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Abstract

During the last decade, two important collections of carbon relevant hydrochemical
data have become available: GLODAP and CARINA. These collections comprise a
synthesis of bottle data for all ocean depths from many cruises collected over several
decades. For a majority of the cruises at least two carbon parameters were measured.
However, for a large number of stations, samples or even cruises, the carbonate
system is under-determined (i.e., only one or no carbonate parameter was measured)
resulting in data gaps for the carbonate system in these collections. A method for
filling these gaps would be very useful, as it would help with estimations of the
anthropogenic carbon (C,nt) content or quantification of oceanic acidification. The aim
of this work is to apply and describe, a 3D moving window multilinear regression
algorithm (MLR) to fill gaps in total alkalinity (A1) of the CARINA and GLODAP data
collections for the Atlantic. In addition to filling data gaps, the estimated At values
derived from the MLR are useful in quality control of the measurements of the
carbonate system, as they can aid in the identification of outliers. For comparison, a
neural network algorithm able to perform non-linear predictions was also designed.
The goal here was to design an alternative approach to accomplish the same task of
filling Ar gaps. Both methods return internally consistent results, thereby giving
confidence in our approach.

Highlights: > Estimation of alkalinity by multilinear regression (MLR) techniques. >
Estimation of alkalinity by neural network techniques. > Intercomparison between
alkalinity prediction techniques. > Use of alkalinity for carbon calculations. > Use of
alkalinity for quality control of measurements.
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1. Introduction

GLODAP (Key et al., 2004; Sabine et al., 2005) and CARINA (Tanhua et al., 2009; Key et
al., 2010) are data collections of ocean bottle samples from the synthesis of many
oceanic cruises. GLODAP provides reasonable global coverage except for the Arctic.
CARINA focuses on the Atlantic with particular emphasis on the North Atlantic and
Arctic Ocean. Both collections are the result of international efforts to summarise all
available data into compiled products.

Total dissolved inorganic carbon (Cy), total alkalinity (A;), total hydrogen ion
concentration (pH) and fugacity of CO, are the four measured parameters of the
carbonate system in seawater. A large fraction of the samples in these databases has
at least one carbon parameter measured and their merging results in the distribution
of measured parameters, as shown in Fig 1. The seawater carbonate system is
governed by the thermodynamics of the carbonate system through the following
equation (jError! No se encuentra el origen de la referencia.) (Millero, 1995; Zeebe
and Wolf-Gladrow, 2001; Dickson, 2010):

COzatm) = COy(aqy + Hy0 @ HyCO3qq) = HY + HCO3 44y = 2HYCO3 (4
CaC0; = CO3™ + Ca?* (Carbonate dissolution)

The system is defined by having any two of the four possible parameters (Millero,

1995; Lewis et al., 1998; van Heuven et al., 2009).
"

Fig 1: Venn diagram with carbon data availability before and after MLR calculations; the numbers within the
different fields are the number of samples that have been assigned with a value for each of the parameters pH,
A;, C;, a combination of them, or no carbonate system data (lower left). Left panel: original data from the
CARINA/GLODAP Atlantic merge; right panel: after adding the additional data obtained in this study.
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Among the carbon system parameters, Ar can be estimated most accurately due to its
low variability in the ocean (Wolf-Gladrow et al., 2007; Zeebe and Wolf-Gladrow,
2001). At is supposed to be only marginally affected by increasing C; concentration, at



least at the current decadal scale, because the carbonate system tends to buffer the
alkalinity when dissolving CO, in contemporary seawater (llyina et al., 2009; Riebesell
et al., 2010). Most of the Ar variability is known and is well correlated with salinity,
silicate and even temperature (Wallace, 1995; Millero et al., 1998; Lee et al., 2006).
This is advantageous for this work, as the full dataset of available A; data from old
cruises performed in the 1970s to the most recent can be used directly as a
climatology for the multilinear regression (MLR) computations. There is no need for
partitioning the dataset in a time series or for introducing the time parameter in
estimations, which would result in fewer available data, or less precision for
estimations. However, alkalinity measurements performed without using certified
reference materials (CRMs) have proven to be less accurate, which is true for most
data obtained prior to the mid-1990s.

