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Summary 
 
_ Complementary beneficial effects of different arbuscular mycorrhizal fungi(AMF) can 
result in a more efficient exploitation of the soil nutrients available, thus influencing 
plant communities.Here, we hypothesize that plant–AMF specificity is mediated by 
phylogenetic constraints defining possible interactions, and that plant–AMF interaction 
patterns can influence plant–plant facilitation specificity. 
_ We reanalyzed previous data describing plant–plant and plant–AMF interaction at the 
community level to specifically test for a phylogenetic signal on plant and AMF 
interactions and for a relationship between plant–plant facilitation specificity and plant 
species differences in their AMF associates. 
_ Closely related AMF operational taxonomical units (OTUs) tend to interact with the 
same plant species, but there is not a significant signal in the interaction through the 
plant phylogeny. This indicates that the similarity in theAMFassociates of two plant 
species is independent of their phylogenetic relatedness. Interestingly, plant–AMF 
interactions match plant facilitation specificity, with pairs of plant species recruiting 
more frequently under each other tending to have different AMF associates. 
_ An increment of AMF diversity in the rhizosphere, as a result of plant–AMF and 
plant–plant selectivity, is suggested as a potential driver of plant–plant facilitation. This 
study highlights the role of plant–AMF interactions in shaping plant community 
assemblages. 
  



 

Introduction 

  

Plant-plant facilitation is an ecological process occurring in communities worldwide 

(Valiente-Banuet et al., 2006) required for the establishment of most woody plant 

species in semiarid environments (Valiente-Banuet & Verdú, 2008). Plant-plant 

facilitation is considered as a positive interaction in which the presence of one plant 

enhances the growth, survival or reproduction of a neighbor plant. Facilitation does not 

need to be a mutualistic interaction where both participants gain (+,+), but may occur 

only as a commensalism (+,0) in which just the facilitated species gets a benefit. 

However, mere species coexistence without any positive interaction (0,0) is not 

considered plant facilitation (Callaway, 2007). Plant facilitation has been 

experimentally shown to be species-specific, so that benefactor (nurse) species tend to 

promote the establishment of specific beneficiary (facilitated) species more strongly 

than others (Valiente-Banuet & Verdú, 2007, 2008; Castillo et al., 2010). Hereafter we 

will refer to it as plant-plant facilitation specificity. Plant-plant facilitation is patent 

when adult nurses are facilitating seedlings of the facilitated species. However, even 

though this positive interaction may turn into competition over time, a high percentage 

of specific positive plant-plant interactions remains when facilitated seedlings become 

adults (Valiente-Banuet & Verdú, 2008). The maintenance of plant-plant facilitation 

over time implies that the benefits of the association are not only related to germination 

and seedling establishment, but also extended to growth and long term survival. 

Understanding the mechanisms that promote and maintain plant-plant facilitation will 

contribute to a better understanding of assembly mechanisms in plant communities. 

Mechanisms traditionally considered to underlie plant-plant facilitation involve 

avoidance of abiotic stresses such as an improved shade or moisture availability 

(Callaway, 2007). In this case plant-plant facilitation strength will be expected to be 

independent of ecological interactions (Fig. 1a for the specific case of plant-AMF 

interactions). However, it is unlikely to explain a stronger facilitation between specific 

plant species considering only abiotic stress avoidance. Plant-plant facilitation 

specificity is more likely explained by plant species-specific traits, including traits 

involved in ecological interactions. Plant-plant facilitation tends to occur among 

distantly related plant species (Valiente-Banuet & Verdú et al., 2008). Simultaneously, 



phylogenetic relatedness could be underlying species similarities in traits influencing 

ecological interactions with both mutualistic (i.e. AMF) and antagonistic (i.e. 

pathogens) partners. A phylogenetic conservatism of ecological interactions is a 

recurrent phenomenon across the entire tree of life (Gómez et al., 2010). The tendency 

of related species to resemble each other may result in sharing interacting partner 

species (phylogenetic signal). Recent studies have started to hypothesize that the role of 

mycorrhizal fungi interconnecting plants are crucial to understand plant-plant 

facilitation processes (Van der Heijden & Horton, 2009; Van der Putten, 2009). One 

potential mechanism by which mycorrhizal fungi can promote plant-plant facilitation is 

that they can interconnect plant individuals from different species, genera and even 

families in natural communities (Newman, 1988). Plant interconnections provide 

pathways for the transference of nutrients such as Nitrogen (He et al., 2004, 2005), 

Phosphorus (Smith et al., 2001), Arsenic, Cesium and Rubidium (Meding & Zasoski, 

2008). The mutualism between plant and arbuscular mycorrhizal fungi (AMF) can have 

considerable importance for seedling establishment, enhancing access to a nutrient 

absorption without requiring completely developed tissue structures (Kytoviita et 

al., 2003; Van der Heijden, 2004). Later on, the development of plant-plant facilitation 

could be maintained through the plant interconnections provided by AMF. Plant-plant 

facilitation may be stronger between plant species with similar AMF if there is an 

overall benefit due to an overlap of the AMF associated to each plant species (hereafter 

plant fungal-niche) driven by an increment in the abundance of the shared AMF (Fig. 

