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Abstract 

Optical measurements including remote sensing provide a potential tool for the identification of 1 

dominant phytoplankton groups and for monitoring spatial and temporal changes in biodiversity 2 

in the upper ocean. We examine the application of an unsupervised hierarchical cluster analysis 3 

to phytoplankton pigment data and spectra of the absorption coefficient and remote-sensing 4 

reflectance with the aim of discriminating different phytoplankton assemblages in open ocean 5 

environments under non-bloom conditions. This technique is applied to an optical and 6 

phytoplankton pigment data set collected at several stations within the eastern Atlantic Ocean, 7 

where the surface total chlorophyll-a concentration (TChla) ranged from 0.11 to 0.62 mg m
-3

. 8 

Stations were selected on the basis of significant differences in the ratios of the two most 9 

dominant accessory pigments relative to TChla, as derived from High Performance Liquid 10 

Chromatography (HPLC) analysis. The performance of cluster analysis applied to absorption and 11 

remote-sensing spectra is evaluated by comparisons with the cluster partitioning of the 12 

corresponding HPLC pigment data, in which the pigment-based clusters serve as a reference for 13 

identifying different phytoplankton assemblages. Two indices, cophenetic and Rand, are utilized 14 

in these comparisons to quantify the degree of similarity between pigment-based and optical-15 

based clusters. The use of spectral derivative analysis for the optical data was also evaluated, and 16 

sensitivity tests were conducted to determine the influence of parameters used in these 17 

calculations (spectral range, smoothing filter size, band separation). The results of our analyses 18 

indicate that the second derivative calculated from hyperspectral (1 nm resolution) data of the 19 

phytoplankton absorption coefficient, aph(λ), and remote-sensing reflectance, Rrs(λ), provide 20 

better discrimination of phytoplankton pigment assemblages than traditional multispectral band-21 

ratios or ordinary (non-differentiated) hyperspectral data of absorption and remote-sensing 22 

reflectance. The most useful spectral region for this discrimination extends generally from 23 
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wavelengths of about 425 - 435 nm to wavelengths within the 495 - 540 nm range, although in 24 

the case of phytoplankton absorption data a broader spectral region can also provide satisfactory 25 

results. 26 

27 
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1.  Introduction 28 

In situ and remotely-sensed optical observations of ocean waters provide information 29 

regarding the concentrations of optically significant constituents in seawater, and offer the ability 30 

to observe important biological and biogeochemical variables (e.g., Chang et al., 2006).  31 

Numerous studies over the past three decades have focused on the development of bio-optical 32 

algorithms linking measurable optical properties to the primary pigment in phytoplankton, 33 

chlorophyll-a, a proxy for the phytoplankton biomass (e.g., Morel, 1988; Bricaud et al., 1998; 34 

O'Reilly et al., 2000; Reynolds et al., 2001).  In recent years, efforts to expand the use of optical 35 

measurements for estimating other biogeochemically important ocean variables and phenomena 36 

have increased considerably.  For example, optical measurements including satellite remote 37 

sensing have been used to detect harmful algal blooms (Cullen et al., 1997; Stumpf et al., 2003), 38 

surface concentrations of particulate inorganic and organic carbon (Balch et al., 2005; Stramski 39 

et al., 2008), particle size distribution (Kostadinov et al., 2009), phytoplankton community 40 

composition and size structure (Alvain et al., 2005; Uitz et al., 2006; Nair et al., 2008; Ciotti and 41 

Bricaud, 2006; Aiken et al., 2007), and phytoplankton class-specific primary production (Uitz et 42 

al., 2010). 43 

Recent advances in measuring ocean optical properties and light fields within and leaving the 44 

ocean have included a progressive shift from using multispectral to high spectral resolution 45 

(hyperspectral) acquisition systems (Chang et al., 2004).  New technologies and the 46 

miniaturization of electro-optical components have permitted the development of accurate, low-47 

cost, and energy-efficient hyperspectral sensors suitable for deployments from a variety of 48 

platforms such as in-water vertical profiling systems, moorings, drifters, autonomous vehicles, 49 

air-borne and space-borne platforms (Perry & Rudnick, 2003; Dickey et al., 2006).  The 50 

capability to obtain measurements at hundreds of narrow and closely spaced wavelength bands 51 

from the ultraviolet to near-infrared, with a resolution better than 10 nm, has become one of the 52 
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most powerful and fastest growing areas of technology in the field of ocean optics. 53 

Hyperspectral optical data provide the opportunity for improvements in spectral shape 54 

analysis and subsequent extraction of environmental information compared with low spectral 55 

resolution optical data.  Derivative spectroscopy is one powerful technique of spectral shape 56 

analysis which enhances subtle features in hyperspectral data, and has been used successfully to 57 

obtain information about optically significant water constituents.  For example, Craig et al. 58 

(2006) assessed the feasibility of detection of a toxic bloom of the dinoflagellate Karenia brevis 59 

from the analysis of the fourth derivative of phytoplankton absorption spectra, estimated from in 60 

situ hyperspectral measurements of remote-sensing reflectance Rrs(λ) ( is light wavelength in 61 

vacuo).  The advantages offered by hyperspectral measurements of Rrs(λ) in combination with 62 

derivative spectroscopy for identifying algal blooms were also demonstrated by Lubac et al. 63 

(2008), who based their analysis on the position of the maxima and minima of the second 64 

derivative of the spectral Rrs(λ).  Louchard et al. (2002) assessed major sediment pigments of 65 

benthic substrates from derivative spectra of hyperspectral Rrs(λ) measured in shallow marine 66 

environments.  In general, the optical detection of specific algal blooms appears feasible because 67 

certain accessory pigments with specific absorption features are unique to individual 68 

phytoplankton taxa and can be better differentiated in hyperspectral absorption data than in 69 

multispectral data with a limited number of wavelengths. 70 

The advantages and increasing availability of high spectral resolution measurements suggest 71 

that the effectiveness of hyperspectral optical information for assessing phytoplankton diversity 72 

should be further explored.  In particular, there is a need to test whether the hyperspectral 73 

approach, which has proven useful in inland and coastal waters (e.g., Lee & Carder, 2004; 74 

Hunter et al., 2008; Lubac et al., 2008), can be also effective for the identification of different 75 

phytoplankton assemblages at large spatial scales in open ocean waters.  These tests are also 76 

especially important for the common situation in which various phytoplankton groups co-exist at 77 

significant concentrations, and no single species dominates the assemblage (i.e., a non-bloom 78 
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condition). 79 

In this study, we analyze phytoplankton pigment data in conjunction with optical data of 80 

absorption coefficients and remote-sensing reflectance, which were determined along a north-to-81 

south transect in the eastern Atlantic Ocean.  Our primary goal is to examine the feasibility of 82 

classifying different open ocean environments under non-bloom conditions in terms of 83 

phytoplankton pigment assemblages from analysis of hyperspectral absorption and remote-84 

sensing reflectance measurements.  In order to address this question, an unsupervised 85 

hierarchical cluster analysis is applied to the pigment data set obtained from High Performance 86 

Liquid Chromatography (HPLC) analysis of seawater samples and to the optical data sets 87 

including the spectra of absorption coefficients and remote-sensing reflectance and their second 88 

derivative spectra.  For this analysis, the pigment data and the corresponding optical data were 89 

selected to represent distinct differences in major accessory pigments present in the samples.  We 90 

view our analysis basically as a proof-of-concept study in which our approach is to use a 91 

relatively small but carefully selected set of data which exhibits significant contrasts in the 92 

composition of pigments, rather than to indiscriminately use large data sets.  The pigment-based 93 

clusters provide a reference for partitioning the selected data set into distinct subsets, each 94 

characterized by different phytoplankton pigment composition.  Two indices, cophenetic and 95 

Rand, are examined to quantify the degree of similarity between the pigment-based clusters and 96 

optical-based clusters, and are ultimately used to illustrate the effectiveness of optical 97 

classification.  The degree of similarity between clusters was evaluated for calculations involving 98 

different spectral ranges of optical data.  Because the quality of derivative analysis also depends 99 

on parameters involved in data processing and computations, especially smoothing filter size and 100 

derivative band separation (Tsai & Philpot, 1998; Lee & Carder, 2002; Vaiphasa, 2006), a 101 

sensitivity of cluster analysis to the choice of these parameters was performed. 102 

 103 
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2.  Measurements and Data Analysis 104 

The approach in this study consists of three main components: (i) collection of field data of 105 

phytoplankton pigments and ocean optical properties and selection of a subset of data 106 

characterized by distinct differences in major accessory pigments for the cluster analysis, (ii) 107 

radiative transfer modeling to compute hyperspectral remote sensing-reflectance, and (iii) cluster 108 

analysis of pigment and optical data.  The methodology of each component is described below. 109 

