined by 0 < µmin < 1 and h(µmin) = h(1). �

Proof of Proposition 7:

We start with part (a). By continuity, there exists ε > 0 small enough that

c(pl, e)− c(pl, ep) <
1

2

ph − pl
r

∀ e ∈ (ep, ep + ε) .
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Let δ = c(ph, ep + ε) − c(ph, ep) > 0, so that c(ph, e) − c(ph, ep) > δ for all e > ep + ε. For a value

function with strong learning,

lim
s→∞

v(pl, µ|r, s) =
pl
r

and lim
s→∞

v(ph, µ|r, s) =
ph
r

.

Hence there exists s∗ such that, for all s ≥ s∗,

ph
r

− v(pl, µ|r, s) >
1

2

ph − pl
r

and
ph
r

− v(ph, µ|r, s) <
1

2
δ .

It follows that, for s ≥ s∗,

c(pl, e)− c(pl, ep) <
ph
r

− v(pl, µ|r, s) ∀ e ∈ (ep, ep + ε) ,

i.e. (ED) fails, implying that e∗(ep) > ep + ε, and

c(ph, e)− c(ph, ep) >
ph
r

− v(ph, µ|r, s) ∀ e > ep + ε ,

i.e. (PD) fails, implying that e∗∗(ep) < ep+ε. We conclude that e∗∗(ep) < e∗(ep), or that the considered

pooling equilibrium survives the Intuitive Criterion.

To prove part (b), it suffices to notice that, if costs are linear, the quantities ε and δ above are

independent of ep. �

Proof of Proposition 8:

In this proof, we make the dependence of all involved quantities on s explicit. Recall from

Proposition 2 that pooling equilibria correspond to education levels in [0, ep(s)] and that, under strong

learning, ep(s) is strictly decreasing in s and lims→∞ ep(s) = 0.

Recall also conditions (ED) and (PD). A pooling equilibrium with education level ep fulfills the

Intuitive Criterion if and only if condition (PD) fails at e = e∗(ep), where the latter education level is

defined by taking equality in condition (ED).

Define

Ih(ep|s) = c(ph, ep)− c(ph, e
∗(ep)) +

ph
r

− v(ph, µ0|r, s) .

It follows that the Intuitive Criterion fails at ep if and only if Ih(ep|s) > 0.

Step 1. Ih is strictly increasing in ep. Hence, for a given s, if the Intuitive criterion fails at ep, it also

fails at all larger education levels.

To prove this, differentiate the equality defining e∗(ep) to obtain

∂e∗(ep|s)
∂ep

=
ce(pl, ep)

ce(pl, e∗(ep))
> 0 .
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Now, differentiating Ih with respect to ep yields

∂Ih(ep|s)
∂ep

= ce(ph, ep)− ce(ph, e
∗(ep)) ·

∂e∗(ep|s)
∂ep

=
ce(ph, ep)ce(pl, e

∗(ep))− ce(ph, e
∗(ep))ce(pl, ep)

ce(pl, e∗(ep))
> 0 ,

where the last inequality follows from log-submodularity.

Step 2. There exists s∗(0) such that all pooling equilibria fail the Intuitive Criterion for s < s∗(0),

and ep = 0 survives it for s ≥ s∗(0).

As in the proof of Proposition 7, we can find a precision s∗(0) such that ep = 0 survives the

Intuitive Criterion for s ≥ s∗(0) and fails it for s < s∗(0). In the latter case, the conclusion follows

from Step 1.

Step 3. Let s ≥ s∗(0). There exists a unique education level ẽ(s) such that Ih(ẽ(s)) = 0 and

Ih(ep) > 0 for all ep > ẽ(s). Further, ẽ(s) is strictly increasing in s and lims→∞ ẽ(s) = +∞.

It follows from Step 1 that either Ih(ep) > 0 for all ep, and so all pooling equilibria fail the Intuitive

Criterion, or there exists a unique education level ẽ(s) as stated. By Step 2, the former case can only

occur if s < s∗(0).

Notice that

∂Ih(ep|s)
∂s

= −ce(ph, e
∗(ep|s)) ·

∂e∗(ep|s)
∂s

− ∂v(ph, µ0|r, s)
∂s

< 0 ,

where the inequality follows from P2 and the strictly decreasing profile of e∗(ep|s) in s (see equality

in condition (ED)).

