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Abstract 

 

The lipid class composition in juveniles of the mussel Mytilus galloprovincialis of 

rocky shore and subtidal origin were compared after transfer to a subtidal environment 

in the Ria de Arousa (northwest Spain). The experiment was conducted between 

November 27, 1995 and July 3, 1996. In addition to mussel origin, the influence of the 

different environmental parameters on the changes in lipid classes was studied. At the 

start of the experimental period, only the relative percentage of the triacylglycerols 

(energetic function) was significantly higher in the subtidal specimens. However, when 

the initial absolute contents were examined, the phospholipids and sterols were also 

significantly higher in this mussel group. Differences in the relative percentages of 

phospholipids and sterols were maintained until day 22 of the experiment. Our results 

show that during the first 36 days of the experimental period the mussel origin 

participated significantly in the model explaining the variance of triacylglycerols, 

phospholipids and sterols. These results suggest the initial differences in content and 

relative percentages of the lipid classes studied are possibly linked to the contrasting 

environmental conditions in which the two mussel groups had previously developed 

(subtidal and rocky shore habitats). In contrast, 50 days into the experiment the origin 

term did not participate in the model of variance of these lipid classes. These results in 

turn suggest that during the course of the investigation the mussel seeds of rocky shore 

origin were able to exploit the available food resources in the subtidal habitat. Based on 

these results, the influence of mussel origin and environmental parameters on the 

changes in lipid classes of both mussel groups is discussed.  
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1. Introduction 

 

Rodhouse et al. (1984a,b) have observed that quantitative and qualitative differences of 

the available food in rocky shore and subtidal zones differentially affect the growth and 

reproduction rates of mussels. Furthermore, one of the conditions which has the highest 

influence on the mussel energy reserves are periods of exposure to air, due to the fact at 

such times the organisms cannot feed. Consequently, these periods would have a similar 

effect to starvation (Hummel et al., 1989). Accordingly, a decrease in triacylglycerol 

values has been observed in the larval stages of some marine invertebrates and bivalve 

juveniles subjected to conditions of nutritional stress (Fraser, 1989; Caers et al., 2000). 

 

Changes occurring in mussel lipid reserves have been observed to be mainly influenced 

by reproduction (Pieters et al., 1979; Pollero et al., 1979; Lubet et al., 1986; Chu et al., 

1990) and/or by nutrition (De Moreno et al., 1976, 1980; Fernández-Reiriz et al., 1998; 

Okumus and Stirling, 1998). Seasonal variation in lipid content is mainly caused by 

fluctuations in triacylglycerols and not phospholipids (Trider and Castell, 1980; Pazos 

et al., 1996, 1997). This is due to the fact that phospholipids, mainly serving structural-

type functions, are maintained virtually constant over the year (Gadner and Riley, 1972; 

Swift, 1977; Pazos et al., 1997). On the other hand, triacylglycerols are accumulated as 

reserve energy. For this reason, low levels of triacylglycerols have been considered an 

indicator of low nutritional state (Swift et al., 1980). In contrast, polar lipids are less 

influenced and maintained practically constant over the year (Gardner and Riley, 1972; 

Swift, 1977; Beninger and Stephan, 1985; Pazos et al., 1997; Soudant et al., 1999). This 

maybe due to the fact that they serve in various structural functions (Nes, 1974; Pollero 

et al., 1979; Trider and Castell, 1980; Beninger, 1984; Pazos et al., 1996). 

 

The initial aquacultural demand for seeds of the mussel Mytilus galloprovincialis in the 

Galician rias was met by extracting mussels located in the intertidal rocky shore zone. 

With the growth of industrial aquaculture, this seed source became insufficient to 

supply the 7500 tons required at present (Pérez-Camacho et al., 1995) Accordingly, 

Pérez-Camacho et al. (1995) observed a higher growth rate in seed of collector origin, 



whereas Fuentes et al. (1998) noted a greater survival rate in seed of rocky shore origin. 

In light of this finding, a series of studies were brought forward with the aim of 

determining the nature of the factors which caused these differences. 

 

Pérez-Camacho et al. (1995) attributed their findings to the higher condition index and 

the previous adaptation of the collector mussels to the culture conditions of permanent 

immersion. Correspondingly, physiological differences between mussels distributed in 

habitats with contrasting environmental conditions have been reported (Okumus and 

Stirling, 1994; Labarta et al., 1997). 

 

In the present study, the changes in the different lipid classes of M. galloprovincialis 

seed from subtidal and rocky shore origin were compared with the aim of ascertaining 

the influence of habitat conditions on the biochemical changes within these organisms. 