 110 

2.1.  Field measurements 111 

Measurements of phytoplankton pigment composition and seawater optical properties were 112 

obtained during the ANT-XXIII/1 expedition of the R/V Polarstern along a north-to-south 113 

transect in the eastern Atlantic Ocean during October and November, 2005 (Fig. 1).  The 114 

investigated area spanned a wide range of different oceanic environments between the English 115 

Channel and the waters off the African coast of Namibia.  Typically, one full station was 116 

conducted daily near local noon throughout the cruise.  These full stations consisted of in situ 117 

measurements of seawater inherent and apparent optical properties along with laboratory 118 

analyses of water samples collected from discrete depths with the ship’s CTD/rosette system.  119 

For the present study, a subset of nine stations (see Fig. 1 for station locations) was selected for 120 

cluster analysis based on the observation of distinct differences in the ratios of dominant 121 

accessory pigments to total chlorophyll-a (further details in sec. 3.1).  The selected data from the 122 

nine stations are representative of surface waters within the top 5-10 m of the ocean, as our main 123 

interest lies in the methodology for estimating variability in phytoplankton communities from 124 

remote-sensing reflectance.  A brief description of the measurements is provided in the following 125 

three subsections.  More methodological details, especially for the radiometric and 126 

backscattering measurements, can be found in Stramski et al. (2008). 127 

 128 
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2.1.1.  HPLC pigment analysis 129 

Concentrations of chlorophyll-a and accessory pigments in phytoplankton were measured on 130 

surface water samples from each station using HPLC techniques.  Two sets of replicate samples 131 

were collected and analyzed at two laboratories, the Center for Hydro-Optics and Remote 132 

Sensing (CHORS) laboratory at San Diego State University (California, USA) and the GKSS 133 

Research Centre in Geesthacht (Germany).  The CHORS analysis was based on a method 134 

described in Van Heukelem and Thomas (2001), and the GKSS samples were analyzed following 135 

the method of Zapata et al. (2000).  The CHORS analysis included identification and 136 

quantification of more pigments (27) than the GKKS method (23) including alternative forms of 137 

chlorophyll-a, and was chosen as the primary pigment data set for identifying phytoplankton 138 

assemblages using cluster analysis.  Throughout the rest of this paper, as a measure of 139 

chlorophyll-a we use the CHORS values of the total chlorophyll-a, TChla, which is defined as 140 

the summed contributions of concentrations of monovinyl chlorophyll-a (MVChla), divinyl 141 

chlorophyll-a (DVChla), chlorophyllide-a (Chlide), and the allomeric and epimeric forms of 142 

chlorophyll-a. 143 

Following completion of our analyses, the potential for errors in the CHORS results was 144 

identified.  The NASA team tasked with investigating HPLC data quality problems at CHORS 145 

recommended that overall “These data are not validated and should not be used as sole basis for 146 

a scientific result, conclusion, or hypothesis – independent corroborating evidence is required” 147 

(Hooker and Van Heukelem, 2009).  Based on field data obtained in the SeaHARRE-3 148 

intercalibration experiment, corrections for specific individual pigments (MVChla, DVChla) 149 

were developed (C. Trees, personal communication), which are used in our data set in the 150 

determination of TChla.  These corrections are described in Stramski et al. (2008).  The corrected 151 

TChla data exhibit reasonable agreement with fluorometrically-derived chlorophyll 152 

measurements, and provide realistic estimates of chlorophyll-specific phytoplankton absorption 153 
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coefficients within the red peak of chlorophyll-a.  We also applied similar corrections to three 154 

other pigments in the data set; monovinyl chlorophyll-b, β-carotene, and alloxanthin.  We caution 155 

that our corrections were developed from a limited set of pigment data and intercalibration 156 

results, and should not be used indiscriminately with other data sets affected by the CHORS data 157 

quality problems. 158 

We also compared the corrected CHORS results with independent pigment determinations 159 

done by GKSS.  Some differences in the concentrations of individual pigments between the two 160 

data sets were observed.  For example, the sum of monovinyl chlorophyll-a (MVChla) and 161 

divinyl chlorophyll-a (DVChla) was generally higher (on average by 20% with a standard 162 

deviation of 23%, number of samples 25) for CHORS compared with GKSS.  However, the 163 

CHORS data yielded more reasonable estimates of chlorophyll-specific phytoplankton 164 

absorption. 165 

Despite such differences in the estimates of some individual pigment concentrations, with 166 

regard to the present application it is important to note that both laboratories provided similar 167 

characterization of samples in terms of the relative pigment composition as described by ratios of 168 

various individual pigments to TChla.  The same dominant accessory pigments for any given 169 

station and the same trends in the pigment ratios among the stations were obtained from both sets 170 

of HPLC analyses.  This is an essential result for our study because in the cluster analysis we 171 

utilize only pigment ratios, and not individual pigment concentrations.  For the nine stations 172 

selected in our analysis, the cluster techniques applied independently to the CHORS and GKSS 173 

sets of HPLC pigment ratios yielded a very similar partitioning of stations into clusters.  We 174 

therefore chose the one set of corrected pigment results from CHORS for all subsequent analyses 175 

in this paper (sec. 3.1 presents CHORS-based pigment clusters).  This choice is further supported 176 

by comparisons of cluster analysis of phytoplankton absorption data with the CHORS and 177 

GKSS-based pigment clusters.  The measures of cluster similarity (see sec. 2.3) between the 178 

absorption-based clusters and pigment-based clusters were found to be similar when either the 179 
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CHORS and GKSS pigment data were used. 180 

Because of a large range of pigment compositions across different phytoplankton classes, 181 

determinations of phytoplankton composition from HPLC pigment data is not straightforward 182 

(e.g., Jeffrey et al., 1997).  Whereas certain diagnostic pigments can serve as unambiguous 183 

markers for some phytoplankton classes (e.g., peridinin in dinoflagellates, alloxanthin in 184 

cryptophytes), many important pigments are shared by more than one algal taxa (e.g., 185 

fucoxanthin in diatoms, haptophytes, chrysophytes, and raphidophytes).  Nevertheless, because 186 

many of the classes have distinctive suites of marker pigments, HPLC data can be useful for 187 

indicating their presence and abundance in a mixed phytoplankton population.  Specifically, a 188 

useful indication of contributing phytoplankton classes can be obtained from the ratios of the 189 

concentrations of specific pigments to chlorophyll-a or the ratios of specific diagnostic pigments 190 

to the sum of these diagnostic pigments, because these ratios can differ between taxonomic 191 

groups (Mackey et al., 1996; Wright et al., 1996; Vidussi et al., 2001). 192 

For each of the nine stations selected in this study, we calculated two sets of pigment ratios 193 

for subsequent use in the cluster analysis.  The first set of pigment ratios consisted of ratios of 194 

the concentration of each individual pigment to the TChla concentration, as obtained from HPLC 195 

measurements at the CHORS laboratory.  The following 24 pigments were included in these 196 

calculations: monovinyl chlorophyll-a, divinyl chlorophyll-a, chlorophyllide-a, chlorophyll-a 197 

allomer, chlorophyll-a epimer, monovinyl chlorophyll-b, divinyl chlorophyll-b, chlorophyll-c2, 198 

chlorophyll-c3, α-carotene, β-carotene, alloxanthin, diadinoxanthin, diatoxanthin, fucoxanthin, 199 

19'-hexanoyloxyfucoxanthin, 19’-butanoyloxyfucoxanthin, neoxanthin, prasinoxanthin, 200 

violaxanthin, zeaxanthin, peridinin, pheophorbide-a, and lutein.  The CHORS pigment data set 201 

also included a few additional pigments (chlorophyll-c1, gyroxanthin-diester, and pheophytin-a) 202 

which were below the level of detection for the nine stations.  These pigments were not included 203 

in our cluster analysis as they would have no effect on the results. 204 
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The second set of pigment ratios was based on 8 diagnostic pigments: divinyl chlorophyll-a 205 

(DVChla), divinyl chlorophyll-b (DVChlb), alloxanthin (Allo), fucoxanthin (Fuco), 19'-206 

hexanoyloxyfucoxanthin (Hex), 19’-butanoyloxyfucoxanthin (But), peridinin (Peri), and 207 

zeaxanthin (Zea).  This list of pigments is consistent with that proposed by Vidussi et al. (2001) 208 

with the exception that we added DVChla which is a diagnostic pigment for prochlorophytes.  209 

For each station the 8 ratios were calculated by dividing a concentration of a given diagnostic 210 

pigment to the sum of the 8 diagnostic pigment concentrations (see Uitz et al., 2006). 211 

 212 

2.1.2.  Inherent optical properties 213 

The inherent optical properties (IOPs) of seawater have a two-fold application in our study.  214 

First, the absorption, scattering, and backscattering coefficients are used to define IOP inputs to 215 

radiative transfer simulations that generate hyperspectral data of remote-sensing reflectance (sec. 216 