1b). On the contrary, plant-plant facilitation specificity may be mediated by the degree 

of complementarity in the interacting plants fungal-niche. It has been shown in 

experimental approaches that plant co-existence and productivity increases with 

increasing numbers of AMF species, due to the added beneficial effect of each single 

AMF species (Van der Heijden et al., 1998; Hartnett & Wilson, 1999; Wagg et 

al., 2011). Increasing AMF diversity has been suggested to result in a more efficient 

exploitation of soil nutrients and in a better use of the resources available in the system 

(Van der Heijden et al., 1998). In this sense, plant-plant facilitation may be stronger 

between plant species which harbor different AMF, leading to an overall benefit due to 

an increase of AMF diversity in the shared rhizosphere (Fig. 1c). Host specificity is 

likely to be an important driver shaping AMF communities (Haussman & Hawkes, 

2010), and likewise, AMF communities can influence plant species performance 

(Maherali & Klironomos, 2007) through strong bottom-up controls on plant community 



composition (Grime et al., 1987; Van der Heijden et al., 1998a,b; Hartnett & Wilson, 

1999). The role of microorganisms promoting plant species coexistence was first 

suggested considering avoidance of belowground antagonistic interactions (Janzen, 

1970; Connell, 1971; Packer & Clay, 2000; Reinhart et al., 2003; Van der Putten, 

2009), but the influence of belowground mutualistic interactions promoting plant-plant 

facilitation has been less considered (but see Dickie et al., 2002, 2005). 

Plant-AMF interaction networks have been recently described for a semiarid 

community (Montesinos-Navarro et al., 2012) showing that there is a non-random 

interaction pattern between plant and AMF communities as revealed by significant 

network nestedness and modularity. Nestednessimplies that ecological-specialists (i.e. 

with the lower number of links) on one party (e.g. plants) tend to interact with a subset 

of the ecological-generalist (i.e. with the higher number of links) species on the other 

party (e.g. AMF). Specifically, in this plant-AMF network there are few AMF 

ecological-generalists which interact with almost every plant species in the community 

(Montesinos-Navarro et al., 2012). Modularity, in addition, reflects weakly interlinked 

subsets of species (modules) which internally consist of strongly connected species 

(Olesen et al., 2007). Plant and AMF species are grouped within a module on the basis 

of shared interactions, which means a similar interaction niche (set of species with 

which they interact) and in some cases this interaction pattern is independent of the 

spatial association of the species (Montesinos-Navarro et al., 2012). Under this 

scenario, this compartmentalization of the network can emerge, among other processes, 

from a phylogenetic conservatism of ecological interactions among taxa (Lewinsohn et 

al., 2006; Olesen et al., 2007), suggesting that specific plant-AMF association may be 

limited by phylogenetic constraints. Analyzing the phylogenetic conservatism in 

module membership is analogous to exploring phylogenetic conservatism in host 

selectivity (Gómez et al., 2010). 

In this paper we test whether plant-AMF interactions are phylogenetically 

structured. In other words, if 1) there is a non-random phylogenetic pattern in plant-

AMF interaction; 2) the modules of the network, previously shown to be independent of 

species spatial association (Montesinos-Navarro et al., 2012) can emerge from such 

phylogenetic pattern (i.e. modules are composed by closely related plant and/or closely 

related AMF species); and 3) there is a relationship between facilitation specificity and 

plant species fungal-niche. We expect that as suggested for other ecological networks, 

there will be a significant phylogenetic signal in plant-AMF network resulting in a 



phylogenetic conservatism of module membership. In addition, we expect that plant-

plant facilitation strength between specific species depends on their plant fungal-niche, 

potentially influencing the overall plants nutrients uptake in the shared rhizosphere. 

  

Materials and methods 

  

DATA BASE 

 

This study is based on available data published by Montesinos-Navarro et al. (2012), 

collected in the semiarid Valley of Zapotitlán, in the state of Puebla, Mexico (18º 20N, 

97º 28 W). It is a xeric shrubland dominated by the columnar cactus Neobuxbaumia 

tetetzo, Agave spp. and different species belonging to the families Fabaceae and 

Asteraceae. Non-lignified root segments from 130 individuals of 37 plant species, 

representing the relative abundance of each species, were collected to characterize AMF 

community (see further details in Montesinos-Navarro et al., 2012). Glomeromycota 

18S (SSU) Internal Transcribed Spacer (SSU-full ITS) was amplified through a nested 

PCR (methods thoroughly described in Montesinos-Navarro et al. 2012). No 

amplification was obtained for the families Gigasporaceae and Acaulosporaceae. Less 

than 30% amplification success was obtained for Glomus group B primer-pair, whereas 

a 78.21% success was achieved for the primer-pair of Glomus group A, suggesting a 

predominance of Glomus A in the AMF communities in the study area. Glomus is the 

most common AMF in many field sites encompassing 70% of the AMF species 

identified (range 60%-85%) (Helgason et al., 2002; Öpik et al. 2009; 

Vandenkoornhuyse et al. 2002; Zhaoyong et al.2006; Alguacil et al. 2009; Sonjak et 

al., 2009; Wilde et al., 2009; Öpik et al., 2010). Although subsequent sequencing of 