GLODAP bottle cruise data for the Atlantic region were used together with CARINA
bottle cruise data for the Atlantic and Southern Ocean regions. Both data collections
(i.e., the data products with adjustments applied to certain parameters, see Sabine et
al. (2005) for the GLODAP data and Tanhua et al. (2010) for the CARINA data) were
merged and outlier filtering was performed to prepare the dataset. The existence of
depth, temperature and salinity data for each sample was required and so, samples
without these variables were removed. The absence or bad data of nitrate and
phosphate samples were recovered by using the same multilinear regression
presented here for alkalinity, once the algorithm was fine-tuned. Multiparametric
spatial/WMP interpolation techniques (Velo et al., 2010) with the World Ocean Atlas
2009 (WOAO09) (Garcia et al., 2009) were used to recover silicate samples where no
data were available. The Results and Discussion section (2.1) provides details on these
procedures.

Two very different techniques are being proposed here to infer the At values. Firstly, a
customised 3D moving window MLR method (hereinafter named 3DwWMLR), fine-tuned
and focused for this purpose; and secondly, a customised neural network, also
parameterised and fine-tuned for this task. Both alternatives provide fundamentally
different approaches to the same problem and thus, a comparison of their results was
used as a validation tool for the analysis.

1. Methodology

1.1.The 3D Moving Window MLR (3DwMLR) estimation

The classical multilinear regression (MLR, or LM) scheme allows modelling of the
relationship between a response variable and some predictors by using a linear
equation combining these predictors. The problem with using a classical MLR applied



to the full CARINA and GLODAP dataset is that not all Ar natural variability can be
modelled this way and large errors may result. The At relationship with salinity and
temperature could be assumed to be linear, but only when data are restricted to
specific confined areas in basins and mainly for surface waters (Millero et al., 1998; Lee
et al., 2006).

The objective of this work is to enhance the results of the classical MLR by combining
the following techniques:

1. Use of a 3D moving window to define a data box around the node for which we
are trying to calculate Ar and to perform the regression using only the data
inside that box.

Use a robust regression algorithm instead of ordinary least squares regression.
Include other parametersin the regression in addition to salinity and
temperature (Millero et al., 1998; Lee et al., 2006), which have influence,
directly or indirectly, on the natural variability of Ar; these can be silicate,
nitrate, phosphate and oxygen.

1.1.1. 3D moving window

An algorithm was designed to extract a pool of data from a box around each bottle
sample. This box is referred to as the 3D moving window as its central node changes
for and is centred on each sample. All samples of the merged GLODAP-CARINA dataset
were used and all of them have their specific data window in order to make the MLR
calculations. The width and depth of the data window were chosen according to the
previous procedures of Velo et al. (2010) and multiple comparisons of different
parameterisations were done to improve the results.

Summarising them; variable-width and fixed-width moving windows have been tried,
both with the requirement of a minimum number of samples inside the window to
perform the MLR. The variable-width tests started with a radius of 2 latitudinal
degrees around the node, allowing the algorithm to increase the size degree by degree
until reaching 100 samples around the node. For depth, a direct depth-dependent
equation of height = 150 + 0.15 * [sample depth] around the node was used, allowing
the algorithm to grow 5% in depth for each degree of latitudinal increase. Fixed-width
tests used a wider area of 5, 10 or even 20 latitudinal degrees around the node and the
same equation for depth.

Variable-width parameterisation more closely mimics the nearby sample values, but is
affected more by the scarcity of data. However, fixed-width settings tend to smooth
the natural variability or even add noise if the window is too wide.



A mostly-fixed moving window of 10° in latitude has proven to be the most consistent
parameterisation for At calculations with the CARINA-GLODAP merge for the Atlantic
Ocean, compared with observations. The term mostly-fixed means that the algorithm
was allowed to increment the size of its moving window only when less than 100
neighbouring samples were found in the box, which only happened for 5,324 of a total
222,136 estimated AT values (2.4% of samples). The increments were made in steps of
1° in latitude and 5% in depth, up to a maximum window of 20° (+63% in depth). By
using this combination of settings, the A; dataset gets the most consistent result
among the presented options, allowing for the recovery of large amounts of data.