2.2).  Second, the total absorption coefficient, a(), and the phytoplankton absorption coefficient, 217 

aph(), are utilized directly in the cluster analysis (sec. 2.3 and 3.2). 218 

The spectral absorption coefficients of particles, ap(λ), and colored dissolved organic matter 219 

(CDOM), acdom() in m
-1

, were determined at 1-nm intervals from high spectral resolution 220 

measurements on freshly-collected discrete water samples with a point-source integrating cavity 221 

absorption meter (PSICAM) over the range 350-750 nm (Röttgers et al., 2005, Röttgers & 222 

Doerffer, 2007).  As the PSICAM did not provide data below 350 nm, the ap() values within the 223 

300 to 350 nm spectral range were obtained from filter pad measurements on discrete water 224 

samples collected on GF/F filters and frozen in liquid nitrogen until analysis with a dual-beam 225 

spectrophotometer (Lambda 18, Perkin Elmer).  The filter pad measurements were made with the 226 

transmittance-reflectance (T-R) technique of Tassan and Ferrari (1995; 2002) using a correction 227 

for the pathlength-amplification factor from Stramska et al. (2006).  We have chosen to use the 228 

PSICAM data of ap() over the majority of the spectrum because the PSICAM technique 229 

involves a direct measurement of absorption on particle suspension with minimal scattering 230 
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artifacts, which is expected to be generally superior to the filter pad measurements.  The data of 231 

acdom() below 350 nm were obtained from an exponential fit to the PSICAM-measured acdom().  232 

A null point correction based on wavelengths in the far red or near-infrared was applied to all 233 

ap() and acdom() spectra.  The total spectral absorption coefficient, a(), was determined as the 234 

sum of ap(), acdom(), and the pure water component, aw().  The latter was obtained from Pope 235 

& Fry (1997) for the spectral range 380-727 nm and from Fry et al. (2006) for the range 300-379 236 

nm.  We note that our primary interest is in the spectral information contained at wavelengths 237 

longer than about 350 nm extending throughout the visible part of the spectrum up to 725 nm 238 

where most phytoplankton pigments exhibit significant absorption features.  However, data at 239 

wavelengths shorter than 350 nm are useful for our analysis, especially in the context of 240 

derivative spectra whose discrete values at specific wavelengths were calculated in our study 241 

using data covering a bandwidth on the order of 10 - 30 nm. 242 

The spectra of the phytoplankton absorption coefficient, aph(), were determined as a 243 

difference between the absorption coefficient of particles, ap(), and the non-phytoplankton 244 

component of particulate absorption, ad(), which is commonly referred to as detrital absorption.  245 

These determinations were based on the T-R filter pad measurements, in which the ad() spectra 246 

were measured on GF/F sample filters following treatment with sodium hypochlorite NaClO 247 

(Ferrari and Tassan, 1999).  In this treatment, the particles on the sample filter were exposed to a 248 

small amount of a 2% NaClO solution for several minutes to bleach phytoplankton pigments. 249 

The spectral beam attenuation coefficient of particles and CDOM, cp,cdom() in m
-1

, was 250 

determined at each station from in situ measurements with two single-wavelength C-Star 251 

transmissometers (488 and 660 nm; WET Labs, Inc.).  Note that the C-star derived values 252 

represent the total beam attenuation, c(), with pure seawater contribution, cw(), subtracted, i.e. 253 

cp,cdom() = c() – cw() = ap() + acdom() + bp(), where bp() is the spectral scattering 254 

coefficient of particles.  The values of bp() at 488 and 660 nm were thus calculated from C-Star 255 
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attenuation and PSICAM absorption measurements as bp() = cp,cdom () – ap() - acdom().  A 256 

power function fit was then applied to these values to produce the spectral data of bp() over the 257 

range 300-750 nm with a 1 nm resolution.  The pure seawater scattering coefficient, bw(), was 258 

calculated using the Buiteveld et al. (1994) equations with measured water temperature and 259 

salinity (see Twardowski et al., 2007 and Stramski et al., 2008 for details).  The total scattering 260 

coefficient, b(), was obtained as a sum bw() + bp(). 261 

The spectral backscattering coefficient, bb() in m
-1

, was determined by combining in situ 262 

measurements with three instruments, a Hydroscat-6 and two a-βeta sensors (HOBI Labs, Inc.), 263 

to yield a total of eight spectral bands: 420, 442, 470, 510, 550, 589, 620, and 671 nm (Stramski 264 

et al. 2008).  Because bb() is generally expected to be a smooth monotonic function of 265 

wavelength, especially in the open ocean under non-bloom conditions, the experimental 266 

measurements were fitted to a power function to obtain hyperspectral resolution over the 300-267 

750 spectral range.  The spectral backscattering coefficient of particles, bbp() in m
-1

, was 268 

determined as a difference between the total and pure seawater backscattering coefficients, bb() 269 

- bbw(), in which the pure seawater component, bbw(), was calculated as 0.5 bw(). 270 

From the values of bp() and bbp(), we calculated the particle backscatter fraction Bp() = 271 

bbp() / bp().  These data were then fitted to a power function, Bp() = Bp(0) (0 / )
m
, where 0 272 

is the reference wavelength 550 nm.  The backscattering fraction Bp(0) at the reference 273 

wavelength and the exponent m represent the best fit parameters of the linear regression analysis 274 

performed for the log-transformed data of Bp() vs. for each station.  The parameters of the 275 

power function fit of Bp() were used as input to radiative transfer simulations (see sec. 2.2). 276 

 277 

2.1.3.  Remote-sensing reflectance 278 

Values of multispectral remote-sensing reflectance, Rrs() in sr
-1

, were estimated at each 279 

station at 13 wavelengths from in situ measurements of underwater vertical profiles of spectral 280 

nadir upwelling radiance, Lu(, z) in W m
-2

 sr
-1

 nm
-1

, and spectral downwelling plane irradiance, 281 
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Ed(, z) in W m
-2

 nm
-1

, where z is depth.  These measurements were made with a freefall 282 

spectroradiometer, the SeaWiFS Profiling Multichannel Radiometer (SPMR, Satlantic, Inc.).  283 

The wavelengths for these measurements are 339, 380, 412, 443, 470, 490, 510, 532, 554, 589, 284 

619, 666, and 683 nm.  The radiometric measurements and data processing were consistent with 285 

methods recommended in NASA protocols (Mueller et al., 2003). 286 

 287 

2.2.  Modeled hyperspectral reflectance 288 

Because hyperspectral radiometric measurements were not conducted during the ANT-289 

XXIII/1 cruise and our primary interest is in the analysis of hyperspectral optical data, we 290 

performed numerical simulations of radiative transfer (RT) to estimate the hyperspectral remote-291 

sensing reflectance Rrs() for each of the nine selected stations.  The radiative transfer model 292 

Hydrolight/Ecolight version 5.0 (Sequoia Scientific, Inc.) was used (Mobley 1994; 2008).  An 293 

important prerequisite for undertaking these RT simulations was the availability of a 294 

comprehensive suite of IOPs for each station for use as input to the simulations, and also the 295 

availability of the multispectral Rrs() derived from in situ measurements for use in validating 296 

the simulated hyperspectral Rrs(). 297 

The RT calculations were carried out within the spectral region 300 nm to 725 nm with high 298 

spectral resolution (1 nm).  Similarly to the absorption, our main interest is in the reflectance data 299 

at wavelengths longer than about 350 nm.  However, in addition to the requirements associated 300 

with derivative calculations, the radiative transfer simulations below 350 nm are needed to 301 

account for Raman scattering contributions observed at  > 350 nm.  The ocean was assumed to 302 

be infinitely deep and optically homogeneous, and the simulations included the Raman scattering 303 

and fluorescence by colored dissolved organic matter within the ocean.  The sea surface 304 

boundary conditions were estimated from observations of wind speed and sky conditions 305 

(cloudiness) at each station site, and the solar zenith angle was calculated for the corresponding 306 
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date and geographic coordinates.  The inherent optical properties of the water column required as 307 

input to the simulations were derived from the IOP measurements in the surface waters and 308 

additional relevant determinations of a() and b() as described in sec. 2.1.2.  The selection of 309 

the particulate scattering phase function, which is also part of IOP inputs to the RT simulations, 310 

was based on the particle backscatter fraction Bp().  We used the Fournier-Forand phase 311 

functions which are parameterized in terms of Bp() and are built into the Hydrolight/Ecolight 312 

model. 313 

Fig. 2 compares the model-simulated hyperspectral Rrs() with the measured multispectral 314 