PCR products was continued only with the predominant monophyletic group 

of Glomus A due to financial constraints, the general pattern of interactions described 

with this subset of AMF has been previously shown to be largely generalized to other 

systems with higher AMF diversity (Montesinos-Navarro et al., 2012). The importance 

of using molecular techniques to prevent an underestimation of AMF richness has been 

increasingly highlighted. However, there is an unavoidable difficulty to precisely define 

AMF species using molecular techniques, due to the large lack of precise knowledge 

about intra-specific genetic variation for multiple species. Some studies have 

traditionally used a standard cut off of 3% of genetic dissimilarity to consider AMF 



species, but the use of this or any other specific cut-off can be controversial. We 

defined Operational Taxonomic Units (OTUs) for AMF according to their DNA 

sequence dissimilarity at a wide range of reasonable cut-off values based on the range of 

intra and inter-specific genetic variation recently described in this genomic region 

for Glomus A (Stockinger et al. 2010, Schoch et al. 2012). Rarefaction curves 

performed at 1% to 10% DNA sequence dissimilarity cut-offs, reached the stabilization 

between 5% and 8% (Montesinos-Navarro et al., 2012). All the analyses were 

performed at seven cut-offs ranging from 4 to 10% of DNA sequence dissimilarity. For 

the analyses regarding module species membership we used the modules defined by 

Montesinos-Navarro et al. (2012) which have been shown to be independent of spatial 

species association. 

  

AMF AND PLANT PHYLOGENIES 

  

For AMF, SSU-full ITS sequencing described above (Genbank accession numbers in 

Table S1), was used to build the AMF phylogenetic tree considering an SSU-fill ITS 

sequence ofParaglomus downloaded from Genbank (accession number FN555285) as 

the outgroup to root the phylogenetic tree. Phylogenetic analyses of the nuclear 

ribosomal SSU-full ITS sequences were carried out in the CIPRES (Cyberinfrastructure 

for Phylogenetic Research) web portal (Miller et al., 2010) using the probabilistic 

Maximum Likelihood (ML) method, as implemented in RAxML blackbox with the 

default settings (Stamatakis, 2006; Stamatakis et al., 2008). One hundred bootstrap trees 

were inferred to provide support values for the best-scoring ML tree (Fig. S1). We 

repeated the analyses to obtain another best-scoring tree and assess the robustness of our 

results to different phylogenetic trees. As the two best-scoring phylogenetic trees were 

very similar, with just a few tips showing different placements, results did not change 

substantially and thus, only those using the first tree will be shown. The tips of this tree 

which differ in less than a given cut-off (4 to 10% genetic dissimilarity) were collapsed 

in order to obtain the AMF phylogeny for each cut-off. 

For plants, the phylogenetic distance matrix was obtained from the community 

phylogeny generated with Phylocom 4.2 (Webb et al., 2008). This program produces a 

community phylogeny by matching the family names of our study species with those 

contained in a backbone phylogeny, which is themegatree of the Angiosperm 

Phylogeny Group III (Stevens, 2005). We then resolved the phylogenetic relationships 



at the species level of the Cactaceae and Agavaceae families based on published 

phylogenies of Good-Avila (2006) and Hernández-Hernández et al. (2011). Our final 

tree includes all the plant species in which the amplification of AMF DNA was positive 

(35 out of the 37 species sampled) and was fully resolved with the exception of two 

polytomies (Fig. S2). The tree was calibrated with age estimates from Wikstrom et 

al. (2001) plus six ages obtained from the chronograms published by Good-Avila 

(2006) and Arakaki et al. (2011) for the nodes of Cactaceae (35 

Mya), Mammillaria (6.3 Mya), and the splits 

between Mammillaria and Coryphantha (19.7 Mya), Agave karwinski and Agave 

macroacantha (6.7 Mya). Calibration was made with the phylocom bladj algorithm that 

evenly distributes the undated nodes between dated nodes or between dated nodes and 

terminals (Webb et al., 2008). 

  

ANALYSES 

  

PHYLOGENETIC SIGNAL OF THE INTERACTION 

  

The phylogenetic signal of plant-AMF interactions was estimated with the estimated 

generalized least squares (EGLS) procedure of Ives and Godfray (2006). This procedure 

is similar to that developed for a single trait (Blomberg et al., 2003) but considering the 

matrix of interactions as the target trait. The method calculates the strength of the 

phylogenetic signal in the plant-AMF interactions acting through both the AMF (dAMF) 

and the plant (dplant) species phylogenies. We used the association rate of plant 

species k on AMF OTU i (Aik) as a measure of the strength of association between plant 

and AMF species following eq. 4 in Ives and Godfray (2006): 

Aik=-log(1-Fik/Hi) 

  

  

  

  

  
 

 

 



where Hi is the number of DNA sequences of the AMF OTU i and Fik is the number of 

sequences of OTU i found in the plant species k. Note that there is a typo in the original 

article, indicating Hi/Fik instead of the correct expression Fik/Hi (A.G. Ives, pers. 

comm.). 

