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Mcm10 is essential for chromosome replication in eukar-

yotic cells and was previously thought to link the Mcm2-7

DNA helicase at replication forks to DNA polymerase alpha.

Here, we show that yeast Mcm10 interacts preferentially

with the fraction of the Mcm2-7 helicase that is loaded in an

inactive form at origins of DNA replication, suggesting a

role for Mcm10 during the initiation of chromosome repli-

cation, but Mcm10 is not a stable component of the repli-

some subsequently. Studies with budding yeast and human

cells indicated that Mcm10 chaperones the catalytic subunit

of polymerase alpha and preserves its stability. We used a

novel degron allele to inactivate Mcm10 efficiently and this

blocked the initiation of chromosome replication without

causing degradation of DNA polymerase alpha. Strikingly,

the other essential helicase subunits Cdc45 and GINS were

still recruited to Mcm2-7 when cells entered S-phase with-

out Mcm10, but origin unwinding was blocked. These

findings indicate that Mcm10 is required for a novel step

during activation of the Cdc45–MCM–GINS helicase at DNA

replication origins.
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Introduction

The DNA helicase responsible for unwinding the parental

DNA duplex during chromosome replication in eukaryotic

cells is remarkably complex, and there are many outstanding

questions regarding its regulation and mechanism of action

(Remus and Diffley, 2009; Araki, 2010). The catalytic core of

the helicase comprises a hexameric ring of the six related

Mcm2-7 proteins, originally identified in a screen for yeast

mutants that had defects in maintaining a minichromosome

(Mcm¼minichromosome maintenance). Away from DNA,

the Mcm2-7 proteins form subcomplexes or a single hetero-

hexamer, but work with budding yeast showed that Mcm2-7

are loaded in an inactive form at origins of DNA replication as

a head-to-head double hexamer around double-strand DNA

(Evrin et al, 2009; Remus et al, 2009), and the loaded Mcm2-7

complex in extracts of Xenopus eggs also behaves as a double

hexamer (Gambus et al, 2011). Loading of Mcm2-7 can only

occur during the G1-phase of the cell cycle, and the loaded

complex is then activated in situ during S-phase by recruit-

ment of the Cdc45 protein and the GINS complex to form the

active Cdc45–MCM–GINS helicase at nascent DNA replica-

tion forks (Moyer et al, 2006; Labib, 2010). A variety of

regulatory factors assemble around the CMG helicase to

produce the ‘Replisome Progression Complex’ (Gambus

et al, 2006), which associates with DNA polymerases to

form the eukaryotic replisome, the structure of which is still

quite poorly defined in comparison with its bacterial counter-

part (Yao and O’Donnell, 2010).

The isolated CMG helicase and Replisome Progression

Complex contain a single Mcm2-7 ring (Gambus et al, 2006;

Moyer et al, 2006; Costa et al, 2011), suggesting that the

loaded double hexamer of Mcm2-7 at origins might be broken

into two single hexameric rings as part of the initiation

process, with each Mcm2-7 ring forming the core of a CMG

helicase at the two replication forks established from each

origin. This idea is supported by evidence that the two

replisomes formed from one origin in a Xenopus egg extract

can function independently and do not need to be tethered to

each other (Yardimci et al, 2010). Moreover, very recent work

indicates that the replisome can bypass a protein–DNA

barrier on the lagging strand DNA template more easily

than an identical barrier on the leading strand DNA template

(Fu et al, 2011), suggesting that the CMG helicase might

associate very stably with just one of the two DNA strands

at replication forks. The implications of these findings remain

to be explored further, but they suggest an attractive model

whereby the Mcm2-7 double hexamer around dsDNA is

remodelled during initiation, producing two separate

Mcm2-7 rings that each encircles just one stand of DNA in

an active CMG helicase. The mechanisms and regulation of

these presumed transitions are completely unclear at present,

and until now the only well-characterised step during the

activation of the Mcm2-7 helicase has been the recruitment of

Cdc45 and GINS (Remus and Diffley, 2009; Araki, 2010).

The Mcm10 protein was identified in the same screen that

yielded the first of the budding yeast Mcm2-7 proteins (Maine

et al, 1984; Merchant et al, 1997), and was also found in a

separate screen for temperature-sensitive yeast strains with

mutations that caused defects in DNA synthesis (Dumas et al,

1982; Solomon et al, 1992). Mcm10 is unrelated in primary

sequence to the Mcm2-7 proteins and is conserved in most if

not all eukaryotes (Liu et al, 2009). Orthologues of Mcm10
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have been shown to be essential for DNA synthesis in fission

yeast (Nasmyth and Nurse, 1981), Xenopus (Wohlschlegel

et al, 2002) and mouse (Lim et al, 2011), although Mcm10 is

generally very abundant and so depletion experiments are

complicated by the fact that a small fraction of protein can be

sufficient to supply function (Christensen and Tye, 2003;

Chattopadhyay and Bielinsky, 2007).