Rrs() for two selected stations.  The model results compare reasonably well with measurements, 315 

which lends confidence to the use of hyperspectral Rrs() in our cluster analysis.  This level of 316 

consistency between the model and measurements suggests that the suite of parameters used as 317 

input to the RT simulations realistically represent the actual field conditions.  The ability to 318 

define realistic inputs derives, in turn, from a comprehensive suite of IOP measurements that 319 

were carried out during the cruise. 320 

 321 

2.3.  Hierarchical cluster analysis and similarity indices between dendrograms 322 

A hierarchical cluster analysis (HCA) was used to classify the 9 selected stations into distinct 323 

groups on the basis of several types of input data vectors (or objects), which included the HPLC 324 

pigments and optical data derived from spectral absorption coefficients and remote-sensing 325 

reflectance.  For a given type of data, the input to the cluster analysis consisted of 9 numerical 326 

data vectors, each representing one of the 9 stations.  For the input data representing the ratio of 327 

individual pigment concentrations to TChla, an object for a given station is a data vector {p1, p2, 328 

p3,…, p24} where the consecutive elements pi represent the ratio of each of the 24 individual 329 

pigment concentrations to TChla concentration.  Another type of pigment data vector used in the 330 

cluster analysis is of the form {d1, d2, d3,…, d8}, where the consecutive elements represent a ratio 331 
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of one of the 8 diagnostic pigment concentrations to the sum of diagnostic pigment 332 

concentrations. 333 

Several types of optical data vectors were used as input to the HCA analysis, including 334 

objects consisting of hyperspectral data of the remote-sensing reflectance, Rrs(), the 335 

phytoplankton absorption coefficient, aph(), the sum of pure water and phytoplankton 336 

absorption coefficients, aw() + aph(), and the total absorption coefficient, a().  The input 337 

characterizing the hyperspectral remote-sensing reflectance for any given station was used in the 338 

form of the following data vector {Rrs(1)/Rrs(555), Rrs(2)/Rrs(555), Rrs(3)/Rrs(555),…, 339 

Rrs(n)/Rrs(555)}, where the consecutive elements represent the values of Rrs at successive light 340 

wavelengths normalized to Rrs at 555 nm over the spectral range from 1 to n.  Similar input 341 

vectors were created for the different components of spectral absorption.  Because our analysis is 342 

focused on the spectral shapes, all the optical spectra used in the cluster analysis were 343 

normalized by the value of the optical variable at 555 nm at which variations in Rrs within the 344 

open ocean are generally small.  The spectra involving the absorption coefficients were 345 

additionally normalized by TChla concentration to minimize variability in absorption associated 346 

with changes in phytoplankton biomass.  The rationale for selecting the data of a(), aw() + 347 

aph(), and aph() to create input data vectors for the cluster analysis stems from the fact that the 348 

variation in the spectral shape of a() is typically a major determinant of the variation in the 349 

spectral shape of Rrs().  In turn, the variations in the spectral shape of aw() + aph() or aph() 350 

can be viewed as an important or dominant source of variation in the spectral shape of a() in 351 

open ocean situations. 352 

We also created vectors from the second derivative spectra of the hyperspectral reflectance 353 

and absorption objects for input into the cluster analysis.  The estimation of the second derivative 354 

spectra from these data was made with a finite divided difference algorithm, the so-called “finite 355 

approximation”, which computes the changes in curvature of a given spectrum over a sampling 356 
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interval (Δλ) or band separation (BS) defined as Δλ = λj - λi , where j > i.  Because the 357 

identification of spectral details in the derivative spectra depends on the selection of the band 358 

separation, we tested the sensitivity of cluster results to the choice of BS.  The derivative 359 

technique is also sensitive to signal noise, thus smoothing was applied to the hyperspectral 360 

optical data prior to computation of derivative spectra.  Specifically, a mean-filter smoothing 361 

method was used in which the extent of spectral smoothing depends on the size of the filter 362 

window (WS) used for averaging.  We tested the sensitivity of cluster results to different values 363 

of WS.  The sensitivity analysis over a range of BS and WS values allowed us to achieve the best 364 

compromise between the ability to resolve fine spectral details and the reduction of noise effects 365 

in the second derivative spectra.  As discussed below (sections 3.2 and 3.3), the optimal values of 366 

BS and WS chosen in this study for the derivative analysis of absorption data are 9 nm.  For the 367 

derivative analysis of reflectance data, these values are 27 nm.  Therefore, although the 368 

derivative calculations were made using data from the spectral range 300 – 725 nm, our results 369 

from the derivative analysis for absorption will be reported between the wavelengths of min = 370 

309 nm (≡ 300 + 9) and max = 716 nm (≡ 725 – 9).  For the reflectance derivative, the results 371 

will be reported between min = 327 nm (≡ 300 + 27) and max = 698 nm (≡ 725 – 27). 372 

With regard to the analysis of remote-sensing reflectance, the cluster analysis was also 373 

applied to the multispectral reflectance data obtained from in situ SPMR measurements at 374 

several discrete wavelengths.  We examined the 3-element objects {Rrs(443)/Rrs(554), 375 

Rrs(490)/Rrs(554), Rrs(510)/Rrs(554)}, which consist of band ratios that are similar to those used 376 

in current research based on satellite ocean color observations such as the Sea-viewing Wide 377 

Field-of-View Sensor (SeaWiFS).  We also examined the vectors consisting of 13 band ratios of 378 

remote-sensing reflectance with Rrs(554) in the denominator, as determined from SPMR 379 

measurements at 13 wavebands. 380 

The HCA method, schematically presented in Fig. 3, was applied using the above defined 381 

pigment and optical data vectors as input objects.  This method utilizes an unsupervised 382 
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classification algorithm which creates a hierarchical cluster tree (dendrogram) that partitions a 383 

given set of input data into clusters or groups of objects (Jain et al., 1999; Berkhin, 2006).  Each 384 

group includes objects that are similar to each other, but different from objects in other groups. 385 

The cluster tree is obtained using a linkage algorithm based on initial calculations of the 386 

pairwise distance between all objects included in the input data set.  In this study the similarity 387 

between each pair of objects was the cosine distance, d, calculated as one minus the cosine of the 388 

angle  between each pair of objects: 389 
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where the objects 1x and 2x  include the two considered input data vectors and the cosine of the 391 

angle between the vectors is obtained as the ratio of the dot product of the vectors to the product 392 

of norms of the vectors.  Note that as the angle between the objects decreases the cosine 393 

approaches 1, resulting in a smaller distance between the input data vectors and therefore higher 394 

similarity.  We also tested other measures of similarity between the input objects, e.g., Euclidean 395 

distance using a similar approach to that proposed in Robila (2005).  The cosine distance was 396 

selected as the most appropriate measure for our study because it reflects mainly the differences 397 

in the spectral shape of optical data rather than magnitude.  The cosine distance is also 398 

advantageous because it is scale invariant, i.e., insensitive to normalization of optical spectra at a 399 

specific wavelength. 400 

As a linkage algorithm, the shortest distance D, also referred to as the nearest neighbor, was 401 

computed to measure the distance between two clusters of objects in the tree:  402 

    bjai x,xdist=ba,D min            an,i 1,... and  bn,j 1,...                                (2) 403 

where aix  is the ith object in cluster a and bjx  is the jth object in cluster b.  In the traditional 404 

graphical representation of a dendrogram, the individual objects appear at one end and a single 405 

cluster containing all objects at the other end (e.g., Jain et al., 1999).  In our presentation of 406 
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dendrograms, pairs of objects showing a small cosine distance between them (i.e., with similar 407 

pigment composition or spectral properties) provide small linkage distance and therefore appear 408 

closer to each other in the cluster tree. 409 

To evaluate the utility of optical data for discriminating phytoplankton pigment assemblages, 410 

we compared the dendrograms obtained for the different spectral optical data with a reference 411 

dendrogram obtained using the pigment composition data (see final step in Fig. 3).  For this 412 

analysis, we utilize two objective criteria of cluster similarity, the cophenetic index (Sokal & 413 

Rolf, 1962) and the Rand index (Rand, 1971). 414 

The cophenetic index ( Cr ) is a measure of how precisely two dendrograms preserve the 415 

pairwise distances between data objects.  This index is computed from the cophenetic matrix (C) 416 

associated with each dendrogram.  The elements of a cophenetic matrix (ci,j) encode the distance 417 

between two objects (i, j), representing in the dendrogram the height of the link at which those 418 

two objects are first joined.  This height is the distance between the two clusters that are merged 419 

by this link.  The cophenetic index Cr  represents the correlation between two cophenetic 420 

matrices (C1 and C2): 421 
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where 1c and 2c  are the mean values of the elements of the matrices C1 and C2, respectively. 423 

The Rand index ( Ir ) provides a measure of the similarity between two hierarchical 424 

dendrograms in terms of the proportion of pairs of objects whose relationship is the same in both 425 

dendrograms.  The Ir  value of 1 means that all pairs of objects are clustered in the same way in 426 

both dendrograms.  Note that this index has to be computed using all dendrograms cut 427 

horizontally at a level (i.e., at a specific linkage distance) which yields the optimal number of 428 

clusters (k).  Otherwise, Ir  would always provide a proportion of 100% because a complete 429 

dendrogram always decomposes the input data all the way through the lowest level (i.e., until the 430 
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branches consist only of single objects).  Detecting natural groupings in the dendrogram and 431 

selecting the optimal number of clusters is performed by analyzing a diagram of the increasing 432 

linkage distances along the dendrogram.  Based on the points at which the linkage distances 433 

between the objects change abruptly (which is associated with a steep increase of the within 434 

cluster variance), the optimal number of clusters k is determined and all objects located below 435 

the point where the hierarchical tree is cut off are assigned to a single cluster (Salvador & Chan, 436 