Aik depends, as stated by Ives & Godfray (2006), on both the selectivity and abundance 

of species, two crucial variables explainingthe number of interactions occurring in 

facilitation networks (Verdú & Valiente-Banuet, 2008). In addition to quantitative 

matrices, we re-calculated the strength of association (Aik) by transforming the 

interaction matrix into a binary matrix where 1/0 denotes the presence or absence of 

interaction, respectively. Although this approach may have other limitations, it avoids 

problems derived from assigning abundances on the basis of the number of identical 

copies of DNA in a given root sample, potentially coming from the same AMF 

individual. We perform the analyses with both quantitative and binary matrices to 

evaluate the robustness of the results. 

The procedure estimates an EGLS model to fit Aik in terms of the observed 

association strength and the separate effects of the plant and AMF species phylogenies. 

The model is based on the Ornstein-Uhlenbeck model of evolution, which incorporates 

stabilizing selection and drift, and detects the presence of phylogenetic signal through 

the parameter d. This parameter determines the strength of phylogenetic signal, with 

d=0 indicating the lack of phylogenetic correlation and d=1 corresponding to the 

Brownian motion assumption (i.e pure drift model). The goodness of fit of the different 

models was estimated by comparing the mean squared error calculated for 1) the full 

model (MSE), 2) a “star" phylogeny (MSEstar), and 3) a Brownian evolution model 

(MSEb). The model minimizing the mean squared error was considered the best fit. We 

estimated d values for both plant (dplant) and AMF (dAMF) sets of species. Statistical 

significance was estimated by calculating bootstrap 95% confidence intervals as 

described in Ives and Godfray (2006). Analyses to assess the phylogenetic signal of the 

interaction were performed in Matlab (The MathWorks, Inc.) version 7.10.0.499. 

  

PHYLOGENETIC SIGNAL OF MODULE MEMBERSHIP 

  

Phylogenetic signal in module membership was determined following the method 

proposed by Maddison & Slatkin (1991). This test estimates whether the minimum 

number of evolutionary steps in a character on a phylogenetic tree is lower than 



expected by chance. It was determined whether the steps occurred less than expected by 

chance using a null model in which data were reshuffled 1000 times across the tips of 

the phylogeny. The character was the module to which the species was ascribed by the 

annealing algorithm (Guimerà & Amaral, 2005a, b). An annealing algorithm uses a 

probabilistic function to find the optimum solutionbased on the “locality” of the 

preceding solution considering the improvement gained in each move. Module was 

considered as an unordered, multi-state factor. We mapped the evolution of module 

membership onto our phylogenetic trees. Analyses to assess phylogenetic signal in 

module membership were performed in R version 2.13.2 using the function 

“phylo.signal.disc” developed by Enrico Rezende and the species belonging to each 

module were extracted from Montesinos-Navarroet al. 2012. 

  

RELATIONSHIP BETWEEN FACILITATION AND FUNGAL- NICHE OF PLANTS 

  

Plant-plant facilitation has been corroborated for some species in this system using 

experimental approaches, showing that seedling establishment is enhanced in the 

understory of distantly related plant species (Castillo et al., 2010). In addition, studies 

considering the whole plant community have provided results supporting this 

facilitation pattern (Valiente-Banuet & Verdú, 2007, 2008, Verdú et al., 2010, Verdú & 

Valiente-Banuet, 2011). Plant-plant facilitation matrices from Valiente-Banuet & Verdú 

(2008) and Verdú et al. (2010) were used to characterize the strength of the facilitation 

interaction among each pair of plant species in the community. The strength of plant-

plant facilitation species was estimated for each pair of plant species as follows. 

Contingency analyses were used to compare the number of individuals on each 

facilitated-species recorded under each nurse species and in open spaces with the 

expected number of individuals derived from the proportions of area of plant-cover vs. 

open space considering the total cover of perennial plants and open space in four 1000-

m2 transects (Verdú et al.,2010). This matrix was built considering only the plant-plant 

facilitation interactions (i.e seedling plant species recruiting under nurse plant species) 

that remain with time, resulting in plant-plant facilitation interactions among adult plant 

species (see Valiente-Banuet & Verdú, 2008 for a deeper description of the matrix). The 

plant-plant facilitation matrix was reduced to contain only the plant species on which 

information of their associated AMF was available (Montesinos-Navarro et al., 2012). 

Dissimilarity in plant species interaction niche was calculated based on the composition 



of AMF in each plant species roots (i.e. a plant fungal-niche). The number of AMF 

OTUs with which a given plant species interact (plant species degree) is influenced by 

the plant species relative abundance. However, there is a correlation between plant 

species degree and the mean number of AMF OTUs per individual plant (i.e. AMF 

load), indicating that plant abundance alone is not enough to explain the number of 

AMF interactions per species. In fact, both plant abundance and AMF load equally 

contribute to explain plant species degree (Montesinos-Navarro et al., 2012). Pairwise 

values of plant species dissimilarity in their fungal niche were calculatedusing a 

Euclidean distance index. The statistical significance of the correlation among plant-

plant facilitation strength and plant fungal-niche dissimilarity matrices was tested 

against a null model based on 1000 randomizations of the plant fungal-niche matrix, 

using the null model “frequency” in the PICANTE package implemented in R 

(Kembel et al. 2010). The correlation between log-transformed plant-plant facilitation 

and plant-fungal-niche matrices was tested for each cut-off using from 4% to 10% of 

genetic dissimilarity to define AMF OTUs. 