1.1.2. Robustregression

A robust regression algorithm (Filzmoser et al., 2007; Hubert, 2008) was used as the
MLR technique. The robust regression combines an ordinary regression algorithm with
outlier detection by performing iterations to re-weight predictors. This technique is
also known as interactive reweighting least squares (IRLS) (Green, 1984). Re-weighting
is performed using a bi-square weighting function over residuals. Thus, the inferred Ar
is more consistent compared with observations than when an ordinary least-squares
regression is used.

In ordinary least-squares (OLS) regression it is a critically important task to keep input
values under strict control, as the OLS regression is very sensible to outliers. By using a
robust regression technique, the weighting function is able to detect most of these
outliers by reiterating and thus, discarding them or giving them a minimum impact on
the regression. A bi-square function with a cut-off value of 4.685/residuals (Holland
and Welsch, 1977) was used for weighting in each iteration step. Weights decay
quickly as residuals deviate from zero and the points are discarded (weight 0) when
residuals exceed the cut-off value. The robust regression technique remains
statistically robust with up to 50% of outliers present in the dataset, whereas for the
OLS regression, the presence of one single outlier influences the result.

1.1.3. Selection of predictor parameters

As predictor parameters pressure, potential temperature (6), salinity (S), nitrate,
phosphate, silicate and oxygen were used. The main objective of the addition of these
parameters was to incorporate as much of the natural variability as possible in order to
get better predictions for each regional Ar regression. These parameters have been
chosen as they are related to alkalinity and their abundance is larger than the carbon
parameters in the dataset. The relationship between A; and both S and 8 is well-
known (Millero et al., 1998; Lee et al., 2006). The relationship of Ar with nutrients
(nitrate, phosphate, silicate) is related to organic matter synthesis and re-



mineralisation that adds or removes these ions from dissolution and thus, affects Ar
(Chen and Millero, 1979; Chen and Pytkowicz, 1979). Furthermore, it can be
considered that the sum of the Ar, phosphate and nitrogen species remains constant
during the re-mineralisation of organic matter (Brewer et al., 1975; Fraga and Alvarez-
Salgado, 2005). Oxygen also influences Ar through its use in organic synthesis and re-
mineralisation processes. The pressure relationship with Ar can also be related to
carbonate formation and its dissolution at depth in the ocean. All these processes have
been treated extensively in the literature (Zeebe and Wolf-Gladrow, 2001; Millero,
2007; Dickson, 2010).

The influence of these parameters on the A regression has also been analysed from a
statistical point of view, to verify that the parameter selection is adequate and that all
parameters provide information to the model. It should be noted that the ultimate
purpose of this work is the prediction of At values with the most realistic fit, with less
emphasis on the search for the relative significance of each predictor in Ar. The
existence of correlations and colinearity among a number of predictors is well known
by the authors, but from a prediction point of view, they should not be removed if
their presence improves the prediction. Moreover, we are using a 3D moving window
and the colinearities may change from window to window. In addition, the relative
importance of the parameters may vary for each window fit resembling the oceanic
variability. Therefore, we do not discard a priori any parameter; the MLR of each
window will adapt the relative contribution for each parameter to the local conditions
of the 3D window.

To assess the overall colinearity among predictors, we have performed two statistical
analyses. First, variance inflation factors (VIF) were calculated for a multilinear
regression with the full dataset, following the procedures of Juranek et al. (2009) and
Kim et al. (2010). The results are presented in Table 1, where each row shows the
statistics for each MLR model considering as predictors the parameter of that row and
below. The VIF factor indicates colinearity for values greater than 5-10 (Kutner et al.,
2004) and very high colinearity is found when nitrate and phosphate are used. It is
well-known that statistically, nitrate correlates highly with phosphate (Redfield, 1934),
but it is also known that the N:P relationship has biogeochemical sources of variability
(Anderson and Sarmiento, 1994; Geider and La Roche, 2002). Thus, as both presented
models make use of geographical information, the inclusion of both phosphate and
nitrate can improve the predictions.