2004). 437 

 438 

3.  Results and discussion 439 

 440 

3.1.  Classification of stations based on pigment composition 441 

For the 9 stations selected in the study, the estimate of the TChla concentration ranges from 442 

about 0.11 mg m
-3

 at the southernmost station 59 in the open ocean off the coast of Namibia to 443 

0.62 mg m
-3

 at the northernmost station 1 in the English Channel (Fig. 1).  The variability in 444 

pigment composition for the 9 stations is summarized in Table 1, which provides the ratios of the 445 

concentration of several dominant pigments to TChla.  Apart from MVChla, which is a principal 446 

pigment common to all phytoplankton, the second most important pigment at different stations 447 

was either DVChla, zeaxanthin (Zea), 19'-hexanoyloxyfucoxanthin (Hex), or fucoxanthin 448 

(Fuco).  Table 1 also identifies the two dominant pigments (excluding MVChla) which yield the 449 

highest ratio to TChla at each station.  The values for the ratios of the two dominant pigments to 450 

TChla were used as a basis for selecting the 9 stations.  As these stations represent different 451 

pigment compositions, we assigned a class label A, B, C, D, E, or F to each station. 452 

Most stations visited during the cruise within the tropical and subtropical regions of the 453 

Atlantic were dominated by Zea and DVChla, but the relative predominance of these two 454 

pigments varied between the stations.  These pigments are diagnostic of picophytoplankton that 455 
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include DVChla- and Zea-containing prochlorophytes and Zea-containing cyanobacteria (mainly 456 

Synechococcus in the open ocean waters).  We selected 5 stations (6, 12, 37, 44, and 46) to 457 

represent this type of pigment assemblage.  Note that 4 stations dominated by Zea and DVChla 458 

with fairly similar ratios DVChla/TChla and Zea/Chla are grouped within the same class C with 459 

a label C1, C2, C3, and C4.  The station 6, where DVChla/TChla is significantly higher than 460 

Zea/TChla, is considered as a separate class B.  This station (or class B) is dominated by 461 

prochlorophytes as DVChla is an unambiguous marker of this group.  The class C stations also 462 

show significant role of prochlorophytes.  However, this class exhibits a relatively higher 463 

contribution of Zea than class B, which is likely indicative of an increased role of cyanobacteria. 464 

Fuco and MVChlb are the predominant accessory pigments at station 1 (class A).  As these 465 

two pigments are not confined to one phytoplankton class, this station could have been 466 

dominated by Fuco-rich diatoms, haptophytes, and/or dinoflagellates, as well as MVChlb-rich 467 

prasinophytes and/or chlorophytes.  The predominant accessory pigment at stations 48 (class D) 468 

and 51 (class E) is Hex, which suggests that haptophytes and/or chrysophytes are major 469 

phytoplankton groups at these locations.  These stations are designated as different classes 470 

because they clearly differ in accessory pigments that follow Hex in ranking.  Zea and Fuco are 471 

the second most important diagnostic pigments at stations 48 (class D) and 51 (class E), 472 

respectively.  Finally, station 59 (class F) also shows a significant role of Hex-rich phytoplankton 473 

although Zea is the most important diagnostic pigment at this location, indicating potential 474 

significance of cyanobacteria and/or prochlorophytes. 475 

Fig. 4a shows the hierarchical cluster tree obtained for the input data consisting of the ratios 476 

of concentrations of 24 individual pigments to TChla at each station.  The optimal number of 477 

clusters (k) is derived from a diagram of linkage distances along the dendrogram (Fig. 4b).  The 478 

first steep increase in the linkage distance observed in this diagram, which is associated with an 479 

increase of the within cluster variance, suggests an optimal partitioning of the pigment data into 480 

5 clusters.  The linkage distance of 0.023 can be selected to characterize this steep increase in 481 
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variance (see dashed lines in Fig. 4a and 4b).  For the dendrogram cut at a level of linkage 482 

distance of 0.023, all clusters are single object (i.e., single station) clusters, except for a multi-483 

object cluster that includes stations C1, C2, C3, C4, and B.  The results of this cluster analysis 484 

are quite consistent with the preliminary classification obtained by considering just two dominant 485 

diagnostic pigments (see Table 1).  Note that stations C1, C2, C3, C4, and B are all characterized 486 

by relatively high ratios of DVChla and Zea to TChla.  Some differences between these stations 487 

in terms of the relative roles of DVChla and Zea do not, however, produce significant distances 488 

between the corresponding pigment data vectors and hence these 5 stations are grouped into a 489 

single cluster.  The dendrogram also indicates that the stations classified as A, D, E, and F 490 

display significant dissimilarities between each other and when compared to the stations 491 

classified as B and C.  Note that the stations 48 (class D) and 59 (class F) have the Hex and Zea 492 

as dominant diagnostic pigments, albeit in reverse ranking (see Table 1), so these stations appear 493 

closer to one another in the dendrogram (Fig. 4a). 494 

Fig. 4c also depicts results from the cluster analysis of pigment data but for the input data 495 

vectors consisting of the ratios of concentrations of the 8 diagnostic pigments to the sum of the 8 496 

diagnostic pigments.  The partitioning of the stations obtained on the basis of these pigment 497 

ratios is qualitatively identical to the partitioning based on the ratios of 24 pigments to TChla.  498 

The stations C1, C2, C3, C4, and B are again grouped within a single cluster and each of the 499 

remaining stations represent a separate cluster.  The results in Figs. 4a and 4c along with the 500 

preliminary classification of stations based on two dominant diagnostic pigments (Table 1) 501 

suggest that there is a certain degree of flexibility in the selection of pigment ratios as a basis for 502 

discriminating different pigment assemblages in a consistent fashion.  In the following analysis 503 

of optical data as a means for assessing differences in pigment assemblages, the pigment-based 504 

cluster partitioning obtained with the 24 pigment ratios (as shown in Fig. 4a) is used as a 505 

reference. 506 
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 507 

3.2.  Classification of stations based on absorption spectra 508 

Fig. 5 shows hyperspectral data of absorption coefficients first normalized at 555 nm and 509 

then divided by the total chlorophyll-a concentration for the nine stations.  These spectra are 510 

referred to as the spectral chlorophyll (Chl)-specific normalized absorption coefficients.  511 

Specifically, we examine the Chl-specific normalized coefficients for the total absorption, an*(), 512 

the absorption of pure seawater plus phytoplankton, an,w+ph*(), and the absorption of 513 

phytoplankton alone, an,ph*().  The differences in the shape of phytoplankton absorption in the 514 

UV and blue spectral regions are generally quite large between most stations (Fig. 5a).  With the 515 

addition of the pure water contribution, differences in the spectral shape of an,w+ph*() continue 516 

to be seen but are considerably smaller (Fig. 5b).  Finally, upon further addition of the 517 

contributions associated with non-phytoplankton particles and CDOM, the spectral shape of total 518 

absorption again shows larger differences between the stations at wavelengths shorter than the 519 

normalization point at 555 nm (Fig. 5c).  From the visual inspection of these plots it is, however, 520 

difficult to deduce to what extent the observed differences might be consistent with the 521 

classification of stations based on pigment composition. 522 

Fig. 6 illustrates the results from cluster analysis applied to the absorption spectra presented 523 

in Fig. 5 and the corresponding second derivative spectra over the entire spectral range from 300 524 

nm to 725 nm.  In nearly all cases (Fig. 6a-e), the absorption-based cluster trees differ 525 

significantly from the pigment-based cluster tree shown in Fig. 4a.  Thus, the full hyperspectral 526 

data of an*(), an,w+ph*(), and an,ph*() as well the second derivative spectra of an*() and 527 

an,w+ph*() do not provide useful information for discriminating the differences in pigment 528 

assemblages at the examined stations.  The only case in which stations are classified within the 529 

dendrogram in a similar way to the pigment-based cluster tree is when the second derivative of 530 

phytoplankton absorption spectra is considered (Fig. 6f).  When this absorption-based 531 

dendrogram is cut horizontally at a level of linkage distance of 0.023 that yields 5 clusters, the 532 
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same stations are grouped in separate clusters as in the pigment-based cluster tree.  This result 533 

supports the potential usefulness of the second derivative of phytoplankton absorption spectra for 534 

discriminating different pigment assemblages. 535 

In the analysis above we considered a spectral range from 300 nm to 725 nm, which is much 536 

broader than the spectral region where specific absorption imprints caused by accessory 537 

pigments occur.  It is therefore useful to examine whether the cluster analysis of absorption data 538 

yields similarity with pigment-based clusters if different, narrower spectral ranges are 539 

considered.  Fig. 7 illustrates the degree of similarity between the absorption-based and pigment-540 

based cluster trees for different spectral ranges of absorption data.  The degree of similarity is 541 

shown in terms of cophenetic and Rand indices.  The three absorption spectra, an*(), 542 

an,w+ph*(), and an,ph*(), are considered in this analysis.  In each graph, the distribution of 543 

values for the cophenetic or Rand index is shown as a function of the spectral range considered, 544 

with the lower limit of the spectral range, λmin, displayed along the y-axis (ordinate) and the 545 

upper limit, λmax, along the x-axis (abscissa).  The similarity indices are thus shown for many 546 

spectral ranges represented by many combinations of λmin and λmax.  The higher values of indices, 547 

depicted by darker areas in the graphs, correspond to better similarity between a given 548 

absorption-based cluster tree and pigment-based tree.  The best degree of similarity is obtained 549 

when the indices are close to 1, indicated by the nearly black areas in the graphs.  According to 550 

the distributions of cophenetic index, this is the case when the phytoplankton absorption 551 

spectrum an,ph*() is analyzed over the spectral range approximately from λmin = 425 nm to λmax 552 