  

CONTRIBUTION OF PLANT RELATIVE ABUNDANCE TO FACILITATION 

PATTERNS 

  

Plant species relative abundance can be considered as a species specific intrinsic 

characteristic. As many other traits, the relative abundance can influence the species 

interaction pattern with other species or it could also be the result of its interaction 

pattern. In any case, including species relative abundance, reflected in the sampling 

design, is essential in order to approach species interaction patterns at the community 

level. An abundant plant species in the community will have a higher probability of 

interacting with a higher number of species. However, the combined effect of relative 

abundance with other ecological processes can be a better predictor of the interaction 

patterns, than the neutral process of abundance alone. Previous studies on plant 

facilitation in this system have shown that the frequency of interactions between a pair 

of plant species is by far better explained by the combined effect of relative abundance 

and the phylogenetic distance between them than solely by plant relative abundance 

(Verdú & Valiente-Banuet, 2011). This indicates that there is a tendency of the most 

abundant plants to interact between them, but the final frequency of pairwise 



interactions is shaped by an additional tendency to interact with distantly related 

species. 

Similarly, we tested if the dissimilarity in plant-fungal-niche combined with plant 

abundance can better explain plant facilitation strength than solely plant species relative 

abundance. We evaluate the ability of abundance and dissimilarity in plant-fungal-niche 

to explain plant-plant facilitation strength by means of the likelihood approach 

developed by Vázquez et al. (2009). 

The likelihood of the models including the following matrices to explain the observed 

matrix of facilitation interactions was estimated: a) null matrix; b) plant abundance 

matrix, c) plant-fungal-niche dissimilarity matrix; and d) abundance × plant-fungal 

niche dissimilarity matrix. 

The null matrix was defined as a matrix in which all pairwise interactions had the same 

probability. The probability matrix derived of plant abundances was constructed by 

multiplying the vectors of nurse and facilitated plant abundances recorded in 112 

vegetation patches in the study area. Normalization was made in the resulting matrix so 

that their elements added up to one. The probability matrix derived of plant-fungal 

niches was constructed by normalizing the dissimilarity matrix in plant-fungal niche 

among plants so that their elements added up to one. 

The models likelihood and AIC were recalculated considering every cut off from 4% to 

10% to define AMF OTUs and using both quantitative and binary matrices to define the 

plant-AMF interaction pattern. The model with lower Akaike Information Criteria 

(AIC) was selected as the best model. As a rule of thumb, models whose AIC is less 

than 2 units larger than the best model have a substantial support, whereas those models 

resulting in AIC values >10 units larger have virtually no support (Burnham & 

Anderson, 2002). In addition, the likelihood of being a better model than the best model 

was estimated by means of AICs weights. 

  

  

Results 

  

Considering the number of modules across cut-offs, our plant-AMF interaction network 

has on average six modules. Focusing, for example, on the representative cut-off of 7%, 

from the AMF point of view, the two most ecological-generalist AMF OTUs were 

grouped in the same module with 18 ecological-specialist plants (open diamonds in Fig. 



2), whereas from the plant perspective, the most ecological-generalist plants belonged to 

different modules (open and close circles and open squares modules in Fig. 2). In 

general terms, modules tend to be composed of ecological-generalists species of one 

party (either plants or AMF) with ecological-specialists of the other party. 

A significant phylogenetic signal in the plant-AMF interactions is observed 

through the AMF phylogeny; the model considering the phylogenetic signal has a better 

fit than the models considering no phylogenetic covariances or Brownian motion for 

most of the cut-off values (4 to 8% considering both quantitative and binary matrices 

(Table 1). However, the phylogenetic signal of the interaction through plant phylogeny 

was close to zero and not significant for any cut-off and for both quantitative and binary 

matrices (Table 1). In other words, closely related AMF tend to interact with the same 

set of plant species, but the tendency of plant species to interact with the same set of 

AMF OTUs is independent of their phylogenetic relatedness. 

When the membership of an AMF OTU to a particular module is mapped onto 

the AMF phylogeny (Fig. 2), a significant phylogenetic signal emerges for every cut-off 

from 4 to 9% (Table 2), indicating that closely related AMF tend to belong to the same 

module. In the case of plants (Fig. 2), the membership to a given module does not show 

a phylogenetic signal (Table 2), indicating that phylogenetically related plant species do 

not tend to belong to the same module. The convergence of results considering the 

phylogenetic signal in the plant-AMF interaction and phylogenetic conservatism of a 

module membership strengthens the conclusion that AMF phylogeny within 

Glomeraceae influence their pattern of interaction with plant species but this is not the 

case in plants. 