Differentiating Ih(ẽ(s)) = 0 with respect to s now yields

∂Ih(ep|s)
∂ep

∂ẽ(s)

∂s
+

∂Ih(ep|s)
∂s

= 0

which, since
∂Ih(ep|s)

∂ep
> 0 and

∂Ih(ep|s)
∂s < 0, implies ∂ẽ(s)

∂s > 0.

It follows that ẽ(s) is a strictly increasing function. Thus, either lims→∞ ẽ(s) = +∞ as claimed,

or it has an upper bound and so (by virtue of being increasing) a finite limit L. Suppose the latter

case would hold. Recall that e∗(ep) > ep for all ep. As Ih(ẽ(s)|s) = 0, from the definition of Ih we

obtain that

lim
s→∞

c(ph, e
∗(s̃))− c(ph, ẽ(s)) = 0 ,

because lims→∞ v(ph, µ|r, s) = ph
r in the strong learning case. This is a contradiction with e∗(L) > L.

Step 4. For s ≥ s∗(0), the rest of the proof follows.
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Recapitulating, ep yields a pooling equilibrium if and only if ep ∈ [0, ep(s)], and in that case survives

the Intuitive Criterion if and only if ep ∈ [0, ẽ(s)]. Given that ep(s) is strictly decreasing and converges

to 0 as s → ∞, and ẽ(s) is strictly increasing and diverges to infinity (and ẽ(s∗(0)) = 0 < ep(s
∗(0))),

it follows that they must intersect at a unique precision s such that part (b) holds below s and part

(c) holds above it.

It remains to consider the case where ce is log-linear. Retracing our steps, we can see from the

computations in Step 1 that, in this case, ∂Ih/∂ep = 0, while from Step 2 we still see that ∂Ih/∂s < 0.

It follows that, for a fixed s, either all pooling equilibria fail the Intuitive criterion, or all survive it

(the locus of s̃ becomes vertical). �

Proof of Proposition 9: It is clear that a mixed strategy equilibrium fails the Intuitive Criterion if

there exists an e such that the two conditions in Proposition 9 are fulfilled. To see the only if part,

note that low and high types are indifferent between signals in Ep, hence v(pi, µ(e)) − c(pi, µ(e)) is

constant for all e ∈ Ep, given i ∈ {l, h}. It follows that if Equilibrium Dominance for the low types

and the Participation Constraint of the high types hold for a given signal in Ep, they also hold for all

signals in Ep. �

Proof of Proposition 10:

The wage is a linear function of current belief given by w(µ) = µ(ph − pl) + pl. Hence, the value

function reads

v(p, µ|r) = pl
r
+

ph − pl
1 + r

(
µ+

E[µ′|p, µ]
r

)
.

The boundary conditions in P1 follow from E[µ′|p, µ] = µ when µ ∈ {0, 1}. To establish the ranking

of the value functions it is sufficient to show that E[µ′|pl, µ] < µ < E[µ′|ph, µ] for all µ ∈ (0, 1). We

start by considering the first inequality. Let Λ , µ/(1 − µ) and X denote the output realization in

period 1. Bayes rule implies that Λ′ (X) = Λ [gh(X)/gl(X)] so that

E[Λ′|pl,Λ] = Λ

∫ (
gh(X)

gl(X)

)
gl(X)dX = Λ .

Given that Λ is a convex function of µ, Jensen’s inequality yields E[µ′|pl, µ] < µ. A similar reasoning

using the converse transformation Λ̃ , (1− µ)/µ yields E[µ′|ph, µ] > µ. �

Proof of Proposition 11:

The wage does not directly depend on the worker’s type, but solely on the current belief ratio θ.

It is equal to the expected output E[p|θ] = (ph − pl)
(

θ
1+θ

)
+ pl.
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For a low ability worker, dθt = θtsdZt and thus the asset value solves the following Hamilton-

Jacobi-Bellman equation

rv (pl, θ)−
1

2
(θs)2 v′′ (pl, θ) = (ph − pl)

(
θ

1 + θ

)
+ pl ,

which is a second order non-homogeneous ODE with non-constant coefficients. The homogeneous

problem satisfies an Euler equation48 whose solution reads

vH (pl, θ) = C1lθ
α−

+ C2lθ
α+

,

where α− and α+ are the negative and positive roots of the quadratic equation

α (α− 1)
s2

2
− r = 0 .