Second, Akaike Information Criterion (AIC) values were also calculated for a full model
with all the indicated predictors and for MLR models excluding the highest VIF values.
In Table 1, the AIC is presented as AAIC, i.e., the AIC for the MLR model of that row
minus the AIC for the MLR with all (7) predictors (first table row). Lower AAIC values
indicate better significance (Anderson and Burnham, 2002) of the model. R squared



values have also been calculated for each subset combination of predictors (Miller,
1984), indicating the best fit when all seven parameters are used.

Parameter  VIF(7) VIF(6) VIF(5) VIF(4) | N2 par. AAIC R?
used
Nitrate 117.15 7 0.0 0.930
Phosphate 116.26 17.18 6 1539.1 0.929
Theta 14.41 10.88 5.54 5 9883.7 0.923
Oxygen 5.76 4.97 1.29 1.19 4 13249.6 0.921
Salinity 531 4.97 3.57 1.46 3 15282.8 0.919
Silicate 3.67 3.50 1.77 1.59 2 273075.5 0.039
Pressure 193 1.86 1.75 1.32 1 276923.6  0.002

Table 1 Statistical test on colinearity and relevance of predictors

Inside each 3D moving window, the distribution of predictor values around the node
value was tested for each parameter. If this node value was statistically inside the data
cloud, only samples with more than three times the standard deviation (STD) from the
node value were discarded. Otherwise, if most of the cloud of samples around this
node was deviated, the entire predictor was discarded for the MLR in that node, in
order to avoid extrapolation biases in the predicted Ar. The algorithm was designed
with freedom to remove up to two parameters, giving no predicted Ar if more than
two parameters had to be discarded.

The relationship between the estimated Ar and the predictors has been assumed linear
within each 3D window, i.e., the ranges of variation of A; and predictors in the
windows are small enough to allow linear approximations. However, the method to
select predictors inside the 3D windows assures that the predictor node values, those
used to calculate the interpolated Ar, are inside the ranges of the predictors in the 3D
window.

1.2.Neural Network estimation

For comparison with the previous algorithm, a neural network was constructed and
tested to predict Ar in the same area and with the same predictors, plus the
geographical information. Two main steps were needed: 1) design, configure and
implement an adequate network model and 2) tune the model parameters to optimise
performance and results, i.e., what commonly is referred to as training. An overview of
these procedures can be found in Sarle (1997).

1.2.1. Design



A feed-forward multilayer network with a hidden log-sigmoidal layer and a linear
output was designed and configured (Gardner and Dorling, 1998). The advantage of
such architecture is that the log-sigmoidal layer can learn the non-linear relationships
between predictors and results, whereas the final linear output layer deals with linear
variability (Bishop, 1995; Hagan et al., 1996). Each node in a neural network applies a
transfer function from its inputs to its outputs by weights tuned in the training step. A
schematic diagram is shown in Fig 2. The combination and superposition of results
from all simple nodes and layers is the key for modelling very complex non-linear
problems (Gardner and Dorling, 1998).

Latitude, longitude (in -180° to 180° scale) and depth were used as predictor
parameters to inform the network about the sample position, while 8, S, phosphate,
nitrate, silicate and oxygen informed about the seawater properties. Apart from
sample position, this choice matches the parameters chosen for the 3DwMLR
estimation.

There is no direct way to establish the optimal number of nodes in the hidden layer
(Sarle, 1997); the typical evaluation procedure is to try different network sizes and
evaluate their confidence with observations. Network models with a range from 271 to
279 hidden neurons (units) were tested. A network size of 64 hidden units proved to
be the best compromise between underestimation and overfitting and thus, was
deemed to be the optimal network size. The results for a number of different training
techniques are presented in Fig 3.
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Fig 2: Schematic diagram of the feed-forward neural network designed for A; prediction. Nodes with 1d=1-64
represent the first log-sigmoidal hidden layer (logsig) and node with 1d=65 represents the pure linear layer
(purelin). Nodes 3-63 are represented by dots in the middle box. Values wil-9 and w1-64 together with their bias

are the weights established thorough training and that makes the network useful to predict.