The strength of plant-plant facilitation interactions was significantly positively 

correlated with dissimilarity in their fungal-niche. Pairs of plant species in which 

facilitation during their adult stage was recorded more frequently, tended to differ in 

their plant-fungal niche (r range for cut-offs 4% to 10% = 0.43-0-53 for quantitative 

interaction matrices; r range = 0.47-0-53 for binary interaction matrices; p<0.01 for 

every correlations) (Fig. 3). The null matrix was the worst predictor of the observed 

strength of plant-plant facilitation matrix (Table 3). Plant relative abundance alone was 

a better predictor of strength of plant-plant facilitation than dissimilarity in plant-fungal-

niche alone but, interestingly, the best predictor was the matrix combining the plant 

relative abundance and dissimilarity in plant-fungal-niche probabilities. The combined 

effect of plant relative abundance and dissimilarity in plant-fungal-niche was 



significantly better than abundance alone at every cut-off when quantitative plant-fungal 

matrices were considered and also when binary interaction matrices were used except 

for the cut-off of 10% (Table 3). The combined matrix represents the interaction 

probabilities expected if the species interact proportionally to both their relative 

abundance and dissimilarity in plant-fungal-niche. Although this combined matrix was 

the best predictor, it should be noted that much variation still remains unexplained as 

the differences in AIC’s compared to the observed model suggests indicating that other 

factors beside these two are contributing to the strength of plant-plant facilitation. 

  

Discussion 

  

Our results show that closely related AMF OTUs tend to interact with the same set of 

plant species while the similitude in plant fungal-niches of two plant species is 

independent of their phylogenetic relatedness. We further show that although 

facilitation is more frequent among the most abundant plant species, this trend is 

significantly modulated by plant species fungal-niche. There is a tendency of plant-plant 

facilitation specificity to occur among plant species that differ in their fungal-niche, 

resulting in stronger facilitation between pairs of plant species with different AMF 

associated. We argue below that this might be a potential mechanism to increase AMF 

diversity in the shared rhizosphere which, by means of complementary beneficial effects 

of eachsingle AMF, can provide a more efficient exploitation of soil nutrients. 

Previous studies have approached conservatism in plant-fungal interactions, 

considering mainly ectomycorrhizal associations within a particular plant phylogenetic 

clade, orchids (Shefferson et al., 2007; Shefferson et al., 2010; Jacquemyn et al., 2011; 

Martos et al., 2012). In this context, closely related plant species tend to interact with 

the same fungi, but closely related fungal species either do not share the same plant 

hosts (Jacquemyn et al., 2011) or their phylogenetic signal is weaker than plant 

phylogenetic signal (Martos et al., 2012). Although our results seem to challenge these 

previous results, it is important to remark that these studies are focused on a particular 

plant phylogenetic clade considering species that might not be co-occurring. Our study 

firstly approaches plant-fungal interactions at the community level, resulting in a wider 

range of plant phylogenetic diversity, due to the consideration of most of the coexisting 

plant species. In this framework, interestingly, closely related AMF tend to interact with 

the same plant species, and plant phylogenetic signal is not detected. This suggests that 



although the pattern of interactions between plant and mycorrhizal fungi is 

evolutionarily conserved within a particular plant clade, this pattern does not scale when 

broader plant phylogenetic diversity is considered. This could be potentially due to 

convergent patterns of plant-fungal interaction across clades, but further studies with a 

community perspective, considering jointly a phylogenetic signal in the plant-AMF 

interactions will be required to confirm this hypothesis. Furthermore, this study in based 

on a group of fungal species within the genus Glomus. Although general plant-AMF 

interaction patterns described for this group of fungi can be generalized to a wider AMF 

phylogenetic diversity (Montesinos-Navarro et al. 2012), further studies considering the 

phylogenetic community interactions of other groups of AMF will shed light to the 

understanding of co-evolutionary patterns of plant and AMF. Nevertheless, the 

generality of host specificity in AMF remains speculative, with some plants showing 

repeatable AMF communities (e.g., Vandenkoornhuyse et al., 2002), and others 

showing variation with habitat and environmental conditions (e.g., Aldrich-Wolfe, 

2007). In addition, the taxonomical delimitation of AMF species is controversial and 

AMF phylogenetic signal will be influenced by this limitation. Considering lower cut-

offs to define OTUs can result in a phylogenetic signal either due to biological 

processes occurring at lower taxonomic levels or due to an artifact of considering intra-

specific variation as different OTUs interacting with the same plant species. In a similar 

way, AMF phylogenetic signal can disappear at higher cut-offs that could potentially 

merge different genera or families within a given OTU, which might avoid the detection 

of plant-AMF specificity occurring at lower taxonomic levels. Our results report a 

decrease in AMF phylogenetic signal at the highest cut-off(10%) and a consistent 

significant phylogenetic signal in the rest of cut-offs. This suggests that the range of cut-

offs considered might be covering a biological meaningful range of inter-specific 

variation. 

It has been previously reported that phylogenetic conservatism in AMF traits can 

promote competition among closely related AMF species leading to a low contribution 

to plant biomass. Accordingly, plant performance decreases with the phylogenetic 

relatedness of the AMF species in their roots (Maherali & Klironomos, 2007). In our 

system, the two most generalist AMF -those interacting with almost all plant species- 

are closely related, which according to Maherali & Klironomos (2007) could revert in 

fewer benefits to the plant. Species-specific patterns of plant-plant facilitation could 

compensate for this effect increasing AMF diversity in the shared rhizosphere. One 



possible mechanism may be by promoting associations with plant species which differ 

in their fungal-niche, potentially affecting ecosystem properties such as productivity 

(Cadotte et al., 2008). In this study we present correlative evidence to support that 

plant-AMF interactions might be one of the underlying mechanisms influencing plant-

plant facilitation. Functional complementarity of AMF promoting plant productivity and 

plant-plant interactions have been so far reported for AMF belonging to different 

families (Hart & Reader,  2002; Maherali & Klironomos, 2007; Powell et al., 2009). 