= 540 nm (Fig. 7e).  The distribution of the Rand index indicates that the best similarity between 553 

the an,ph*()-based cluster tree and the pigment-based tree occurs within a broader spectral 554 

region, approximately between λmin = 390 nm and λmax = 610 nm (Fig. 7f).  These optimal 555 

spectral regions generally overlap with the wavelength range where absorption characteristics of 556 

main accessory pigments appear (e.g., Bricaud et al., 2004).  The remaining results in Fig. 7 557 
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(panels a, b, c, d) show generally poor similarity between the absorption data of an*() or 558 

an,w+ph*() and pigment composition, regardless of the spectral range considered. 559 

Fig. 8 depicts similar results, but for the similarity between pigment composition and the 560 

second derivative spectra of an*(), an,w+ph*(), and an,ph*().  The use of derivative spectra 561 

generally improves the similarity as indicated by the presence of darker areas or the larger extent 562 

of dark areas in the distributions of the cophenetic and Rand indices.  For example, compared to 563 

the results for the ordinary spectra of an,w+ph*() in Fig. 7d, a significant increase in the Rand 564 

index is observed for the second derivative spectra of an,w+ph*() within the spectral range from 565 

λmin = 440 nm to λmax= 650 nm (Fig. 8d).  The improvement is even more striking for the results 566 

involving the second derivative spectra of phytoplankton absorption (Fig. 8e, f).  The spectral 567 

regions where the cophenetic and Rand indices assume high values near or equal to 1 are much 568 

larger compared with the analysis of ordinary (non-differentiated) spectra of an,ph*().  The 569 

darkest areas in the distributions of the indices in Fig. 8e, f cover a broad spectral range, 570 

approximately from λmin = 370 nm to λmax = 716 nm.  This result indicates that a high degree of 571 

similarity between the second derivative spectra of an,ph*() and pigment composition can be 572 

obtained for many different combinations of spectral ranges of absorption data (i.e., different 573 

combinations of λmin and λmax). 574 

The improvement in the similarity between the pigment-based and absorption-based cluster 575 

trees achieved as a result of utilization of second derivative spectra compared to the ordinary 576 

spectra of phytoplankton absorption, an,ph*(), is clearly illustrated by histograms of cophenetic 577 

index obtained on the basis of all possible combinations of spectral ranges examined (Fig. 9).  578 

We note that the cophenetic index does not require a priori selection of the optimal number of 579 

clusters which is somewhat subjective and, therefore, this index facilitates the comparison of 580 

results for ordinary and derivative spectra shown in Fig. 7e and Fig. 8e.  Compared with the 581 

histogram obtained using the ordinary spectra (Fig. 9a), the histogram for the derivative spectra 582 

(Fig. 9b) shows a substantial shift to higher values of the cophenetic index.  Specifically, there is 583 
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a significant increase in the frequency of occurrence of high values (> 0.9) of the cophenetic 584 

index.  This increased frequency is associated with a broader overall spectral region, or 585 

equivalently a larger number of spectral ranges, for which the index is higher than 0.9. 586 

Whereas the above results illustrate the advantages of derivative analysis, such analysis can 587 

be highly sensitive to parameters chosen for the calculation of derivative spectra, specifically the 588 

size of the filter window (WS) used in the spectral smoothing of the ordinary spectra and the 589 

band separation (BS) used in the calculation of derivatives.  To examine the sensitivity of cluster 590 

analysis to the selection of these parameters, we computed the distribution of cophenetic index 591 

between the pigment-based and absorption-based cluster trees using the second derivative 592 

spectra of an,ph*() within the spectral range of 420 - 515 nm as input (Fig. 10).  This spectral 593 

range is adequate for this sensitivity analysis because it showed very high values of cophenetic 594 

and Rand indices in Fig. 7e and Fig. 8e.  The distribution of cophenetic index in Fig. 10 is shown 595 

with the smoothing parameter WS varying from 1 to 29 consecutive samples (with a step of 2 596 

samples) along the y-axis and the band separation parameter BS varying also from 1 to 29 597 

samples with a step of 2 samples along the x-axis.  Note that the number of consecutive samples 598 

is equivalent to the wavelength interval in nanometers because our spectral data (samples) have 599 

the resolution of 1 nm.  The highest values of the cophenetic index are obtained for intermediate 600 

values of WS and BS around 9 nm – 10 nm.  These are the optimal values for our derivative 601 

analysis of absorption spectra.  This result is consistent with the general expectation that if the 602 

values of WS and BS are too small, the derivative spectra are sensitive to noise and exhibit false 603 

spectral features, and on the other hand if the WS and BS are too large, the real significant 604 

spectral features get smoothed out and essentially removed from the analysis.  As the best 605 

compromise, the cluster analyses presented in Fig. 8 and 9b were obtained with WS and BS of 9 606 

nm. 607 

 608 
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3.3.  Classification of stations based on remote-sensing reflectance 609 

The relationship between the spectral remote-sensing reflectance, Rrs(), of the ocean and 610 

phytoplankton pigment composition is less direct and far more complicated than that for the 611 

spectral phytoplankton absorption coefficient, mainly due to the presence of many optically 612 

significant non-phytoplankton constituents in seawater.  The investigation of Rrs() is of 613 

particular interest, however, because information contained in this measurement provides a 614 

potential means for remote-sensing applications.  Fig. 11 shows the Hydrolight-simulated Rrs() 615 

spectra normalized at 555 nm for the nine stations identified as classes from A (station 1) through 616 

F (station 59).  In general, there are significant differences in the UV and blue spectral regions 617 

between these normalized spectra, with the largest contrast between the classes A (station 1) and 618 

C1 (station 12). 619 

The dendrograms obtained from cluster analysis as applied to four different sets of input data 620 

vectors containing information about remote-sensing reflectance (as described in sec 2.3) are 621 

displayed in Fig. 12.  The limited spectral information, i.e., the three reflectance band ratios used 622 

commonly in satellite ocean color applications (Fig. 12a) and the 13 band ratios corresponding to 623 

multispectral measurements with the SPMR instrument (Fig. 12b), provide a very dissimilar 624 

classification of stations compared with the pigment-based cluster analysis (see Fig. 4a).  All 625 

stations, with only the exception of class A, show very little separation in the cluster-tree based 626 

on multispectral reflectance data.  The high spectral resolution (1 nm) normalized reflectance 627 

spectra over the entire spectral range 300 – 725 nm also produce a dendrogram (Fig. 12c) that is 628 

very different from the pigment-based cluster tree.  Although the stations belonging to class C 629 

are closer to one another compared with the multispectral-based cluster tree, they are grouped 630 

together with two other stations (class E and D).  In addition, station B forms a separate single-631 

object cluster in Fig. 12c, whereas it is grouped in a single multi-object cluster together with the 632 

stations from class C in the pigment analysis.  The only case when the cluster analysis of 633 

reflectance data provides a high degree of similarity with pigment analysis (i.e., Rand index of 634 
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0.78) is for the second derivative of hyperspectral normalized reflectance over the entire spectral 635 

range 327 - 698 nm (Fig. 12d).  We note that the derivative reflectance spectra were calculated 636 

with the parameters WS and BS of 27 nm (as supported by the sensitivity analysis discussed 637 

below).  The stations A, E, and F in Fig. 12d form single-object clusters at a significant distance 638 

from the remaining stations.  Similarly to pigment analysis, the stations C1, C2, C3, C4, and B 639 

are grouped relatively close to one another.  However, station D also belongs to that group, 640 

which is not the case in the pigment-based cluster tree.  This may be attributable to the fact that 641 

Zea and DVChla, which are the two most dominant diagnostic pigments at stations C1, C2, C3, 642 