1.2.2. Tuning

Artificial feed forward neural networks need training and they are commonly trained
by back-propagation techniques (Hagan et al., 1996; Sarle, 1997). These techniques
feed the network iteratively and in batch-mode with values of the training dataset and
back-propagate the errors (deltas) of the results through the weights determined in
the network. There are many training techniques in the literature, which differ on how
the weights are modified by the back-propagation. Some of these training techniques
were analysed and tested to tune the design of the network. Fig 3 shows the STD of
the differences between the predicted Ar and the observations, plotted for the
proposed different training techniques and against increasing network sizes (number
of neurons in the hidden layer). As can be seen, the performance of techniques such as
Resilient Backpropagation (trainRP), Scaled Conjugate Gradient (trainSCG) or Bayesian
Regularisation (trainBR) quickly degrades as the size of the hidden layer exceeds a
number of neurons (Hagan et al., 1996). The best training technique, according to
observations, has proven to be the Levenberg-Marquardt (trainLM) method (Hagan
and Menhaj, 1994), using a network size of 64 neurons in the hidden layer. Larger
network sizes have revealed a tendency to overfit (Bishop, 1995; Hagan et al., 1996).

One of the main problems with neural networks is overfit. Neural networks are very
powerful and by increasing the number of neurons in a non-linear layer, they can
eventually model perfectly (producing null residuals). Therefore, care must be taken
not to overfit the network or the model will also incorporate the measurement errors.
This can be detected by testing or validating the network with data not used in the
learning steps of the training process.
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Fig 3: Comparison of some different neural network training techniques and MLR with the measured data

To train a neural network, some data are needed to validate the improvement in each
learning iteration and other data for testing the results. Thus, the dataset has to be
partitioned. The most consistent scheme consisted of using an arbitrary selection of
data for the partitions and re-doing the arbitrary partitioning in each iteration. 80% of
the dataset was used for learning procedures, 15% for validation and 5% for testing.
However, by design, the Bayesian regularisation training technique always uses the
whole dataset for learning.

Mean squared error was chosen as the convergence statistic in each iteration for all
training methods, except Bayesian regularisation, that used the sum of squared errors.
These analyses are designed to maximise the fit between learning and validation
partitions by iteratively tuning the weights.

As the convergence approaches a minimum, the learning process stops and the neural
network saves the weighting data information for use in predicting Ar from inputs (Fig
2).

2. Results and Discussion

2.1.Initial Quality Control of Input Data

As a starting point, the GLODAP and CARINA databases were merged, providing a total
of 282,853 samples available for the Atlantic basin. From these, only 84,734 initially
had Ay values (29.96%).

An initial check resulted in 18,063 samples being discarded as they lacked pressure or
depth, B or S data. Additionally, 32,910 samples without oxygen data were removed.
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Measurements of nutrient parameters were missing for a large number of samples. In
order to recover some of these data points we used the World Ocean Atlas (WOAQ9)
dataset as follows:

Silicate: From 14,085 samples without silicate, 4,661 new values were incorporated
using a combined Spatial/WMP interpolation (Velo et al., 2010) applied to the WOA09
gridded climatology. The climatology of silicate was interpolated to cruise sample
nodes and 8, S, latitude, longitude and depth were used for the parametric distances
in the interpolation algorithm. The remaining 9,424 samples without silicate were

removed from the dataset.

Nitrate and phosphate: 3DWMLR technique was used to obtain nitrate or phosphate in
samples where their counterpart phosphate or nitrate was available. For these MLR,

the respective available phosphate or nitrate parameter was used as the predictor
parameter and also oxygen, 8, S and distances were incorporated as input in the MLR.
For samples without these nutrients, a 3DwWMLR with only oxygen, 8, S and distances
was used. As a result, 6,780 samples without nitrate and 15,220 samples without
phosphate were filled and no data without nitrate or phosphate were left in the
database.

Some further quality control was performed for the nitrate and phosphate dataset of
measurements. The 3DWMLRs indicated above, were also applied to samples with
measured data in order to compare predicted with measured data for these
parameters. The difference between the measured data with the two MLR was taken
as quality criterion for keeping or replacing the measured value. This check yielded
6,268 nitrate samples and 4,146 phosphate samples replaced by 3DwWMLR values.

As a final quality control of input data, station profiles were manually supervised to
identify outliers and were removed from the dataset for the At calculations. Because of
this control, 4,425 sample values were removed.