Our results firstly suggest that AMF phylogenetic diversity within the 

genus Glomus can also result in complementary functionality. 

There is a tendency, supported by experimental (Castillo et al., 2010) and 

comparative evidence (Valiente-Banuet & Verdú, 2007) of plant-plant facilitation to 

occur among distantly related plant species. Interestingly, our results show that the 

similarity in the AMF associated between a pair of plant species is independent of the 

phylogenetic distance between them. Accordingly, the observed match between plant-

plant facilitation strength and fungal-niche cannot be attributed to a passive process in 

which distantly related plant species tend to differentiate in their plant-fungal niche. 

Furthermore, the combination of relative abundance and dissimilarity in plant-fungal 

niche substantially improves the prediction of facilitation specificity compared to solely 

plant species relative abundance. Taking all this together, it suggests that, among the 

possible plant-plant facilitation interactions (i.e. most abundant and distantly related 

species), the strength of facilitation increases when the involved plant species have a 

higher fungal-niche dissimilarity. Consequently, facilitation occurs also between 

distantly related plant species with similar plant-fungal niche but these interactions 

present weak facilitation strength. Specific plant-plant facilitation may be the result of 

facilitating species which differ in their overall fungal-niche, increasing AMF diversity 

and adding the beneficial effects of each AMF species (Van der Heijden et al., 1998; 

Hartnett & Wilson, 1999; Wagg et al., 2011). At the same time, plant species differing 

in their plant-fungal niche might be weaker resource competitors, and natural selection 

might positively select for these plant-plant interactions.  Previous studies support the 

idea that both AMF host selectivity and plant fungal-niches can influence the emergent 

pattern of species-specificity in plant-AMF interaction, potentially influencing plant-

plant facilitation. AMF community composition can be highly influenced by the initial 

establishment of certainplant species (Hausmann & Hawkes, 2010), and seedling 

success can be affected by the presence of established AMF networks (Kytoviita et 



al., 2003, Van del Heijden, 2004). Alternatively to plant-AMF interactions, other 

mechanisms can be underlying the observed correlation between plant facilitation 

strength and plant fungal niche. For example, an increase in AMF diversity in the 

rhizosphere can decrease the presence of plant pathogens (Van der Putten, 2009) 

resulting in more complex indirect effects underlying plant community assemblages. 

Although our results are concordant with previous information on species-

specificity in plant facilitation, experimental studies will be required to ultimately test 

for the specific biotic belowground mechanisms underlying plant-plant facilitation. 

Novel research lines are derived from our results exploring the potential implications of 

AMF networks in structuring plant community assemblages. Plant and AMF can 

regulate the resource allocation to the partner depending on the benefit received 

(Kiers et al., 2011). If specific plant-plant facilitation allows a more efficient nutrient 

uptake (Van der Heijden et al., 1998; Hartnett & Wilson, 1999; Wagg et al., 2011) 

through an increase in AMF diversity, plants may increase their contribution to the 

plant-AMF mutualism resulting in higher resource allocation from AMF to the plants 

sharing a specific rhizosphere. Exploring the role of plant-AMF interaction as a 

potential mechanism promoting plant-plant facilitation specificity will contribute to a 

better understanding of assembly rules in plant communities. 
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Tables 

  

Table 1. Phylogenetic signal of the plant-AMF interaction using quantitative and binary 

matrices. Mean squared error calculated for the full model (MSEd), a “star" phylogeny 

(MSEstar), and a Brownian evolution model (MSEb). Strength of phylogenetic signal (d) 

for both plant (dplant) and AMF (dAMF) and the lower and upper values estimates of the 

confidence interval at 95% (in brackets) are shown. 

   Quantitative   

Cut-off % MSEd MSEStar MSEBrownian dAMF dplant 

4 0.19 0.22 0.37 
0.48[0.21-

0.74] 
0[0-0.05] 

5 0.17 0.18 0.35 
0.19[0.002-

0.38] 
0[0-0.01] 

6 0.16 0.17 0.33 
0.44[0.13-

0.82] 
0[0-0.14] 

7 0.12 0.14 0.28 
0.49[0.12-

0.92] 
0[0-0.14] 

8 0.12 0.15 0.31 0.57[0.1-1] 0[0-0.1] 

9 0.144 0.138 0.51 
0.58[0.05-

1.22] 
0[0-0.16] 

10 0.12 0.12 0.42 0.006[0-0.44] 0[0-0.34] 

   Binary   

4 0.18 0.21 0.35 
0.46[0.20-

0.74] 
0[0-0.05] 

5 0.16 0.17 0.34 
0.18[0.002-

0.36] 
0[0-0.06] 

6 0.15 0.16 0.31 
0.42[0.09-

0.78] 
0[0-0.09] 

7 0.09 0.10 0.20 
0.49[0.06-

0.94] 
0[0-0.04] 