C4, and B, also play a significant role at station D where they are ranked as the second and third 643 

most important diagnostic pigments (see Table 1). 644 

The progression of linkage distances corresponding to the four dendrograms from Fig. 12 645 

clearly illustrates the advantage of the second derivative spectra over the multispectral data or 646 

non-differentiated spectra of reflectance (Fig. 13).  The improved separation seen in terms of the 647 

larger linkage distances between the clusters of stations obtained with derivative spectra 648 

indicates that this approach enables better identification of the differences in the magnitude and 649 

shape between the high resolution spectra.  In contrast, in the analysis of multispectral data and 650 

ordinary spectra, stations are linked at a very small distance, which indicates that these types of 651 

reflectance data will be essentially useless for obtaining information about pigment assemblages 652 

from cluster analysis. 653 

The improvement in the similarity between the pigment-based and reflectance-based 654 

classification achieved with the use of second derivative spectra as opposed to multispectral data 655 

or ordinary spectra of reflectance is presented in Table 2.  The results for the derivative analysis 656 

of hyperspectral normalized Rrs() over the entire spectral range 300 - 725 nm show a significant 657 

increase in both the cophenetic and Rand index when compared with multispectral and ordinary 658 

spectral data.  However, the best performance is obtained when the derivative analysis is 659 
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restricted to the spectral range from 435 to 495 nm (as supported by the sensitivity analysis 660 

discussed below).  In this case, the similarity indices are highest. 661 

Fig. 14 shows distributions of the cophenetic and Rand index which identify the optimal 662 

spectral ranges for the cluster analysis of the second derivative of remote-sensing reflectance.  663 

The cophenetic index is generally close or slightly higher than 0.5 for most spectral ranges 664 

examined, that is for most combinations of λmin and λmax (Fig. 14a).  In the spectral region from 665 

435 nm to 510 nm, this index is about 0.65.  This can be considered as an optimal spectral range 666 

for the application of derivative approach with potential for good similarity between the 667 

pigment-based and reflectance-based cluster trees.  This result is also supported by very high 668 

value of the Rand index of 0.86 in that spectral range (Fig. 14b).  The Rand index attains even 669 

higher value of about 1 within somewhat narrower wavelength range from λmin = 435 nm to λmax 670 

= 495 nm, which defines an alternative optimal spectral range.  In addition, the Rand index 671 

suggests good performance of the derivative-based analysis over a broader spectral region 672 

including shorter wavelengths of λmin from the near-UV.  In general, this index is quite high for 673 

λmin varying between 350 nm and 450 nm, for example as high as 1 when the spectral range is 674 

from λmin = 365 nm to λmax = 480 nm.  However, because the optical roles of different diagnostic 675 

pigments in the near-UV are insignificant or certainly less important than in the blue region, the 676 

use of the spectral range 435 – 510 nm or 435 – 495 nm, where both the cophenetic and Rand 677 

indices are relatively high, appears to be most reasonable. 678 

The effects of the size of the filter window (WS) used in the smoothing of the ordinary 679 

spectra and the band separation (BS) used in the calculation of derivatives on the similarity 680 

between the cluster trees from the analysis of pigments and the second derivative reflectance 681 

spectra is illustrated in Fig. 15.  These results are shown for the derivative spectra calculated over 682 

one of the optimal spectral ranges, specifically 435 - 495 nm, which showed high values for both 683 

cophenetic and Rand indices.  The best similarity with cophenetic index of about 0.65 and the 684 

Rand index of 1 is obtained when the calculations of second derivative spectra are made with 685 



 

 

30 

relatively large values of WS and BS.  For example, a very good result is obtained if both WS and 686 

BS assume a value of 27 consecutive spectral samples (i.e., 27 nm as the resolution of our 687 

hyperspectral reflectance data is 1 nm).  We recall that this value was used to compute the results 688 

pertinent to the derivative reflectance spectra presented in Figs. 12 - 14.  Similarly good results 689 

are obtained with a smaller WS (~14 nm) and a larger BS (~37 nm), or vice versa.  In contrast, if 690 

both WS and BS are small (less than about 10 nm) or large (above ~40 nm) the cophenetic and 691 

Rand indices are reduced significantly.  This sensitivity analysis, in agreement with similar 692 

analysis for absorption spectra, supports strong dependence of the derivative-based cluster trees 693 

on the selection of parameters WS and BS for the derivative calculations. 694 

 695 

4.  Conclusions 696 

By applying the unsupervised hierarchical cluster analysis to pigment and optical data from 697 

the eastern Atlantic Ocean we demonstrated the potential usefulness of hyperspectral data of 698 

absorption coefficient and remote-sensing reflectance for discriminating different phytoplankton 699 

pigment assemblages in the open ocean under non-bloom conditions.  The most promising 700 

results were obtained with the second derivative spectra of phytoplankton absorption coefficient 701 

covering the spectral range as wide as 370 nm - 725 nm (or narrower spectral regions from 702 

within that range), and the second derivative spectra of remote-sensing reflectance over the 703 

spectral range from about 435 nm to 510 nm.  Our ability to discriminate different phytoplankton 704 

pigment assemblages from the derivative-based cluster trees was optimized by selecting the most 705 

suitable parameters used in the spectral derivative calculations (see also Torrecilla et al., 2009).  706 

In particular, for these optical data with a 1 nm resolution, we determined that the optimal values 707 

for the smoothing filter window and band separation used in the calculations of second derivative 708 

spectra are 9 nm for absorption and 27 nm for remote-sensing reflectance.  These derivative 709 

spectra are presented in Fig. 16 for the nine Atlantic stations selected for this study.  The 710 
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assessment of similarity between these derivative spectra and phytoplankton pigment 711 

composition was made using the similarity-based cluster algorithm and two indices, cophenetic 712 

and Rand.  In this cluster algorithm, the partitioning of data into clusters is based on the 713 

determinations of the angular distance between each pair of examined input data vectors.  This 714 

type of similarity-based cluster technique accounts for complete spectral behavior of optical data 715 

with no need to identify specific spectral features.  This approach is particularly useful in cases 716 

when it is difficult or impossible to define explicitly a set of unambiguous diagnostic spectral 717 

features in the original optical data (Duin et al., 1997; Pekalska and Duin, 2000). 718 

In addition to the second derivative spectra of phytoplankton absorption and remote-sensing 719 

reflectance, we examined other absorption and reflectance data but they generally showed either 720 

more limited value or no usefulness at all for discriminating phytoplankton pigment 721 

assemblages.  For example, the cluster analysis of the ordinary (non-differentiated) reflectance 722 

spectra at 1 nm resolution or multispectral (13 wavebands) reflectance data showed very poor 723 

similarity with pigment-based clusters.  Similar results were obtained for the ordinary spectra of 724 

the total absorption coefficient.  However, the ordinary spectra of phytoplankton absorption are 725 

useful, especially within the spectral range 425 nm - 540 nm. 726 

We demonstrated that the quantification of similarity between the optical-based clusters and 727 

pigment-based clusters with the cophenetic and Rand indices provides a valuable methodology 728 

for identifying optical variables and their spectral ranges most suitable for characterizing the 729 

phytoplankton pigment assemblages, and for selecting the optimal values of the parameters used 730 

in the calculation of derivative spectra.  Whereas the present study uses a limited data set, albeit 731 

carefully selected to represent distinct differences in phytoplankton assemblages in terms of 732 

dominant accessory pigments, further work is needed to evaluate or refine the proposed 733 

methodology with larger data sets from various oceanic environments.  Given significant interest 734 

in the development of the capabilities for large-scale characterization of phytoplankton 735 

biodiversity from optical measurements including remote-sensing observations, one may expect 736 
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further expansion of comprehensive databases consisting of simultaneously collected pigment 737 

and hyperspectral optical data in the near future.  We expect that this will support further work on 738 

the cluster-based approach and other techniques, such as neural networks (Raitsos et al., 2008; 739 

Aymerich et al., 2009), which exploit optical measurements as a source of information on 740 

phytoplankton community composition. 741 
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Table 1.  Summary of phytoplankton pigment data for the nine stations selected in this study.  922 

The stations are sorted into different classes characterized by differing pigment assemblages 923 

based upon the ratios of the concentrations of two dominant accessory pigments to total 924 

chlorophyll-a, TChla (see the 2nd and 3rd columns from the left).  The ratios of the 925 

concentrations of six dominant pigments to TChla are also displayed, with the two most 926 

dominant accessory pigments indicated within the shaded areas.  Pigment abbreviations are: 927 

MVChla = monovinyl chlorophyll-a, DVChla = divinyl chlorophyll-a, Fuco = fucoxanthin, Hex 928 