Budding yeast Mcm10 was shown to be required for

the firing of replication origins (Merchant et al, 1997), and

work with budding yeast (Ricke and Bielinsky, 2004;

Raveendranathan et al, 2006), fission yeast (Taylor et al,

2011), Xenopus (Pacek et al, 2006) and human cells (Karnani

and Dutta, 2011) then indicated that Mcm10 is also present at

DNA replication forks. The molecular role of Mcm10 is still

poorly defined, but all Mcm10 orthologues share an ‘internal

domain’ that shows robust binding to ssDNA and can also

bind dsDNA under some conditions (Fien et al, 2004;

Robertson et al, 2008; Warren et al, 2008, 2009; Eisenberg

et al, 2009). Budding yeast Mcm10 has the ability to form

oligomers (Cook et al, 2003), and electron microscopy of

human Mcm10 revealed a hexameric ring reminiscent of the

Mcm2-7 complex (Okorokov et al, 2007), although the sig-

nificance of this structure remains to be established.

Studies of budding yeast Mcm10 indicated that it can interact

with several of the Mcm2-7 proteins (Merchant et al, 1997;

Gambus et al, 2006) and the same was reported for orthologues

of Mcm10 in fission yeast (Hart et al, 2002; Lee et al, 2003),

Drosophila (Apger et al, 2010), Xenopus (Zhu et al, 2007) and

human (Izumi et al, 2000; Zhu et al, 2007), with an apparent

preference for Mcm6 and Mcm2. Subsequently, Mcm10 from

yeast (Fien et al, 2004; Ricke and Bielinsky, 2004), Xenopus

(Robertson et al, 2008) and human (Chattopadhyay and

Bielinsky, 2007; Zhu et al, 2007) was also shown to interact

with the catalytic subunit of DNA polymerase alpha, as well as

the Ctf4/And1 protein that itself is a partner of polymerase

alpha (Zhu et al, 2007; Wang et al, 2010). Moreover, work

with budding yeast and human cells indicated that Mcm10

might chaperone polymerase alpha and be required to stabilise

the catalytic subunit (Ricke and Bielinsky, 2004, 2006;

Chattopadhyay and Bielinsky, 2007).

Crucially, specific mutations in budding yeast Mcm2-7

proteins suppressed the lethal defect in chromosome replica-

tion at 371C that is associated with the temperature-sensitive

alleles mcm10-1 and mcm10-43 (Homesley et al, 2000;

Liachko and Tye, 2005; Lee et al, 2010), indicating that an

important role of Mcm10 is intimately related to the function

of the Mcm2-7 helicase. The suppressor mutations were

dominant, predominantly found in Mcm2, and led to a

plasmid-loss phenotype indicating defective Mcm2-7 function

(Lee et al, 2010). In addition, analogous mutations in an

archaeal orthologue of Mcm2-7 reduced the efficiency of

helicase action somewhat (Lee et al, 2010). Taken together,

these various studies led to several related models for Mcm10

function. First, Mcm10 has been proposed to stabilise the

catalytic subunit of DNA polymerase alpha at least in bud-

ding yeast and humans (Ricke and Bielinsky, 2004;

Chattopadhyay and Bielinsky, 2007), though one study attrib-

uted this effect to Ctf4 rather than Mcm10 (Zhu et al, 2007).

Second, Mcm10 was proposed to recruit DNA polymerase

alpha to origins during initiation (Zhu et al, 2007), and then

physically couple Mcm2-7 to polymerase alpha at replication

forks together with Ctf4 (Zhu et al, 2007; Lee et al, 2010).

Defective replication associated with the budding yeast

alleles mcm10-1 and mcm10-43 was attributed in part to

degradation of the Pol1 catalytic subunit of polymerase

alpha (Ricke and Bielinsky, 2004), and also to a proposed

loss of the physical connection between Mcm2-7 and poly-

merase alpha (Lee et al, 2010). According to this view,

suppression of mcm10ts alleles by the Mcm2 mutations

resulted from defects in helicase activity that reduced the

rate of unwinding and so reestablished the co-ordination of

unwinding with DNA polymerase activity, without restoring

physical coupling (Lee et al, 2010). It also appears that

Mcm10 plays a role at DNA replication forks that is mediated

by interaction of diubiquitylated Mcm10 with PCNA

(Das-Bradoo et al, 2006), and other proposed roles include

the maintenance of silent chromatin via interaction with

silencing factors (Douglas et al, 2005; Liachko and Tye,

2005, 2009), the recruitment of Cdc45 during the initiation

of chromosome replication (Wohlschlegel et al, 2002), and

primase activity (Fien and Hurwitz, 2006).