 

2. Materials and methods 

 

2.1. Experimental design 

 

The experiment was carried out from November 27, 1995 to July 3, 1996. So, the 

experimental period commenced in winter in order to minimize any possible advantages 

that subtidal seed may have over rocky shore seed, as a result of being previously 

adapted to cultivation in the subtidal conditions (Babarro et al., 2000a,b,c). Individuals 

used in this study were taken from two habitats in the Arosa Ria of different ecological 

characteristics, from rocky shore zone and from collector ropes (subtidal environment) 

suspended from a mussel raft. Both groups of seed were from the previous spring–

summer spawning and therefore belonged to the same year class. Additionally, the 

sampling locations for both populations were 2 km away from each other. The initial 

mean size of subtidal and rocky shore groups was 22.55 (sd = 1.55) and 19.02 mm (sd = 

1.93), respectively, whereas the total dry weight was 0.36 (sd = 0.06) and 0.27 g (sd = 

0.06), respectively. So, at the outset, no significant differences in size and initial mass of 

both mussels groups were noted (ANOVA, P > 0.05). 

 



The study site, the conditions in which individuals from both mussel groups were 

maintained and the sampling periods, with regards to both individuals and 

environmental parameters, have been described previously by Babarro et al. (2000a). 

 

2.2. Sample treatment 

 

For each survey three sub-sets of mussels (n = 3), each comprising 30 individuals, were 

taken at random from both mussel groups, thus making a total of 90 individuals per 

mussel group. The soft tissues of the individuals of each sub-sample were separated, 

freeze-dried at -70ºC under a vacuum of 0.018 mbar and stored at -70ºC. Prior to the 

development of the biochemical analyses, the tissues were pulverized using a model 6 

‘‘Fritsch’’ pulverisette, and homogenized with water in an ultrasonic vibrator Sonifier 

250. 

 

2.3. Analysis of lipids 

 

The lipids were extracted following the method of Bligh and Dyer (1959), modified by 

Fernández-Reiriz et al. (1989). The data for the different classes of lipids are expressed 

in absolute values (mg individual-1) and in percentages relative to the organic material 

(% total lipid). 

 

The different lipid classes were determined by thin layer chromatography (TLC) 

employing silica gel plates (Merck 16486) of dimensions 20 x 20 mm and thickness 

0.25 mm. Exposure of the chromatographic stain followed the method described by 

Freeman and West (1966). The samples were placed on the plates by means of an 

automatic applier for TLC (Camag 27220) and developed in a solution of 10% CuSO4 

and 0.85% H3PO4 preheated to 180ºC (Bitman and Wood, 1982). Cholesterol palmitate, 

cholesterol, palmitic acid and tripalmitin (Sigma) were employed as quality standards 

for the quantitative analysis of the sterol esters + wax, sterols, free fatty acids (FFA) and 

triacylglycerols. With regards to phospholipids, a standard from the mussel M. 

galloprovincialis was used. The developed plates were read with a Shimadzu CS9000 

densitometric-scanner fitted with a monochromatic bulb of 370 nm by 0.4 x 0.4 mm. 

The scanner read the stain in zigzag (complete migration), from a base line 

automatically graduated to zero (0). 



 

2.4. Statistical analysis 

 

Differences of the lipid classes between subtidal and rocky shore mussel seed were 

analized by ANOVAs. Relative percentage of the lipid classes were previously arcsine 

transformed (Zar, 1984) and Bartlett test of homogeneity of variance was applied to the 

data. 

 

To study the influence of environmental parameters on the variability in the subtidal and 

rocky shore mussel seed lipid classes, a ‘‘multivariate stepwise regression’’ was 

performed. In this analysis, the ‘‘origin’’ factor is attributed to a qualitative factor 

(dummy) in such a way that the subtidal mussels are assigned a value of 0 (zero) and 

those of rocky shore a value of 1 (one). In all cases, the values expressed as relative 

percentage of the different lipid classes were previously transformed to the arcsine to 

obtain maximum r2 values (Zar, 1984). 

 

3. Results 

 

3.1. Environmental parameters 

 

With the advance of winter a sustained decrease in water temperature was observed 

until reaching a minima (12.5 BC) (Fig. 1A). Thereafter, a sustained increase of 

temperature during spring was noted, until peaking in June (16.3 BC). Chl-a presented 

relatively low values during the winter (Fig. 1B), with minimal concentrations (0.61 μg 

l-1): however, chl-a increased shortly thereafter, reaching maximum values during spring 

(3.71 μg l-1). With regards to seston between late November and early February (Fig. 