2.2. Alkalinity estimation

After the initial checks and quality control, the dataset was reduced to 222,138
samples useful for calculations, with 76,553 samples having observations of Ar. Then,
both the 3DwWMLR and the neural network algorithm were used as stated in the
Methodology section to predict Ar for the full dataset. Both algorithms were able to
generate 222,136 estimated values of Ay, i.e., for all but two single samples.

2.3.Quality Control for observed Ar data

The estimated Ar data was used to perform a quality control of the observations,
comparing them with the values predicted by the algorithm. The STD of the difference
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between At observations and the predicted Ar by both methods was used as quality
control criterion for the observations. The magnitude of this STD is a very good
reference for the overall performance of the algorithms to predict the Ar data. An STD
value of 5.4 umol kg™* was obtained for the 3DWMLR method and a value of 5.2 pmol
kg™ for the chosen neural network trained with the Levenberg-Marquardt method and
a hidden layer of 64 units. This indicates good agreement between observations and
predicted values. The value is slightly lower than the minimum adjustment applied to
the CARINA dataset (6 pmol/kg) for the secondary quality control (QC2) procedures
(Tanhua et al., 2010).

A boundary of 2xSTD (i.e., 10.8 umol kg for 3DWMLR and 10.4 pmol kg™ for the
neural network) has been set as the confidence interval of observations to keep. This
way 3,462 and 3,526 Ar observations (i.e., 4.5% and 4.6%), respectively fall outside this
2 x STD limit and could then be flagged as questionable or alternatively, replaced by
their 3DWMLR or neural network values.

2.4.Data results

A comparison of the data results of both methods has been graphically summarised in
Fig 4 and Fig 5. The first column of both figures displays the difference between Ar
obtained by neural network against the 3DwMLR technique. In this column, the full set
of 222,136 predicted A values is compared. The scale is +15 pmol kg™ and vertical
dashed grey lines are placed at -12, -6, 0, 6 and 12 to allow an easy comparison with
the 6 boundary of minimum adjustment established in CARINA. For each box in the
boxplots, the height is proportional to the quantity of samples available between the
boxes boundaries. Boxes have black lines but they were filled in red colour in order to
emphasise the intervals of the plotted parameters (presented in left axis) where most
of the data were located. The red colour filling is not even perceptible for intervals
with less data.

2.4.1. Intercomparison between 3DwMLR and neural network

The top-left histogram of Fig 4 indicates a good level of agreement between both
estimation techniques, giving a standard deviation of 2.36 umol-kg™ for the residuals
and a mean of 0.074 pmol-kg™. Thus, 95% of the residuals fall between +4.7 pmol-kg™
of Ar.

By analysing the box plots against some other parameters in the first column (Fig 4 and
Fig 5), a good agreement can also be seen. Especially remarkable is the agreement in
the estimations of both methods for the same cruises (Cruise ID subplot), indicating
that both approaches give similar mean results for each cruise, even when both
methods have some disagreements with the measured data, as can be seen in the
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second and third columns of the CruiselD subplot in Fig 4. This can be interpreted as an
indication of data bias for these cruises. Conversely, poor agreement can be identified
as pertaining to samples with low salinity and high oxygen, corresponding to surface
samples (shallower than about 200m) close to coastal areas affected by continental
inputs, i.e., in the Labrador Current and Southern Ocean (Fig 5). Variability in the short
time scale is high due to water mixing (Wootton et al., 2008; Rintoul, 2011), such that
large residuals are expected for prediction methods.

2.4.2. Comparison of both methods against measured data

The second (the 3DWMLR method) and third (the neural network method) columns of
both Fig 4 and Fig 5 compare estimated Ar vs. observations. Along these columns, only
the subset of 76,553 samples with Ar observations can be compared.

After analysing both figures, a good overall agreement between observations and
estimated At can be stated for both techniques, with some minor variations between
them. The neural network technique seems to behave slightly more consistently with
geographical parameters, as can be seen in subplots against depth and even with
longitude.

Subplots against Cruise Year in Fig 4 show a slightly reduced scatter for more recent
cruises, which is to be expected due to the improvement of analytical techniques and
instrumentation. An abrupt step near 1992 was expected to be seen in these yearly
subplots, due to the progressive introduction of CRM in successive years, but it is not
appreciable. This is probably due to the use of the GLODAP and CARINA data products
that are already adjusted in order to minimise offsets between cruises (Sabine et al.,
2005; Tanhua et al., 2009).