To explore further how budding yeast Mcm10 functions

during chromosome replication, we have examined the

preferred interactions of Mcm10 with the DNA replication

machinery in yeast cell extracts. Under physiological salt con-

centrations, we find that Mcm10 interacts preferentially with the

loaded Mcm2-7 complex and is not associated stably with the

replisome. By combining degron technology with the mcm10-1

allele, we show that Mcm10 is required for a novel aspect of the

initiation reaction, as inactivation of Mcm10 blocks origin

unwinding despite the formation of a stable Cdc45–MCM–

GINS complex. These findings lead to a revised model for

Figure 1 Mcm10 associates preferentially with the loaded Mcm2-7 complex. (A) The unloaded Mcm2-7 complex breaks into subcomplexes in
the cell extracts, but can be stabilised by addition of ATP to the extract. The loaded Mcm2-7 complex is stable even without addition of ATP, but
must be released from chromatin (by benzonase in our experiments) in order to be isolated. (B) MCM4-9MYC MCM10-5FLAG (YFJD84) was
arrested in G1-phase by addition of mating pheromone and extracts prepared under the indicated conditions, before immunoprecipitation of
Mcm4–9MYC. The indicated proteins were monitored by immunoblotting, and the asterisk marks the position of a background band that is
recognised in the cell extracts by the anti-FLAG antibody. (C) Control (YFJD155) and cdc28-td (YFJD154) were grown at 241C in YPRaff medium
and arrested in G2-M-phase with Nocodazole. Cdc28-td was depleted for 1 h at 371C as described in Materials and methods, maintaining the
nocodazole arrest throughout. Extracts of cells at 24 and 371C were made (–ATP þbenzonase) before immunoprecipitation of Mcm4. Stable
co-immunoprecipitation of Mcm3/5/7 reflects isolation of the loaded Mcm2-7 complex. (D) The same strains as in (C) were arrested at 241C in
G1-phase with mating pheromone in YPRaff medium, before inactivation of Cdc28-td at 371C for 1 h in YPGal medium. Cells were then washed
into medium lacking mating pheromone and incubated for the indicated times. DNA content and budding index were monitored throughout
the experiment, and the association of Mcm4–9MYC with the indicated proteins was monitored as above, either just before release from
G1-arrest at 371C or 20min afterwards when control cells were entering S-phase. (E) Control (YFJD84) and cdc7-1 (YFJD133) were grown at
241C in YPD medium and arrested in G2-M-phase with Nocodazole. Cells were then washed into fresh medium containing alpha factor and
incubation continued at 371C until 90% cells were arrested in G1-phase. Mcm4 was isolated from cell extracts (þbenzonase–ATP) by
immunoprecipitation. In addition, an aliquot of each culture was released from G1-arrest to confirm by flow cytometry that DNA replication
could not occur at 371C in the cdc7-1 strain.
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Mcm10 function and point to a previously unanticipated role for

Mcm10 in activating the Cdc45–MCM–GINS helicase during the

initiation of chromosome replication.

Results

Mcm10 associates preferentially with the loaded form

of the Mcm2-7 complex

Previously, we isolated the Replisome Progression Complex

from DNA replication forks in yeast cell extracts, by digestion

of chromosomal DNA followed by consecutive immuno-

precipitation of GINS and Mcm2-7, and found that Mcm10

only co-purified at unphysiologically high salt concentrations

(Gambus et al, 2006, 2009). We also found that Mcm10 co-

purified with the Mcm2-7 helicase from extracts of G1-phase

cells (Gambus et al, 2006), but in this case the association of

Mcm10 with Mcm2-7 was salt sensitive and thus appeared to

involve a distinct complex (Hiroko Morohashi and Karim

Labib, unpublished observations). To study how Mcm10

might interact with Mcm2-7 before loading of the helicase,
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after loading at origins during G1-phase, or following sub-

sequent activation and assembly of the replisome, we devel-

oped procedures that allow us to distinguish between these

various forms of Mcm2-7 in yeast cell extracts (Figure 1A).

All these experiments were performed in the presence of a

physiologically plausible concentration of 100mM salt.

Using our standard extract conditions (see Materials and

methods), the loaded Mcm2-7 complex was removed during

the centrifugation steps together with almost all of the

genomic DNA, whereas the unloaded Mcm2-7 complex was

unstable and broke into several subcomplexes, so that isola-

tion of the Mcm4 subunit led to efficient co-immunoprecipi-

tation of Mcm6 but not Mcm2-3-5-7 (Figure 1B, samples 1

and 3). To isolate the unloaded Mcm2-7 complex in a stable

form, we made extracts in the presence of ATP (Evrin et al,

2009; Remus et al, 2009). Under such conditions, Mcm4

associated efficiently with Mcm2-3-5-6-7 (Figure 1B, sample

4). In contrast, we found that the loaded Mcm2-7 complex

was equally stable whether or not ATP was added to the

extract (FvD and KL, unpublished observations), and we

were thus able to isolate specifically the loaded Mcm2-7

complex by prior digestion of chromosomal DNA in extracts

lacking ATP (Figure 1B, sample 2). Strikingly, Mcm10 only

co-purified with the Mcm2-7 complex that had been released

from chromatin (Figure 1B, compare samples 2 and 4), and

we confirmed that this was not due to ATP inhibiting the

interaction of Mcm10 with the unloaded complex (FvD and

KL, unpublished observations). These findings indicated that

Mcm10 interacts preferentially with the loaded form of the

Mcm2-7 helicase under physiological conditions.