1C) a series of fluctuations occurred, notably the TPM, POM and PIM maxima in early 

January (2.56, 1.00 and 1.29 mg l-1, respectively). Following these augmented 

concentrations, two new increments in TPM and POM were observed in February (1.34 

and 0.57 mg l-1, respectively) and in April (1.381 and 0.64 mg l-1, respectively). Similar 

events to those described for seston also occur in the particulate volume (Fig. 1D) with 

an emphatic peak in April (1.66 mm3). Accordingly, three peaks can be observed in the 

particulate volume, the first corresponding with the seston maxima at the start of 

January, and the following two peaks corresponding to those observed in chl-a during 



spring. With regards to food quality, two clear periods can be discerned in Q2 (Fig. 1E). 

The first interval between late 100 November and mid February (winter) was 

characterised with values generally above 0.6, and the second in spring, had values 

generally below 0.6. These two clearly defined intervals are reflected in the evolution of 

the ratio chl-a/POM (Fig. 1F). 

 

3.2. Variations of lipid classes 

 

At the start of the experimental period, significantly higher relative percentages 

(ANOVA, P < 0.001) were only observed in the triacylglycerol lipid class of the 

subtidal mussels (Table 1). The phospholipids, sterols and FFA were significantly 

higher in the mussels of rocky shore origin (ANOVA, P < 0.001, 0.05 and 0.01, 

respectively). Absolute content of the phospholipids and triacylglycerols were 

significantly higher (ANOVA, P < 0.05 and 0.001, respectively) in the mussels of 

submareal origin (Table 2). 

 

With regards to the time steps of the observed differences in the relative percentages of 

phospholipids and sterols of both mussel groups from the start of the experimental 

period, statistical differences were maintained until day 22, whereas the triacylglycerols 

were steady until day 15. In constrast, these differences were also maintained in FFA 

for the first 15 days, but alternating between both groups of mussels, with the result that 

no defined trend was observed. With regards to differences in lipid content, in the 

triacylglycerols were maintained to day 22, whereas statistical differences in 

phospholipid content were only observed at the start of the experiment. On day 36, 

significantly higher contents of phospholipids, sterols and FFA (ANOVA, P < 0.05) 

again arose in the subtidal mussels, and subsequently (day 50) differences disappeared 

and were only observed in isolated samplings, with the result that no defined standard 

could be achieved. 

 

The sterol esters + wax were present at trace levels during the experimental period in 

both mussels groups (Tables 1 and 2). 

 

3.3. Influence of environmental parameters on the variations in lipid classes 

 



The multiple regression analysis applied to the period covering the first 36 days of the 

study (Table 3), established that the mussel origin (rocky shore or subtidal) significantly 

explained almost half of the total variance observed in the phospholipids (39.2%). 

Furthermore, the coefficient was positive, which demonstrated that the rocky shore 

mussels showed higher values than the subtidal mussels. Temperature and TPM further 

increased the percentage explanation of the variance in phospholipids up to 77.3% and 

84.0%, respectively. With regards to sterols, the model estimated from the multiple 

analysis showed that temperature alone explains 61.7% of the variance, whereas the chl-

a/POM and the mussel origin raised the explanation to 75.4% and 86.1%, respectively. 

Water temperature contributed more than half (53.1%) of the explanation for variance in 

triacylglycerols, which further increases to 72.6% and 89.1% by the participation of the 

mussel origin and TPM terms, respectively. 

 

Changes were noted in the model from day 50 due to the fact that the mussel origin did 

not participate in explaining the variance of any of the lipid classes studied (Table 4). 

Furthermore, chl-a/POM now explained more than half (55.1%) of the phospholipid 

variance over this period, which was raised to 67.7% by temperature. With regards to 

sterols, the model obtained from the regression analysis showed that chl-a/POM 

explained the major part (74.3%) of the variance within this lipid group and the 

combination of temperature and TPM slightly increases the explanation up to 82.0% 

and 83.8%, respectively. In this case, temperature, TPM and chl-a/POM presented a 

negative coefficient, which indicates their inverse relationship with this lipid class. The 

ratio chl-a/POM for triacylglycerols was the only environmental parameter contributing 

to the explanation of the variance in this lipid component. The role of chl-a/POM was 

sufficient to explain alone more than half of the variance (56.5%). Moreover, the 

coefficient was positive and demonstrated a direct relationship between phytoplanktonic 

food availability and increases in this lipid class during the spring–summer seasonal 

transformation. 