As previously indicated, a significant bias against measured At data can be stated for
some cruises when analysing Cruise ID subplots. Even when the agreement between
both estimation techniques themselves is very good for these cruises, it is poor when
the comparison is made against the observations of Ar;. Cruises with a mean bias
greater than +6 pmol-kg™ are listed in Table 2. All of them correspond to cruises with
none or too few deep samples (>1500m) to qualify for secondary quality control and to
be adjusted in the CARINA Product (Tanhua et al., 2009, 2010; Velo et al., 2010). As a
result of this work, we propose adjusting these five cruises to compensate the bias
indicated in Table 2.

Carina Expocode 3DWMLR Neural Net. Proposed
ID bias bias adjust
9 06MT19920509 -7.849.0 -7.618.6 -7.7
28 06MT20021013 -7.2+19.8 -3.8£15.8 Flag bad
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51 29CS19771007  7.6+£3.9 6.0+2.6 6.8
57 29GD19860904 -6.9+4.0 -5.1+4.5 -6.0
158 67SL19881117 -19.0+4.8 -14.1+6.0 -16.6

Table 2: Mean biases between 3DwWMLR and neural technique against observed A; data. Units for biases and
adjusts are umol-kg'l. Only values with mean bias greater than +6 umol-kg-1 are shown.

By visual inspection of the residuals against seawater properties (Fig 5) similar patterns
are observed for both techniques. The neural network technique seemed to behave
more consistently for most parameters, but these differences are not significant.

The highest scatter in Fig 5 corresponds to low salinity samples for all three columns.
Conversely, high oxygen samples show good agreement against observations for both
techniques, even though poor agreement between the two estimation methods is
indicated in the first column.
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Fig 4: Histograms and box plots of A; differences between, from left to right: Neural network minus 3DwWMLR,
3DWMLR minus observations and neural network minus observations. From top to bottom, first row are
histograms of data density, and box-whisker diagrams of the A; difference against the parameter are indicated on
the left: Latitude, Longitude, Depth, year of cruise, and a numerical identifier for each cruise.
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Fig 5: Box and whisker diagrams of A; differences between, from left to right: Neural network minus 3DwMLR,
3DwWMLR minus observations and neural network minus observations. From top to bottom, the parameter being
compared against the A; residuals (indicated on the left): 8, salinity, nitrate, phosphate, silicate and oxygen.

3. Conclusions

From an initial dataset with 72,796 samples useful for carbon calculations, i.e., with at
least two carbon parameters measured, the algorithms presented here allowed for the
extension of the dataset up to 104,043 useful samples. This implies a 42.9% increase in
the abundance of carbonate system parameters in the dataset.
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Moreover, both proposed methods of estimating alkalinity in the ocean give
acceptable results, as the average error in the prediction is lower than 5 umol-kg-1,
which can be considered an acceptable uncertainty for alkalinity measurements.
Nevertheless, the two approaches to solve the problem are very different and take
advantage of different considerations.

Considering only the performance of the two methods used here, measured on how
well they can model the natural variability of the estimated parameter, the neural
network performs better, because it is the best at predicting the natural variability (Fig
3). The results shown in Fig 3 indicate clearly that the proposed neural network with 64
neurons in the hidden layer and Levenberg-Marquadt tuning (Hagan and Menhaj,
1994) achieves better overall estimations than the 3DwWMLR method.

Considering the scalability of the methodology used to obtain the results, the 3DWMLR
is the best option, because it delivers a good agreement with the measured data and
this methodology can be easily tuned if some misfit is found in some areas. In the
3DWMLR, all the steps performed for estimating every single sample can be debugged
and improved. The neural network represents the very opposite approach. It is true
that a tuned network can be retrained, but the weights and the way they are obtained
are not transparent, to the point that the combination of the network with its tuning
can be considered as a black box that works with the given dataset.

The advantage of using both techniques simultaneously for this purpose is that their
results can be easily compared against each other and thus, their performance and
agreement assessed.
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