Our data are consistent with previous studies showing that

Mcm10 could be detected by chromatin immunoprecipitation

at both early and late origins in G1-phase (Ricke and

Bielinsky, 2004; Raveendranathan et al, 2006), as well as

the fact that recruitment of Mcm10 to chromatin in extracts of

Xenopus eggs requires prior loading of Mcm2-7 (and also the

10-fold concentration of Mcm10 protein that occurs within

the nucleus) but is independent of cyclin-dependent kinase

(CDK) or Cdc7 kinase (Wohlschlegel et al, 2002). To test

directly whether the association of Mcm10 with loaded

Mcm2-7 in our cell extracts was independent of CDK,

which is not active during G1-phase, we used the heat-

inducible degron (Dohmen et al, 1994; Labib et al, 2000) to

regulate the level of Cdc28, the budding yeast CDK. We grew

control and cdc28-td cells at 241C and then synchronised the

cultures in G2-M-phase by addition of nocodazole. Under

these conditions, high CDK activity blocks loading of the

Mcm2-7 helicase at origins of DNA replication (Dahmann

et al, 1995; Tanaka et al, 1997), so that after digesting

chromatin in cell extracts lacking ATP, Mcm4 associated

efficiently with Mcm6 but not with Mcm2-3-5-7 or Mcm10

(Figure 1C, IPs of Mcm4 at 241C). Following inactivation of

Cdc28-td at 371C, however, reloading of Mcm2-7 was re-

flected by the stable association of Mcm4 with the other

Mcm2-7 proteins after chromatin digestion, and Mcm10

co-immunoprecipitated with the loaded Mcm2-7 proteins as

predicted (Figure 1C, cdc28-td at 371C). We also confirmed

that inactivation of Cdc28-td during G1-phase blocked bud-

ding, DNA replication and the stable association of Mcm2-7

with other components of the Replisome Progression

Complex such as Cdc45 and GINS, but inactivation of

Cdc28-td did not affect the association of Mcm2-7 with

Mcm10 in G1-phase or early S-phase (Figure 1D). These

findings indicated that Mcm10 could associate with the

loaded Mcm2-7 complex in the absence of CDK activity,

under these experimental conditions.

To test whether the association of Mcm10 with loaded

Mcm2-7 was also independent of Cdc7 kinase, we synchro-

nised control and cdc7-1 cells in G2-M-phase with nocoda-

zole, before shifting to 371C. Cells were then washed into

fresh medium containing mating pheromone so that they

passed through mitosis and arrested in G1-phase of the

subsequent cell cycle. Mcm10 still associated with the loaded

Mcm2-7 complex in both strains, despite the fact that the

subsequent round of replication was blocked in the absence

of Cdc7 activity (Figure 1E). Taken together, the above data

indicate that budding yeast Mcm10 associates preferentially

with the loaded form of the Mcm2-7 complex. These findings

are consistent not just with the known regulation of

Mcm10 recruitment to chromatin in Xenopus egg extracts

(Wohlschlegel et al, 2002), but also with studies that used

chromatin immunoprecipitation to monitor Mcm10 at human

replication origins, which showed that Mcm10 is recruited to

late origins prior to initiation and thus prior to recruitment of

Cdc45, in cells that have low CDK activity due to activation of

the S-phase checkpoint response (Karnani and Dutta, 2011).

Mcm10 does not co-purify with DNA polymerase alpha

as part of the replisome

We then studied how the association of Mcm10 with Mcm2-7

and other replication proteins might change as cells passed

synchronously through one round of the cell cycle

(Figure 2A), using cell extracts in which we digested chro-

mosomal DNA to liberate replication proteins from origins

and forks. As predicted by the above data, Mcm10 interacted

with loaded Mcm2-7 proteins in G1-phase (Figure 2B, 0min).

Upon release from G1-arrest, the complex of Mcm10 with

Mcm2-7 diminished by the middle of S-phase and disap-

peared afterwards, reflecting the displacement of Mcm2-7

from chromatin, before reappearing when cells were blocked

in the subsequent G1-phase by readdition of mating pher-

omone to the cell culture (Figure 2B, 90min). Despite its

robust interaction with loaded Mcm2-7 proteins, Mcm10 did

not co-purify from extracts of S-phase cells with replisome

components such as Cdc45 and GINS, or with Ctf4 and the

Pol1 catalytic subunit of DNA polymerase alpha. We con-

firmed that polymerase alpha associated with replisome

material in yeast cell extracts under identical conditions

(Figure 2C). Moreover, Mcm4 associated with Mcm2-7 proteins

and Mcm10 during both G1 and S-phase, but with replisome

components only during S-phase (Figure 2D). These findings

indicate that Mcm10 associates with the loaded Mcm2-7 com-

plex but does not represent an essential link between helicase

and DNA polymerase alpha within the replisome.

The essential role of Mcm10 during chromosome

replication is independent of the preservation of

Pol1 stability

Previous work indicated that budding yeast Mcm10 is

important to stabilise the Pol1 catalytic subunit of DNA

polymerase alpha, as Pol1 was found to be degraded at

371C in mcm10-1 cells and the same was true for mcm10-td

cells that have the heat-inducible degron fused to Mcm10

(Ricke and Bielinsky, 2004). Unfortunately, we were not able

Novel role for Mcm10 during replication initiation
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to reproduce these findings even with the identical strains

(for example, see Supplementary Figure S1). In the original

study, Mcm10 was found to interact exclusively with a 140-

kDa proteolytic fragment of Pol1 and the authors noted that

Pol1 is extremely sensitive to proteolysis in vitro (Ricke and

Bielinsky, 2004), providing a potential explanation for the

discrepancy. To try and inactivate Mcm10 even more effi-

ciently and then examine the consequences for chromosome

replication, we added the heat-inducible degron cassette to

the mcm10-1 allele. The resultant mcm10-1td strain grew well

at 241C but could not grow at 371C (Figure 3A), following

depletion and inactivation of Mcm10-1td (Figure 3B).

Nevertheless, we could not detect any change in the level

of Pol1 following inactivation of Mcm10-1td (Figure 3C).