 

4. Discussion 

 

The greatest initial difference in the absolute content of the different lipid classes was 

observed in the triacylglycerols, whereby the subtidal mussels had a value 9.25 times 

greater than the rocky shore mussels. In contrast, phospholipids in the subtidal mussels 



were only 1.33 times greater than in rocky shore mussels. Further, the differences in 

triacylglycerols were maintained for a longer period (22 days) than for the 

phospholipids and the FFA. These trends can be explained bearing in mind that in other 

studies which have focussed on the different life stages of various marine bivalves, the 

triacylglycerols and phospholipids were the principal lipid classes (Delaunay et al., 

1992; Abad et al., 1995; Pazos et al., 1996, 1997; Fernández-Reiriz et al., 1998). 

However, whereas phospholipids present a structural-type function (Giese, 1966; 

Beninger and Lucas, 1984), triacylglycerols present an energy reserve function 

(Holland, 1978; Fraser, 1989). Consequently, other workers have observed that seasonal 

changes in the relative percentage of total lipids of some bivalve species are principally 

caused by fluctuations in the triacylglycerols whereas the phospholipids are maintained 

relatively constant (Trider and Castell, 1980; Pazos et al., 1996, 1997). 

 

In contrast to the triacylglycerols, the absence of significant differences in the initial 

absolute content of sterols could be related to the independence displayed by this lipid 

group towards the ambient nutritional conditions (Sasaki et al., 1986), or to the fact that 

their respective biosynthesis or digestion and incorporation proceeds at a relatively low 

rate (Teshima et al., 1987). Sterols form part of cell membranes and contribute a 

constant proportion in cell structure (Trider and Castell, 1980) and thus fluctuations will 

be minimal. 

 

With regards to temporal variability, we can note that with respect to phospholipids, 

sterols and triacylglycerols, the same differences are prolonged up to 15 days from 

experimental commencement. On the other hand, the changes in triacylglycerols were 

more drastic, especially in the subtidal mussels where the loss–gain balance of absolute 

content (first 36 days) was -2.18 mg, whereas in the rocky shore mussels it was -0.50 

mg. These differences demonstrate a relative higher metabolic expenditure of the 

subtidal mussels and agree with those obtained by Babarro et al. (2000c) who found that 

M. galloprovincialis mussel seed of subtidal origin showed higher oxygen consumption 

rates than the rocky shore mussels during the first 2 weeks of the experiment. 

Accordingly, these authors suggested that these differences could be attributed to a 

lower metabolic rate for the mussels distributed in the rocky shore zone, which would 

lead to a reduction in energy expenditure. Accordingly, it has been shown that the 

individuals subjected to frequent periods of exposure to air have a lower metabolic rate 



(Storey and Storey, 1990), and can be considered as a compensating trait for the lower 

feeding or energy acquisition time (Shick et al., 1988). 

 

Apart from the differential effect that the metabolic rate could cause in both groups of 

specimens, lipid levels in marine bivalves have also been observed to be controlled by 

other factors, among others: reproduction (Chapat et al., 1967; Pieters et al., 1979; 

Kluytmans et al., 1985; Napolitano and Ackman, 1992; Pazos et al., 1997), species sex 

(Lubet et al., 1986), temperature (Sastry, 1968), diet (Beninger and Stephan, 1985; 

Napolitano et al., 1992; Fernández-Reiriz et al., 1996, 1998) and periods of starvation 

(Fraser, 1989; Caers et al., 2000). 

 

Our results indicate that the initial lipid class values of the rocky shore specimens were 

influenced by periods of air exposure. As described above, exposure has been compared 

with the aforementioned periods of starvation (Hummel et al., 1989). Consequently, 

these mussels presumably relied on their energetic reserves to compensate for lower 

food availability. In this scenario, the lipid classes of mainly energetic composition, for 

example triacylglycerols, will supply the energy. In the larval (Holland, 1978; Gallager 

and Mann, 1986; Gallager et al., 1986) and juvenile stages (Caers et al., 2000) a 

decrease in triacylglycerols has been clearly observed in some bivalves subjected to 

starvation phases. 

 

With the aim of ascertaining whether the origin factor of both mussel groups exercised 

any influence on the observed values of the different lipid classes studied here, the 

experimental period was divided into two sub-periods. The first period embraced day 1–

36, and the second from day 50 until experiment termination. Prior to selecting this 

temporal criterion, the ANOVA results were examined. Consideration was given to the 

absolute values and the relative percentages of the different lipid classes and, more 

importantly, to the results obtained by Babarro (1998) and Babarro et al. (2000b,c) in 

which the differences in the physiological rates of both seed groups were observed to 

recede, with absorption efficiency differences being the last to disappear after 64 days 

had elapsed. 