Thus α− = 1
2(1 − ∆) and α+ = 1

2(1 + ∆) with ∆ = 1
s

√
s2 + 8r. Notice that α+ − α− = ∆ and

α+ + α− = 1.

To solve for the non-homogeneous equation we use the method of variations of parameters. The

non-homogeneous term is composed of a non-linear function of θ plus a constant term. Thus we can

assume that the particular solution is of the form

vNH (pl, θ) =
[
y1 (θ) θ

α−

+ y2 (θ) θ
α+
]
+

pl
r

.

Standard derivations yield the system of equations

(
θα

−
θα

+

α−θα
−−1 α+θα

+−1

)(
y′1 (θ)

y′2 (θ)

)
=

(
0

− 2σ
(1+θ)θs

)
.

Given that the Wronskian of the two linearly independent solutions is

θα
−

α+θα
+−1 − θα

+

α−θα
−−1 = α+ − α− = ∆ ,

we have

y1 (θ) =
2σ

s∆

∫
1

(1 + x)xα− dx and y2 (θ) =
2σ

s∆

∫
1

(1 + x) xα+
dx .

Thus the general form of the particular solution reads

vNH (pl, θ) =
2σ

s∆

(
θα

−

∫
1

(1 + x)xα− dx+ θα
+

∫
1

(1 + x) xα+
dx

)
+

pl
r

. (14)

48Euler equations are second order homogeneous ODE of the form βv(θ) + αθv′2v′′(θ) = 0, for given constants β and

α. They admit a closed form solution as described in e.g. Polyanin and Zaitsev (2003).
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The bounds of integration and constants C1l and C2l of the homogeneous solution are pinned down

by the boundary conditions

v (pl, θ) −−−→
θ→0

pl
r

and v (pl, θ) −−−→
θ→∞

ph
r

. (15)

Let us first consider the homogeneous solution. Given that θα
− → ∞ as θ ↓ 0, the first boundary

condition can be satisfied if and only if C1l equals zero. Similarly, because θα
+ → ∞ as θ ↑ ∞, the

second boundary condition allows us to set C2l equal to zero. All that remains is to determine the

integration bounds in equation (14). Consider the following function

v (pl, θ) =
2σ

s∆

(
θα

−

∫ θ

0

1

(1 + x)xα− dx+ θα
+

∫ ∞

θ

1

(1 + x) xα+
dx

)
+

pl
r

. (16)

Let us examine first the limit when θ ↓ 0. Given that θα
− → ∞ and

∫ θ
0 [(1 + x)xα

−
]−1dx →

0 as θ ↓ 0, we can apply l’Hôpital’s rule to determine the limit. Straightforward calculations

show that θα
− ∫ θ

0 [(1 + x)xα
−
]−1dx → −θ/[(1 + θ)α−] → 0 as θ ↓ 0. A similar argument yields

θα
+ ∫∞

θ [(1 + x) xα
+

]−1dx → θ/[(1 + θ)α+] → 0 as θ ↓ 0.49 Hence, (16) satisfies the first boundary

condition in (15). Now, consider the limit when θ ↑ ∞. We can again use l’Hôpital’s rule because

θα
− → 0 and

∫ θ
0 [(1 + x)xα

−
]−1dx → ∞ as θ ↑ ∞, so that θα

− ∫ θ
0 [(1 + x)xα

−
]−1dx → −1/α− as θ ↑ ∞.

Similarly, we obtain θα
+ ∫∞

θ [(1 + x)xα
+

]−1dx → 1/α+ as θ ↑ ∞. Thus we have

lim
θ→∞

v (pl, θ) =
2σ

s∆

(
1

−α−
+

1

α+

)
+

pl
r

=
2σ

s

( −1

α−α+

)
+

pl
r

=
ph
r

,

where the last equality follows from α−α+ = −2r/s2. We have established that (16) also satisfies the

second boundary condition in (15), which completes the derivation of v(pl, θ).

The asset value of the high type is derived similarly. For a high ability worker, dθt = θts (sdt+ dZt)

and thus the asset value solves

rv (ph, θ)− θs2v′ (ph, θ)−
1

2
(θs)2 v′′ (ph, θ) = (ph − pl)

(
θ

1 + θ

)
+ pl .