These data indicate that Mcm10 has an essential role that is

independent of the stabilisation of Pol1.

Mcm10 is required for a novel step during the initiation

of chromosome replication that is distinct from

assembly of the Replisome Progression Complex

If the initiation of chromosome replication is blocked very

efficiently, for example by preventing the assembly of the

Cdc45–MCM–GINS complex, the absence of DNA replication

forks prevents activation of the S-phase checkpoint response

that normally protects cells from DNA replication stress

(Piatti et al, 1996; Tercero et al, 2000). In contrast, defects

in DNA polymerase alpha lead to very efficient activation of

the S-phase checkpoint when budding yeast cells enter

S-phase (Marini et al, 1997; Pellicioli et al, 1999), as the

active Cdc45–MCM–GINS helicase unwinds replication ori-

gins and generates a defective DNA replication fork that

contains the substrates for checkpoint activation such as

single-strand DNA.

To compare directly the effects of inactivating Mcm10 or

DNA polymerase alpha, we generated a novel strain in which

the heat-inducible degron was fused to multiple subunits

of DNA polymerase alpha (Pol1, Pol12 and Pri1; see

Supplementary Figure S2). Control, mcm10-1td and pola-td
were all synchronised in G1-phase with mating pheromone at

241C, before depletion of the degron-fusion proteins at 351C.
Whereas control cells replicated rapidly upon transfer to fresh

medium lacking pheromone, replication was blocked

to a comparable degree in both mcm10-1td and pola-td
(Figure 3D). Strikingly, the Rad53 checkpoint kinase became

hyperphosphorylated when pola-td entered S-phase and as-

sembled defective DNA replication forks, but a similar in-

dication of checkpoint activation was not detected when

mcm10-1td entered S-phase. To confirm this result under

more stringent conditions, we also released half of each

culture in the above experiment from G1-arrest at 351C into

medium containing 0.2M hydroxyurea, which limits dNTP
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Figure 2 Mcm10 associates stably with the loaded Mcm2-7 com-
plex but not with the replisome. (A) Cells of MCM10–5FLAG
(CC4972) were arrested in G1-phase at 301C in YPD medium and
then released so that they passed synchronously through one round
of the cell cycle. Alpha factor was added again from 50min onwards
so that dividing cells were then blocked in the subsequent
G1-phase. DNA content was monitored throughout the experiment
by flow cytometry. Note that progression through the cell cycle was
faster in this experiment than in Figure 1D, as cells grow more
quickly when glucose is used as the carbon source in place of
galactose. (B) Mcm10–5FLAG was isolated from native cell extracts
(þbenzonase –ATP) by immunoprecipitation. (C, D) A similar
experiment was performed with POL1-6HA MCM4-9MYC
(YFJD84) after releasing G1-phase cells for 20min into S-phase.
The asterisks mark the positions of non-specific bands in the cell
extracts.
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levels by inhibition of ribonucleotide reductase and thus

provides a powerful signal for checkpoint activation at

defective replication forks (we used 351C as budding is

inhibited at higher temperatures in the presence of hydro-

xyurea). As shown in Figure 3E, hyperphosphorylation of

Rad53 was induced rapidly in control cells and pola-td under

such conditions, but was defective in mcm10-1td. These data

demonstrated that inactivation of Mcm10 or DNA polymerase

alpha caused distinct phenotypes, and suggested that the

initiation of chromosome replication might be defective in

mcm10-1td.

Previous studies indicated that the major regulated step in

the initiation of chromosome replication is the assembly of

the Cdc45–MCM–GINS helicase (Labib, 2010), which forms

the core of the Replisome Progression Complex. We therefore

repeated the above experiment and monitored assembly of

Cdc45–MCM–GINS by immunoprecipitation of Mcm4 from

yeast cell extracts after digestion of chromosomal DNA. As

before, hyperphosphorylation of Rad53 was greatly defective

when cells entered S-phase in the presence of hydroxyurea

following inactivation of Mcm10-1td, in comparison with

control cells (Figure 4A). Strikingly, however, Mcm4 asso-

ciated not just with the other Mcm2-7 proteins but also with

Cdc45, GINS, Ctf4 and Csm3 (Figure 4B), indicating that

assembly of the Replisome Progression Complex could still

occur in the absence of Mcm10.
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Figure 3 Inactivation of Mcm10-1td blocks the initiation of chromosome replication without causing degradation of Pol1. (A) Serial dilutions
of the indicated strains were grown on YPDCu (UBR1 OFF) or YPGal (UBR1 ON) as shown. (B) The level of Mcm10 or Mcm10-1td was
monitored by immunoblotting at 241C, or following induction of GAL-UBR1 and incubation at 371C for 60min. (C) Asynchronous cultures of
control (YFJD74) and mcm10-1td (YFJD77) were grown in YPRaffCu medium at 241C before shifting to YPGal medium at 241C for 1 h and then
incubating at 371C for the indicated times. Samples were used to prepare extracts in the presence of Tricholoracetic acid, before
immunoblotting to monitor the level of the indicated proteins. (D, E) Control (YMK302), mcm10-1td (YAG458-1) and pola-td (CC1235)
were synchronised in G1-phase at 241C before inactivation of Mcm10-1td and Pola-td at 351C for 1 h. Cells were then washed into fresh medium
without (D) or with (E) 0.2M Hydroxyurea and incubated for the indicated times. DNA content was monitored by flow cytometry and
hyperphosphorylation of the Rad53 checkpoint kinase was assayed by immunoblotting.
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To exclude the possibility that Cdc45 and GINS only