 

Accordingly, employing the data obtained from the multiple regression results 

concerning the influence of the different environmental parameters and seed origin on 



the variations in the different lipid classes, we can highlight the following resulting 

facets. In the first 36 days of the experimental period, the mussel origin explained near 

to or greater than 50% of the total explained by each of the phospholipid, triacylglycerol 

and sterol models. These results agree with the already established concept which 

proposes that the lipids clearly reflect the biochemical composition of the environmental 

conditions where bivalve development occurs (De Moreno et al., 1980; Napolitano and 

Ackman, 1992; Napolitano et al., 1992; Fernández-Reiriz et al., 1996). On the other 

hand, temperature contributes to the explanation of variance in the phospholipids, 

sterols and triacylglycerols, but in contrast to the latter, the relationship is inverse for 

the first two lipid classes as indicated by the negative coefficient. In general terms, this 

trend stems from the parallel increase of phospholipids and sterols with temperature 

decreases during the autumn–winter transition. Conversely, the negative values 

observed in the coefficient of the mussel origin and triacylglycerols is due to lower 

relative percentages observed in the rocky shore mussels. chl-a/POM only participates 

in the explanation of observed variance for the sterols, but the inverse relationship 

illustrates the participation of non-phytoplanktonic POM as an alternative source of 

food during the transitional period between autumn and winter. The higher variability of 

POM is also confirmed in the seston changes (see Fig. 1C). 

 

As previously observed, the environmental parameters which exercise an important 

influence on the evolution of the phospholipids, sterols and triacylglycerols during the 

first 36 days of the experimental period were temperature and seston, specifically TPM 

and POM. Accordingly, this period was characterised by a sustained lower temperature, 

brisk fluctuations of TPM and POM and low concentrations of chl-a. These trends are 

due to the advance of winter conditions, characterised by a decrease in solar irradiation, 

which lead to decreases in temperatures and phytoplankton abundance. Furthermore, the 

high rates of resuspension observed during this period are attributed to strong storm 

events (Babarro et al., 2000a). 

 

When the period from day 50 to the end of the experiment was analysed, the multiple 

regression analysis showed that mussel origin was not a significant statistical term of 

lipid class variance. This suggests that during the first 36 days the rocky shore mussel 

seeds had an advantage by having a lower metabolic rate when food availability offered 

by the subtidal habitat was low but constant, as indicated by Babarro et al. (2000c). 



Furthermore, in view of the fact that possible adaptations in the rocky shore mussels are 

reflected in the energy reserves of both mussels groups, it would seem that these 

changes are closely coupled with the parameters related to energy acquisition from the 

environment. Accordingly, it has been shown that by placing specimens of the mussel 

M. galloprovincialis of rocky shore and subtidal origin in the same environment 

(subtidal) the differences observed in the rates of clearing and ingestion (Babarro et al., 

2000b), absorption (Labarta et al., 1997) and of food absorption efficiency (Babarro, 

1998) disappear at 15, 36 and 64 days (respectively) after experimental initiation. 

Consequently, as shown in our results, a 50-day period (time after which no further 

significant differences in the absolute values of the lipid classes of both mussel groups 

were observed) would be sufficient for the rocky shore mussels to display strategies of 

energy compensation, under the experimental conditions. 

 

In view of the fact that none of the environmental parameters participate significantly in 

explaining the variance, it is evident that the modifications in FFA obey different 

factors to those studied. Accordingly, since the presence of FFA has previously been 

associated with the hydrolysis or breakdown of the acylglycerols (Caers et al., 2000) it 

is likely that changes in FFA obey an endogenous factor, such as the catabolic and 

anabolic processes required for biosynthesis and energy production. Nevertheless, with 

regards to bivalve molluscs Napolitano et al. (1988) considered that FFA are a class of 

characteristic lipids and not the results of breakdown or hydrolysis of the 

triacylglycerols. 

 

In contrast to the absence of explanation of mussel origin by the model after day 50, the 

ratio chl-a/POM began to play a greater role in the explanation of the different lipid 

classes, with the exception of the FFA. chl-a/POM alone explains more than half of the 

variance obtained in the phospholipid, sterols and triacylglycerol lipid classes, with a 

negative relationship towards the phospholipids and sterols and positive with the 

triacylglycerols. This implies that the sustained increase in triacylglycerols, with the 

onset of spring is due to the parallel availability of phytoplanktonic food. This increase 

could result from direct incorporation of the lipids contained in the phytoplankton, as 

reported in a number of studies under natural conditions (De Moreno et al., 1980; 

Besnard et al., 1989) and in the laboratory (Delaunay et al., 1992; Fernández-Reiriz et 

al., 1998, 1999; Labarta et al., 1999) or, on the other hand, by transformation of the 



glycogen previously acquired from the phytoplankton and accumulated in the organs as 

lipid reserves (Vassallo, 1973; Waldock and Holland, 1979; Barber and Blake, 1991). 
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Fig. 1. Fluctuations of the environmental parameters temperature (A), chlorophyll a (B), seston (C), particulate volume (D), food quality (Q1 

POM/TPM and Q2 POM/mm3) (E) and chl-a/POM (F), over the experimental period. 