The homogeneous solution reads

vH (ph, θ) = C1hθ
γ−

+ C2hθ
γ+

,

where γ− and γ+ are the negative and positive roots of the quadratic equation

γ (γ + 1)
s2

2
− r = 0 ,

49Notice that
∫∞

θ
[(1 + x) xα+

]−1dx <
∫∞

θ
x−α+−1dx = θ−α+

/α+. Thus
∫∞

θ
[(1 + x)xα+

]−1dx is bounded for all θ > 0

and the asset equation is well defined.
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so that γ− = 1
2(−1−∆) and γ+ = 1

2 (−1 + ∆). The non-homogeneous solution is of the form

vNH (ph, θ) =
[
z1 (θ) θ

γ−

+ z2 (θ) θ
γ+
]
+

pl
r

,

where the functions z1 (θ) and z2 (θ) satisfy

(
θγ

−
θγ

+

γ−θγ
−−1 γ+θγ

+−1

)(
z′1 (θ)

z′2 (θ)

)
=

(
0

− 2σ
(1+θ)θs

)
.

Following the same steps as before yields the solution in Proposition 11.

We now show that the value function obtained above exhibits strong learning. We establish each

property in turn.

P1. This property is most easily established reversing the change of variable from θt to µt

(i) Low ability worker : dµt = µt (1− µt) s (−sµtdt+ dZt) , (17)

(ii) High ability worker : dµt = µt (1− µt) s (s (1− µt) dt+ dZt) . (18)

By definition

v (pi, µt) = E

[∫ +∞

t
e−r(τ−t)w(µτ )dτ

∣∣∣∣ pi, µt

]

=

∫ +∞

t
e−r(τ−t)E [w(µτ )|pi, µt] dτ , for all µt ∈ (0, 1) and i ∈ {l, h} , (19)

where the second equality follows from Fubini’s theorem. When the worker is of the high type (pi = ph),

we know from (18) that µt has a positive deterministic trend: µt (1− µt)
2 s2. As w (µt) = µt(ph−pl)+pl

is a linear function of µt, it follows that E [w(µτ )|ph, µt] > w(µt) for all τ > t, and so v (ph, µt) >

w(µt)/r. Similarly, condition (17) shows that µt has a negative deterministic trend when the worker

is of the low type, thus v (pl, µt) < w(µt)/r. Finally, notice that when µt goes to zero or one, its

stochastic component vanishes which provides us with the two boundary conditions.

P2. Differentiating (19) with respect to s yields

∂v (pi, µt)

∂s
= (ph − pl)

∫ +∞

t
e−r(τ−t) ∂E [µτ |pi, µt]

∂s
dτ , for all µt ∈ (0, 1) and i ∈ {l, h} .

It is therefore sufficient to prove that ∂E [µτ |pi, µt] /∂s is positive when pi = ph and negative when

pi = pl. This follows from (17) and (18) as beliefs exhibit a negative trend for low types and a positive

trend for high types, both of them being increasing in absolute values with respect to s.
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P3. The limit condition as s → 0 is satisfied because both deterministic and stochastic terms in (17)

and (18) converge to 0. Accordingly, beliefs remain constant, i.e. lims→0E [µτ |pi, µt] = µt for i ∈ {l, h}.
To establish the limit condition as s → ∞, let us focus first on high types. Notice that the belief ratio

θt is a geometric Brownian motion and so θτ (Z|ph, θt) = θt exp
(
s2

2 (τ − t) + sZ
)
, where Z is normally

distributed with mean 0 and variance σ2(τ − t). Given that µ(θ) = θ/(1+ θ), we have: µτ (Z|ph, µt) =[
1− µt + µt exp

(
− s2

2 (τ − t)− sZ
)]−1

. Hence, for all ε > 0 and Z, there exists a signal/noise ratio

s(ε, Z) such that 1 − µτ (Z|ph,mut) < ε for all s > s(ε, Z). It follows that lims→∞E [µτ |ph, µt] = 1

which in turn implies that lims→∞ v(µ|ph) = ph/r. One can establish in a similar fashion that

lims→∞E [µτ |pl, µt] = 0 because µτ (Z|pl, µt) =
[
1− µt + µt exp

(
s2

2 (τ − t)− sZ
)]−1

. �
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