formed a very unstable complex with the loaded Mcm2-7

helicase in the absence of Mcm10, we repeated the above

experiment but released cells into S-phase at 371C without

hydroxyurea, and then made cell extracts containing either

100 or 700mM potassium acetate. In both cases, the interac-

tion of GINS and Cdc45 with Mcm2-7 was comparable in

extracts of control or mcm10-1td cells (Figure 4C), reflecting

the inherent stability of the Cdc45–MCM–GINS helicase

assembly within the Replisome Progression Complex

(Gambus et al, 2006). Considered together with the above

data, these findings indicated that Mcm10 is required for a

novel step during the initiation of chromosome replication

that is independent of the recruitment of Cdc45 and GINS to

the loaded Mcm2-7 complex at replication origins.

Mcm10 is required for unwinding of DNA replication

origins during the initiation of chromosome replication

In previous studies, very severe defects in the loading or

activation of the Mcm2-7 helicase in budding yeast were

found to impede checkpoint activation (Piatti et al, 1996;

Tercero et al, 2000), as they produced a very tight block to the

unwinding of replication origins. Our finding that checkpoint

activation was defective following the depletion of Mcm10,

despite efficient assembly of the Cdc45–MCM–GINS helicase

complex, suggested that Mcm10 might be needed for a

previously unidentified step in origin unwinding. To test

this directly, we released control or mcm10-1td cells into

S-phase at 351C in the presence of 0.2M hydroxyurea, and

used chromatin immunoprecipitation after formaldehyde

crosslinking to monitor the association with origin DNA of

the Rfa1 subunit of Replication Protein A, which binds single-

strand DNA at eukaryotic replication forks. When control

cells entered S-phase in the presence of hydroxyurea, Rfa1

associated with the replication origins ARS305 and ARS306

but not with a distal sequence located midway between the

two origins (Figure 5A). In contrast, the enrichment of Rfa1 at

replication origins was not detected when the mcm10-1td

strain entered S-phase (Figure 5A), indicating that origin

unwinding was defective in the absence of Mcm10.
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We also performed an analogous chromatin immunopre-

cipitation experiment in which we released cells into S-phase

at 371C in the absence of hydroxyurea, and then monitored

the association of the Sld5 subunit of GINS with replisome

proteins and associated factors in extracts of crosslinked cells

(Kanemaki and Labib, 2006; Muramatsu et al, 2010). Whereas

Rfa1 co-immunoprecipitated with GINS from extracts of

crosslinked control cells, reflecting the assembly of DNA

replication forks containing ssDNA, Rfa1 was not detected

in the analogous material isolated from mcm10-1td, despite

the association of GINS with Cdc45 and Mcm2-7 (Figure 5B).

Taken together, these data indicate that Mcm10 is required for

a novel step in the unwinding of replication origins during the

initiation of chromosome replication in budding yeast,

distinct from the recruitment of GINS and Cdc45 to the loaded

and inactive Mcm2-7 complex.

Discussion

Our data support a revised model for the essential role of

Mcm10 during chromosome replication in budding yeast

(Figure 6). Mcm10 is recruited to the loaded Mcm2-7 complex

at origins of DNA replication and is then essential for its

activation, independently of the known activation step invol-

ving the recruitment of GINS and Cdc45 to Mcm2-7. We have

found that Mcm10 does not associate stably with the Cdc45–

MCM–GINS helicase in isolated replisome material under

physiological conditions, consistent with a previous study

indicating that Mcm10 is not stably associated with the active

Cdc45–MCM–GINS helicase in Xenopus (Pacek et al, 2006).

Moreover, studies of the Cdc45–MCM–GINS helicase from

Drosophila show that it can function in vitro without any

apparent requirement for Mcm10 (Ilves et al, 2010). It thus

seems unlikely that Mcm10 is an essential subunit of the

activated Cdc45–MCM–GINS helicase.

Instead, our data point to a previously unappreciated role

for Mcm10 in activating the Mcm2-7 helicase in the context of

replication origins in vivo. A very attractive possibility for

future investigation would be that Mcm10 is required for one

or more of the transformations that are thought to convert the

inactive double hexamer of Mcm2-7 around dsDNA at origins

into two CMG complexes at replication forks, each with an

Mcm2-7 ring around ssDNA. The step mediated by Mcm10 is

not essential for recruitment of Cdc45 and GINS in budding

yeast, and might instead involve direct remodelling of the

Mcm2-7 complex to facilitate correct interaction of the latter

with the ssDNA template at the nascent replication fork.

Further investigation of this process will be dependent

upon an unambiguous determination of how the Cdc45–

MCM–GINS helicase interacts with the two parental DNA

strands at replication forks, as well as a more detailed

analysis of how Mcm10 interacts with the inactive Mcm2-7

double hexamer. In a variety of species, Mcm10 has been

found to interact with several of the Mcm2-7 proteins

(Merchant et al, 1997; Izumi et al, 2000; Hart et al, 2002;

Lee et al, 2003; Gambus et al, 2006; Zhu et al, 2007; Apger

et al, 2010), with most evidence for Mcm6 and Mcm2. We

have found in a yeast two-hybrid screen that Mcm10 interacts

with the winged-helix domain at the carboxyl terminus of

Mcm6 (Supplementary Figure S3), and it thus shares at least

one interaction site on Mcm2-7 with the Cdt1 protein that

plays a central role in loading of the Mcm2-7 rings at origins

of replication.