 

Table 1 

Means and standard deviations of the relative percentage of the following lipid classes of mussels of subtidal and rocky shore origin: 

phospholipids, sterols, sterols esteres + waxes, triacylglycerols and free fatty acid, n = 3 

Samples  Dates (days) Origin  Phospholipids (% 

lipids) 

Sterols (% 

lipids) 

Sterols esters + waxes 

(% lipids) 

Triacylglycerols (% 

lipids) 

Free fatty acids 

(% lipids) 

1st  27/11/95 (0)  Subtidal  53.35 ± 0.56* * *  5.63 ± 0.25 * traces  34.96 ± 1.34* * *  6.06 ± 0.53 * *  

  Rocky 

shore  

72.83 ± 0.22  8.43 ± 0.35  
traces  

6.54 ± 0.51  12.20 ± 0.38  

2nd  05/12/95 (8)  Subtidal  59.25 ± 0.94 * *  7.16 ± 0.53 * traces  19.78 ± 0.31 * *  13.82 ± 0.91* * *  

  Rocky 

shore  

71.71 ± 0.86  10.56 ± 0.42 
traces  

14.01 ± 0.63  3.73 ± 0.19  

3rd  
13/12/95 

(15)  
Subtidal  

61.52 ± 2.23 *  9.69 ± 0.71 * 
traces  

26.49 ± 2.84 *  2.29 ± 0.10 * *  

  Rocky 

shore  

72.62 ± 0.15  10.78 ± 0.20 
traces  

11.31 ± 0.28  5.29 ± 0.24  

4th  20/12/95 Subtidal  71.95 ± 0.53 *  13.17 ± 0.24 traces  9.53. ± 1.13  5.36 ± 1.34  



(22)  *  

  Rocky 

shore  

77.09 ± 1.10  14.44 ± 0.62 
traces  traces  

8.46 ± 0.48  

5th  
03/01/96 

(36)  
Subtidal  

76.03 ± 1.28  14.02 ± 0.62 
traces  traces  

9.95 ± 0.66  

  Rocky 

shore  

77.67 ± 0.61  14.88 ± 0.14 
traces  traces  

7.45 ± 0.46  

6th  
17/01/96 

(50)  
Subtidal  

73.48 ± 0.51  13.62 ± 0.24 
traces  traces  

12.89 ± 0.75  

  Rocky 

shore  

71.67 ± 0.20  12.38 ± 1.27 
traces  traces  

15.95 ± 1.25  

7th  
31/01/96 

(64)  
Subtidal  

71.85 ± 2.45  11.24 ± 0.41 
traces  traces  

16.91 ± 2.03  

  Rocky 

shore  

77.44 ± 0.72  10.51 ± 0.41 
traces  traces  

12.05 ± 0.73  

8th  
15/02/96 

(80)  
Subtidal  

57.94 ± 1.14  5.12 ± 0.55  
traces  

25.66 ± 0.07  11.27 ± 0.66  

  Rocky 

shore  

55.94 ± 1.44  5.33 ± 0.78  
traces  

25.29 ± 2.70  13.44 ± 0.47  

9th  28/02/96 Subtidal  68.07 ± 0.43  8.89 ± 0.04  traces  17.48 ± 0.74  5.56 ± 0.26  



(95)  

  Rocky 

shore  

65.12 ± 2.19  8.75 ± 0.31  
traces  

18.15 ± 2.99  7.98 ± 1.11  

10th  
13/03/96 

(110)  
Subtidal  

53.73 ± 0.83  7.29 ± 0.06 * 
traces  

29.73 ± 0.98  9.25 ± 0.10  

  Rocky 

shore  

51.09 ± 1.59  6.13 ± 0.24  
traces  

34.18 ± 1.05  8.59 ± 0.30  

11th  
27/03/96 

(125)  
Subtidal  

46.73 ± 0.81  4.79 ± 0.15  
traces  

41.96 ± 0.87  6.52 ± 0.09  

  Rocky 

shore  

49.39 ± 2.13  4.97 ± 0.28  
traces  

37.77 ± 3.38  7.86 ± 0.98  

12th  
10/04/94 

(140)  
Subtidal  

48.49 ± 2.28  3.97 ± 0.10  
traces  

39.55 ± 1.74  7.98 ± 0.45  

  Rocky 

shore  

43.34 ± 0.68  3.85 ± 0.34  
traces  

44.97 ± 0.45  7.84 ± 0.11  

13th  
24/04/96 

(155)  
Subtidal  

43.26 ± 0.19  3.48 ± 0.18  
traces  

45.94 ± 0.14  4.32 ± 0.23  

  Rocky 

shore  

40.46 ± 1.26  3.38 ± 0.40  
traces  

51.69 ± 2.04  4.47 ± 0.38  

14th  05/06/96 Subtidal  42.27 ± 1.59  4.13 ± 0.32 * traces  50.46 ± 1.50  3.14 ± 0.41  