8 0.11 0.14 0.29 
0.55[0.08-

1.04] 
0[0-0.20] 

9 0.12 0.12 0.33 0.17[0-0.61] 0[0-0.20] 



10 0.11 0.11 0.38 0.01[0-0.55] 0[0-0.34] 

 

Table 2. Phylogenetic signal of the module membership for cut-offs of 4 to 10% genetic 

dissimilarity in DNA sequences. For both AMF and plants, it is presented: the number 

of modules detected at each cut-off, the number of observed evolutionary transitions in 

the module membership, the expected number of transitions under a null model in 

which data were reshuffled 1000 times across the tips of the phylogeny, and the P-value 

based on the comparison of observed vs. expected values (***: <0.001;**: 0.01; ns: 

>0.05). 

  AMF  Plant 

Cut-off 

% 

N 

Module

s 

Obs 

transition

s 

Mean Null 

(p-value) 
 

Obs 

transitions 

Mean Null 

(p-value) 

4 6 18 27***  19 19ns 

5 8 14 22***  21 22ns 

6 7 12 19***  22 22ns 

7 6 10 15***  17 16ns 

8 6 11 15***  17 16ns 

9 6 10 13**  18 17ns 

10 5 8 9ns  16 15ns 

 

Table 3. The effect of plant abundance, dissimilarity in fungal niche and their 

interaction on plant facilitation using quantitative and binary fungal niche matrices. 

Matrices were log transformed and the likelihood and Akaike information criteria is 

presented for: a) an observed model, using the same matrix as a predictor; b) a null 

model in which all pairwise interactions were equally probable; c) interaction 

probability determined solely by relative species abundance or d) solely fungal niche, 

for each cut-off, and d) the interaction of abundance and fungal niche matrices, for each 

cut-off. The number of parameters of each model is presented in parenthesis. The AIC 

weights of each candidate model with respect to the best fit model is lower than 0.05 

except for abundance at the cut-off 10% (AIC weight = 0.31). 

 

 Likelihood AIC    



a) Observed (1) 45.72 93.44    

b) Null (1) 169.20 340.41    

c) Abundance (1) 139.69 281.37    

Quantitative      

 d) Plant-fungal niche 

(1)  

 e) Abundance x Plant -fungal 

niche (2)  

Cut-off % 

Likelihood AIC 

Cut-off 

% Likelihood AIC 

4 150.86 303.73 4 126.51 257.02 

5 150.43 302.86 5 126.15 256.31 

6 149.86 301.73 6 125.73 255.47 

7 145.45 292.91 7 122.55 249.09 

8 145.47 292.94 8 122.56 249.11 

9 145.40 292.79 9 122.50 249.00 

10 140.77 283.54 10 120.61 245.22 

Binary      

 

d) Plant-fungal niche (1)  

 e) Abundance x Plant-fungal 

niche (2)  

Cut-off % 

Likelihood AIC 

Cut-off 

% Likelihood AIC 

4 147.19 296.38 4 122.74 249.47 

5 147.74 297.49 5 123.26 250.51 

6 144.17 290.34 6 120.98 245.97 

7 148.43 298.87 7 128.53 261.07 

8 149.10 300.21 8 129.10 262.20 

9 146.06 294.12 9 127.39 258.77 

10 191.92 385.84 10 176.33 356.66 

Figures 

Figure 1. Schematic representation of the potential relationships between plant-plant 

facilitation strength and other biotic interactions. Plant fungal-niche dissimilarity 

represents the differences in the set of AMF associated to any pair of plant species. The 

size of the positive sign indicates the strength of facilitation for a given pair of plant 

species. Circles represent plant fungal-niche, with high and low overlap indicating 



similarity or difference in AMF communities respectively. The rectangle around circles 

represents the potential exploitation of soil nutrients. Different scenarios are represented 

(a) Members of plant pairs with different degree of facilitation strength have a similar 

plant fungal-niche, leading to an independence of plant-plant facilitation strength from 

this biotic interaction (plant-AMF association), (b) Higher facilitation strength between 

plant pairs with lower dissimilarity in plant fungal-niche (negative relationship), leading 

to a higher facilitation strength between plant-plant sharing a similar plant-fungal niche, 

and (c) Higher facilitation strength between plant pairs with higher dissimilarity in their 

plant fungal-niche (positive relationship), leading to a higher increment in the potential 

access to resources (rectangle). 

 

 
Figure 2. Plant-AMF interaction matrix combined with the phylogenetic topologies, 

using a cut-off of 7% for AMF. Black and white cells indicate presence and absence of 

the interaction. The six types of icons (open and close circles, diamonds and squares) on 

the tips represent the module to which each species belongs as described in Montesinos-

Navarro et al. 2012. 
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SUPPLEMENTARY MATERIAL 

Table S1. Genebank accession numbers of all sequences used in the analyses. 

  

Figure. S1. The best-scoring Maximum Likelihood arbuscular mycorrhizal fungi tree 

inferred from one hundred boostrap trees. 

  

Figure. S2. Phylogeny of the plant species based on the megatree of the Angiosperm 

Phylogeny Group 3 (Stevens 2005) as the backbone phylogeny. 

  

 

 