Though any model must of necessity remain speculative at

present, it is possible that Mcm10 might be required to

stabilise an open form of the Mcm2-7 complex during initia-

tion to allow remodelling of the Mcm2-7 rings from dsDNA to

ssDNA. This idea could provide a neat explanation for the

very interesting observation that defects in budding yeast

Mcm10 are suppressed by particular mutations in Mcm2-7

proteins (Homesley et al, 2000; Liachko and Tye, 2005; Lee

et al, 2010). A screen for spontaneous suppressors of mcm10-

1 identified mutations in Mcm2, and further such mutations

were found by random mutagenesis of the MCM2 gene (Lee

et al, 2010). Nine out of ten were clustered at two sites in

Mcm2, between amino acids 399–401 and 617–619.

Intriguingly, the two equivalent sites in the single Mcm

protein of the archaeon Sulfolobus solfataricus were mapped

onto a three-dimensional model of the homo-hexameric

complex, revealing that the first site in one subunit was

immediately adjacent to the second site in an adjacent

subunit, across the intersubunit interface (Lee et al, 2010).

The mutations in Mcm2 seem likely to weaken or otherwise

alter the interface of Mcm2 with adjacent subunits of

Mcm2-7, and it was proposed that this might compromise

helicase activity and thus restore the coupling between DNA
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Figure 6 Model for the activation of Cdc45–MCM–GINS helicase
during the initiation of chromosome replication. Mcm10 associates
with the loaded Mcm2-7 complex at origins of DNA replication. As
cells enter S-phase, activation of cyclin-dependent kinase (CDK)
and Cdc7 kinase mediates the recruitment of GINS and Cdc45,
respectively (Heller et al, 2011). Mcm10 is dispensable for the
recruitment of GINS and Cdc45 to the loaded Mcm2-7 complex in
budding yeast, and does not appear to be a stable subunit of the
active Cdc45–MCM–GINS helicase at replication forks. Instead, we
propose that Mcm10 is required for a novel step of the initiation
reaction that is required for activation of the loaded Mcm2-7
complex at replication origins in vivo—see text for further details.
For the sake of simplicity, other replisome components have been
omitted, and the presumed association of Mcm10 with replication
forks is not shown.
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unwinding and DNA synthesis that was thought to be dis-

rupted in mcm10-1 (Lee et al, 2010).

Our data suggest an alternative explanation of the same

data, by which the mutations in Mcm2 alter the interface with

other Mcm2-7 proteins and thereby mimic the action of

Mcm10 during initiation. This would explain why all of the

mcm2 mutations are dominant suppressors of defects in

Mcm10 and why they are able to suppress both mcm10-1

and mcm10-43, despite these two alleles affecting different

parts of Mcm10. Suppression of mcm10 mutations probably

occurs at a price, however, as the analogous mutations that

alter the intersubunit interface of Sulfolobus MCM correlate

with reduced helicase activity (though the comparison is

unfair as the effect will be amplified in the homo-hexamer,

since all subunits are mutated and not just one), and the

yeast mcm2 mutations have a plasmid-loss phenotype

(Lee et al, 2010).

Our finding that budding yeast Mcm10 is required for

replication independently of the recruitment of Cdc45 and

GINS to the loaded Mcm2-7 complex, agrees with very recent

observations of plasmid replication in an in-vitro system

based on extracts of budding yeast cells (Heller et al, 2011),

although a potential role for Mcm10 in DNA unwinding was

not reported. Moreover, a previous study found that Cdc45 is

still recruited to chromatin in budding yeast cells lacking

Mcm10 activity (Ricke and Bielinsky, 2004), although the

replication defect of mcm10 mutants was attributed in that

study to degradation of Pol1. Furthermore, two other groups

have recently found that Mcm10 is required for origin un-

winding independently of the assembly of Cdc45–MCM–

GINS, both in studies of budding yeast (Masato Kanemaki,

personal communication) and fission yeast (Hisao Masukata,

personal communication). We note that Mcm10 was pre-

viously found to be required for stable association of Cdc45

with chromatin during the initiation of replication in extracts

of Xenopus eggs (Wohlschlegel et al, 2002; Zhu et al, 2007),

and so perhaps the intermediates of the initiation reaction are

less stable in the absence of Mcm10 in frog than in budding or

fission yeasts, making it harder to distinguish a role for

Mcm10 that is independent of recruiting Cdc45 and GINS. It

remains to be determined whether the action of Mcm10 at

replication origins is also dependent upon the presence of

other initiation factors.

Our data indicate that Mcm10 is not required to couple

Mcm2-7 to polymerase alpha within the replisome and

indeed Mcm10 is not a stable component of isolated repli-

some material unlike polymerase alpha (Gambus et al, 2009).