(197)  

  Rocky 

shore  

41.53 ± 1.72  2.35 ± 0.39  
traces  

52.76 ± 2.82  3.36 ± 0.71  

15th  
03/07/96 

(228)  
Subtidal  

45.01 ± 2.31  4.58 ± 0.21  
traces  

46.83 ± 3.06  3.57 ±0.54  

  Rocky 

shore  
50.16 ± 0.17  4.91 ± 0.32  

traces  
42.50 ± 0.39  2.43 ± 0.24  

* P < 0.05. 

** P < 0.01. 

*** P < 0.001. 

 

Table 2 

Means and standard deviations of the content (mg mussel-1) of the following lipid classes of mussels of subtidal and rocky shore origin: 

phospholipids, sterols, sterols esteres + waxes, triacylglycerols and free fatty acid 

Samples Dates 

(days) 

Origin Phospholipids (mg 

mussel-1) 

Sterols (mg 

mussel-1) 

Sterols esters + 

waxes (mg mussel-1) 

Triacylglycerols (mg 

mussel-1) 

Free fatty acids 

(mg mussel-1) 

1st  27/11/95 

(0)  

Subtidal  2.26 ± 0.09 *  0.24 ± 0.02  
traces  

1.48 ± 0.01* * *  0.26 ± 0.03 *  

  Rocky 

shore  

1.69 ± 0.08  0.21 ± 0.04  
traces  

0.16 ± 0.01  0.30 ± 0.05  



2nd  
05/12/95 

(8)  
Subtidal  

2.44 ± 0.71  0.29 ± 0.06  
traces  

0.76 ± 0.12*  0.57 ± 0.15*  

  Rocky 

shore  

1.66 ± 0.42  0.24 ± 0.05  
traces  

0.32 ± 0.06  0.09 ± 0.03  

3rd  
13/12/95 

(15)  
Subtidal  

3.61 ± 0.53  0.57 ± 0.06  
traces  

1.46 ± 0.29 *  0.14 ± 0.03  

  Rocky 

shore  

3.18 ± 0.34  0.47 ± 0.04  
traces  

0.50 ± 0.06  0.23 ± 0.01  

4th  
20/12/95 

(22)  
Subtidal  

2.99 ± 0.27  0.55 ± 0.06  
traces  

0.40 ± 0.08*  0.22 ± 0.04  

  Rocky 

shore  

2.53 ± 0.63  0.47 ± 0.09  
traces  traces  

0.28 ± 0.05  

5th  
03/01/96 

(36)  
Subtidal  

3.99 ± 0.29 *  0.73 ± 0.01** 
traces  traces  

0.52 ± 0.01**  

  Rocky 

shore  

1.79 ± 0.26  0.34 ± 0.06  
traces  traces  

0.17 ± 0.04  

6th  
17/01/96 

(50)  
Subtidal  

3.54 ± 1.85  0.65 ± 0.34  
traces  traces  

0.55 ± 0.26  

  Rocky 

shore  

2.94 ± 0.47  0.50 ± 0.03  
traces  traces  

0.66 ± 0.16  



7th  
31/01/96 

(64)  
Subtidal  

3.51 ± 0.61  0.55 ± 0.06*  
traces  traces  

0.82 ± 0.02**  

  Rocky 

shore  

2.37 ± 0.25  0.28 ± 0.02  
traces  traces  

0.33 ± 0.06  

8th  
15/02/96 

(80)  
Subtidal  

4.05 ± 0.14  0.36 ± 0.03  
traces  

1.79 F 0.03  0.79 ± 0.04  

  Rocky 

shore  

4.20 ± 1.31  0.41 ± 0.17  
traces  

1.86 F 0.34  1.01 ± 0.33  

9th  
28/02/96 

(95)  
Subtidal  

6.50 ± 0.54  0.85 ± 0.07  
traces  

1.67 F 0.06  0.53 ± 0.07  

  Rocky 

shore  

6.20 ± 0.64  0.83 ± 0.03  
traces  

1.72 F 0.16  0.76 ± 0.16  

10th  
13/03/96 

(110)  
Subtidal  

11.51 ± 3.94  1.56 ± 0.52  
traces  

6.32 F 1.88  1.98 ± 0.67  

  Rocky 

shore  

9.24 ± 3.78  1.09 ± 0.38  
traces  

6.11 F 2.15  1.54 ± 0.53  

11th  
27/03/96 

(125)  
Subtidal  

13.92 ± 2.53  1.43 ± 0.24  
traces  

12.55 F 2.75  1.95 ± 0.41  

  Rocky 

shore  

14.53 ± 3.57  1.47 ± 0.37  
traces  

10.96 F 1.26  2.33 ± 0.76  



12th  
10/04/94 

(140)  