= 19’ hexanoyloxyfucoxanthin, But = 19’ butanoloxyfucoxanthin, MVChlb = monovinyl 929 

chlorophyll-b, Chlc2 = chlorophyll-c2, Zea = zeaxanthin, Pra = prasinoxanthin, Dia = 930 

diadinoxanthin, and -caro = α-carotene. 931 

 932 

Station 

ID 

2 dominant 

pigments 
Class 

TChla 

[mg/m3] 
Ratio of concentrations of dominant pigments to TChla 

1 Fuco ≈ MVChlb A 0.62 
MVChla Fuco MVChlb Chlc2 Pra Hex 

0.95  0.22  0.21 0.11 0.07 0.07  

6 DVChla > Zea B 0.28 
DVChla MVChla Zea Hex α-caro Chlc2 

0.50 0.47 0.31 0.18 0.09 0.09  

12 DVChla ≈ Zea C1 0.14 
MVChla DVChla Zea Hex Chlc2 But 

0.54 0.44 0.40 0.24 0.09 0.09 

37 DVChla ≈ Zea C2 0.15 
Zea DVChla MVChla Hex Dia a-caro 

0.63 0.58 0.40 0.17 0.10 0.10 

44 DVChla ≈ Zea C3 0.22 
DVChla Zea MVChla Hex α-caro Chlc2 

0.56 0.50 0.42 0.17 0.08 0.08 

46 DVChla ≈ Zea C4 0.14 
Zea DVChla MVChla Hex Dia MVChlb 

0.52 0.50 0.49 0.20 0.09 0.08 

48 Hex > Zea D 0.21 
MVChla Hex Zea DVChla But Dia 

0.76 0.48 0.25 0.21 0.18 0.16 

51 Hex > Fuco E 0.26 
MVChla Hex Fuco Dia Chlc2 But 

0.86 0.35 0.24 0.23 0.18 0.13 

59 Zea ≈ Hex F 0.11 
MVChla Zea Hex Dia DVChla But 

0.80 0.39 0.34 0.21 0.18 0.12 

  933 
 934 

935 
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Table 2.  A comparison of similarity indices between pigment-based clusters and reflectance-936 

based clusters for the different sources of reflectance data that are depicted in Fig. 12.  For the 937 

case of the second derivative of hyperspectral reflectance, the result of computations for two 938 

different spectral regions is given. 939 

Reflectance data 
Rand  

index 
Cophenetic index 

3 band ratios based on 4 SeaWiFS bands 0.69 0.39 

Multispectral (13 bands) 0.69 0.39 

Hyperspectral (325 bands, range 300-725 nm) 0.69 0.39 

Hyperspectral 2nd derivative (300-725 nm) 0.78 0.53 

Hyperspectral 2nd derivative (435-495 nm) 1 0.65 

 940 

941 
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Figure captions 942 

Figure 1.  Map depicting the location of full stations sampled along the north-to-south ANT-943 

XXIII/1 cruise track in the eastern Atlantic during October and November, 2005.  Each full 944 

station consisted of in situ optical measurements accompanied by discrete water sample analyses.  945 

Stations chosen for use in the cluster analysis are identified by filled circles and labeled with the 946 

station ID. 947 

 948 

Figure 2.  Hyperspectral (1 nm) determinations of the remote-sensing reflectance Rrs(λ) obtained 949 

from radiative transfer simulations (solid line) compared with in situ multispectral measurements 950 

at 13 discrete bands (solid circles).  Each panel illustrates a different station location. 951 

 952 

Figure 3.  A schematic diagram illustrating the general approach to hierarchical cluster analysis 953 

and similarity determination.  The dendrogram obtained with pigment composition as the input 954 

(upper pathway) is used as the reference for comparison with results obtained utilizing various 955 

optical data as input.  956 

 957 

Figure 4.  (a) Dendrogram obtained for the nine stations using 24 pigment to total chlorophyll-a 958 

(TChla) ratios determined from the CHORS HPLC analysis.  (b) Linkage distances obtained 959 

from the cluster analysis shown in (a) as a function of distance along the dendrogram.  (c) 960 

Similar to (a), but using input ratios calculated from 8 diagnostic pigments (see text for details). 961 

 962 

Figure 5.  Chlorophyll-specific normalized absorption coefficients for the nine stations 963 
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corresponding to: (a) absorption of phytoplankton, an,ph*(), (b) absorption of pure seawater plus 964 

phytoplankton, an,w+ph*(), and (c) total absorption, an*(). 965 

 966 

Figure 6.  Results of cluster analysis applied to absorption data from the nine stations.  The left 967 

panels represent dendrograms obtained using the different absorption components of (a) an*(), 968 

(c) an,w+ph*(), and (e) an,ph*(), and the right panels (b, d, f) illustrate results obtained using  969 

each respective component’s second derivative spectrum. 970 

 971 

Figure 7.  Similarity indices between absorption-based and pigment-based cluster trees obtained 972 

for the nine stations using different combinations of spectral range for (a) an*(), (b) an,w+ph*() 973 

and (c) an,ph*().  The y-axis indicates the lower limit of the spectral range (λmin) and the x-axis 974 

the upper limit of the spectral range (λmax) utilized in the cluster analysis.  Left and right panels 975 

depict the cophenetic and Rand indices, respectively. 976 

 977 

Figure 8.  Similar to Fig. 7, but based on cluster trees obtained using different spectral range 978 

combinations for the second derivative spectra of (a) an*(), (b) an,w+ph*() and (c) an,ph*().  979 

Optimal values for band separation and window size determined from prior analyses (BS = WS = 980 

9 nm, see text for details) were used in the calculation of derivative spectra. 981 

 982 

Figure 9.  Histograms of cophenetic indices obtained for all combinations of spectral ranges 983 

shown in Fig. 8 based on (a) the absorption of phytoplankton, an,ph*(), and (b) its second 984 

derivative spectra. 985 
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 986 

Figure 10.  Cophenetic indices obtained from the cluster and similarity analysis of the second 987 

derivative spectra of an,ph*, in which different parameter sets for the derivative analysis are 988 

considered.  The analysis was conducted using the optimal spectral region from 420 to 515 nm.  989 

The y-axis indicates the size of the filter window used in smoothing of the absorption spectra 990 

(WS), and the x-axis represents the band separation used in the calculation of the derivative 991 

calculation (BS). 992 

 993 

Figure 11.  Hydrolight-simulated Rrs(λ) spectra, normalized at 555 nm, computed for the nine 994 

stations using measured IOPs as input. 995 

 996 

Figure 12.  Dendrograms resulting from cluster analysis of the nine stations calculated using four 997 

different sets of input data vectors: (a) three reflectance band ratios of Rrs(λ) based on 4 SeaWiFS 998 

wavebands obtained from measurements with SPMR instrument, (b) 13 band ratios 999 

corresponding to multispectral measurements of Rrs(λ) with SPMR instrument, (c) hyperspectral 1000 

(1 nm) ordinary (non-differentiated) normalized Rrs(λ) spectra computed from the Hydrolight 1001 

simulations, and (d) second derivative of hyperspectral normalized Rrs(λ) spectra obtained using 1002 

optimal values for band separation and smoothing filter window (i.e., BS = WS = 27 nm). 1003 

 1004 

Figure 13.  Linkage distances as a function of distance along the dendrogram for each cluster tree 1005 

depicted in Fig.12. 1006 

 1007 
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Figure 14.  Similarity indices between reflectance-based and pigment-based cluster trees 1008 

obtained for the nine stations using different combinations of spectral ranges for the second 1009 

derivative of the hyperspectral normalized Rrs(λ).  Optimal values of BS = WS = 27 nm, 1010 

determined from prior analyses, were used for the calculation of derivative spectra.  The y-axis 1011 

indicates the lower limit of the spectral range (λmin) and the x-axis the upper limit of the spectral 1012 

range (λmax) utilized in the cluster analysis.  Panels (a) and (b) depict the cophenetic and Rand 1013 

indices, respectively. 1014 

 1015 

Figure 15.  (a) Cophenetic and (b) Rand indices obtained from the comparison of pigment-based 1016 

cluster trees with trees computed from the second derivative of hyperspectral normalized Rrs(λ), 1017 

in which different choices for parameters of the derivative analysis are considered.  The analysis 1018 

has been carried out for the optimal spectral region from 435 and 495 nm.  The y-axis indicates 1019 

the size of the filter window used in the smoothing of spectra (WS), and the x-axis the band 1020 

separation used in the derivative calculation (BS). 1021 

 1022 

Figure 16.  The second derivative spectra at each station of the (a) chlorophyll-specific 1023 

normalized phytoplankton absorption coefficient, an,ph*(), and (b) normalized hyperspectral 1024 

remote-sensing reflectance, Rrs(λ)/Rrs(555).  The derivative spectra are depicted for the optimal 1025 

spectral ranges of 370 - 716 nm for absorption, and 435 - 510 nm for reflectance.  Optimal values 1026 

for band separation and smoothing filter window were used for the derivative calculations, i.e., 1027 

BS = WS = 9 nm for the absorption data and BS = WS = 27 nm for the reflectance data. 1028 
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