Subtidal  

28.47 ± 2.01  2.34 ± 0.33  
traces  

23.34 ± 1.76  4.71 ± 0.81  

  Rocky 

shore  

23.62 ± 0.82  2.10 ± 0.15  
traces  

24.50 ± 0.23  4.27 ± 0.14  

13th  
24/04/96 

(155)  
Subtidal  

27.73 ± 4.17  2.22 ± 0.23  
traces  

29.47 ± 4.64  4.72 ± 0.88  

  Rocky 

shore  

24.99 ± 3.41  2.10 ± 0.47  
traces  

31.81 ± 2.11  4.77 ± 0.53  

14th  
05/06/96 

(197)  
Subtidal  

43.46 ± 5.47  4.23 ± 0.37  
traces  

52.17 ± 10.04  3.27 ± 0.95  

  Rocky 

shore  

52.36 ± 18.50  3.02 ± 1.41  
traces  

65.53 ± 17.23  4.35 ± 2.22  

15th  
03/07/96 

(226)  
Subtidal  

46.62 ± 4.01  4.74 ± 0.44  
traces  

48.89 ± 9.85  3.60 ± 0.05  

  Rocky 

shore  

43.41 ± 5.12  4.26 ± 0.80  traces  36.76 ± 4.13  2.12 ± 0.47  

* P < 0.05. 

** P < 0.01. 

*** P < 0.001. 



 

Table 3 

Stepwise multiple regression of the different classes of lipids (phospholipids, sterols and 

triacylglycerols), of the mussel M. galloprovincialis of sub-tidal and rocky shore origins 

with environmental parameters, during the period between 1st and 5th samples 

(autumn–winter) 

Parameters Coeficients SE F-ratio r2 P 

Phospholipidos      

Constant  96.998     

Origin  6.096 0.626 39.261 0.392 < 0.001

T  -3.047 -0.495 20.053 0.773 < 0.001

TPM  1.843 0.287 6.769 0.840 < 0.01 

r2 = 0.840; n = 20, F3,16 = 132.856; P < 0.001 

Sterols      

Constant  54.247     

T    -2.244 -0.631 39.098 0.617 < 0.001

chl-a/POM  -2.029 -0.401 15.758 0.754 < 0.001

Origin  1.839 0.327 12.324 0.861 < 0.01 

r2 = 0.861; n = 20, F3,16 = 33.022; P < 0.001 

Triacylglicerols      

Constant  -96.431     

T    8.489 0.537 34.746 0.531 < 0.001

Origin    -11.027 -0.441 28.674 0.726 < 0.001

TPM    -7.391 -0.449 24.298 0.891 < 0.001

r2 = 0.891; n = 20, F3,16 = 927.464; P < 0.001 

T = temperature, POM = Particulate organic material, TPM = Total particulate material. 

 

Table 4 

Stepwise multiple regression of the different classes of lipids (phospholipids, sterols and 

triacylglycerols), of mussel M. galloprovincialis of subtidal and rocky shore origins 

with environmental parameters, during the period between 6th and 15th samples 

(winter– spring–summer) 

Parameters  Coeficient SE F-ratio r2 P 



Phospholipids      

Constant  118.831     

chl-a/POM  -3.836 -0.519 22.207 0.551 < 0.001

T  -4.303 -0.419 14.473 0.677 < 0.001

r2 = 0.677; n = 40, F2,37 = 38.862; P < 0.001 

Sterols      

Constant  49.321     

chl-a/POM  -2.304 -0.643 61.451 0.743 < 0.001

T  -1.931 -0.388 21.055 0.820 < 0.001

TPM  -1.752 -0.147 4.164 0.838 < 0.05 

r2 = 0.838; n = 40, F3,36 = 137.038; P < 0.001 

Triacyglycerols      

Constant  -4.794     

chl-a/POM  12.533 0.752 49.364 0.565 < 0.001

r2 = 0.565; n = 40, F1,38 = 54.039; P < 0.001 

T = temperature, POM = Particulate organic material, TPM = Total particulate material. 