We cannot exclude, however, that Mcm10 makes a redundant

contribution to the coupling of helicase and polymerase

in vivo, in parallel with the Ctf4/And1 protein. Work with

various species indicates that Mcm10 is present at or near

replication forks after initiation (Ricke and Bielinsky, 2004;

Pacek et al, 2006; Karnani and Dutta, 2011; Taylor et al, 2011),

although our analysis of the mcm10-1td allele did not identify

an essential role for Mcm10 at DNA replication forks

(Supplementary Figure S4).

It seems likely that the recruitment of Mcm10 to origins of

DNA replication is driven by at least two key factors: first, the

preferential association of Mcm10 with the loaded form of the

Mcm2-7 complex; and second, the high concentration of

Mcm10 within the nucleus. The same applies to the recruit-

ment of Mcm10 to chromatin in extracts of Xenopus eggs,

which is independent of CDK or Cdc7 kinases but requires the

prior loading of Mcm2-7 and also the concentration of Mcm10

within the nucleus (Wohlschlegel et al, 2002). This latter

feature might help to explain why in-vitro recruitment of

Mcm10 to plasmid DNA occurred at a later stage in extracts of

budding yeast than would have been predicted by our

experiments, and was found to require the activation of

CDK and Cdc7 (Heller et al, 2011). There is evidence that

Mcm10 interacts with other factors at forks including Cdc45

(Sawyer et al, 2004), and these interactions might contribute

to recruitment of Mcm10 when the concentration of the latter

is too low to mediate its efficient association with the loaded

Mcm2-7 complex. We note that two previous studies used

chromatin immunoprecipitation to show that budding yeast

Mcm10 could be observed at replication origins before CDK

activation (Ricke and Bielinsky, 2004; Raveendranathan

et al, 2006), and these findings agree with an analogous

study of human Mcm10 (Karnani and Dutta, 2011). However,

others have observed CDK-dependent recruitment of Mcm10 to

replication origins in budding or fission yeasts by chromatin

immunoprecipitation (Masato Kanemaki and Hisao Masukata,

personal communication). Whereas Mcm2-7 can only function

if loaded before CDK activation, we have found that Mcm10

can function even if its recruitment is delayed until after CDK

activation (Supplementary Figure S5). It thus seems that the

timing of recruitment of Mcm10 is not a critical determinant of

function. Whatever the true timing of recruitment at replication

origins, our data indicate that the loaded Mcm2-7 complex is

likely to be the preferred substrate for Mcm10 during the

initiation of chromosome replication.

The conserved interaction of Mcm10 with Mcm2-7 proteins

in various eukaryotic species indicates that the underlying

biology of Mcm10 function will be fundamentally similar.

Recent progress in studying the earliest steps of chromosome

replication has started to provide new tools that should

facilitate a more detailed analysis in the coming years of

how Mcm10 helps activate the replicative DNA helicase at

eukaryotic replication origins.

Materials and methods

Yeast strains and growth
The strains used in this study are listed in Supplementary Table SI.
Yeast cultures were grown in rich medium (1% Yeast Extract, 2%
peptone, 0.1mg/ml adenine) supplemented with 2% glucose
(YPD), 2% Raffinose (YPRaff) or 2% Galactose (YPGal) as the
carbon source. For experiments involving degron strains, exponen-
tial cultures were grown at 241C in YPRaff medium containing
0.1mM CuSO4 (YPRaffCu). As necessary, cells were synchronised in
G1-phase by addition of 7.5mg/ml alpha factor mating pheromone,
in S-phase by addition of 0.2M Hydroxyurea, or in G2-M-phase by
addition of 5mg/ml Nocodazole. Cells were released from arrest by
washing twice in fresh medium. To degrade proteins fused to the
heat-inducible degron (Sanchez-Diaz et al, 2004), cells were
transferred to YPGal medium at 241C for 35min to induce
expression of GAL-UBR1, and then transferred to 371C for 1 h (or
longer as indicated in the figures).

Preparation of native cell extracts and isolation of Mcm2-7
complexes
Native cell extracts were made from 250ml mid-log culture as
described previously (Gambus et al, 2009; Morohashi et al, 2009),
in the presence of 100mM potassium acetate unless otherwise
specified. To stabilise the unloaded form of the Mcm2-7 complex in
the extracts we included 3mM ATP in all the buffers and used
100mM potassium glutamate instead of potassium acetate (as we
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found that stability of the unloaded Mcm2-7 complex was slightly
more robust in the presence of potassium glutamate compared with
potassium acetate). To liberate the loaded Mcm2-7 complex into the
extract and prevent it being lost during the centrifugation steps,
chromosomal DNAwas digested for 30min at 41C with 800 units of
Benzonase (71206-3; Merck Biosciences). After centrifugation at
25 000 g for 30min and then 100 000 g for 60min, immunoprecipita-
tions were performed with magnetic beads coupled to M2
anti-FLAG monoclonal antibody (F3165; Sigma), 9E10 anti-MYC
antibody (CRUK), 12CA5 anti-HA antibody (CRUK), or rabbit IgG
(S1265; Sigma). Replisome proteins were detected by immunoblot-
ting with previously described antibodies (Gambus et al, 2006). For
the experiment in the lower panels of Figure 4C, we used 700mM
potassium acetate in all buffers apart from one final wash in the presence
of 100mM potassium acetate after immunoprecipitation of Mcm4.

Chromatin immunoprecipitation
For the experiments in Figure 5, formaldehyde was added to cell
cultures to a final concentration of 1%. The samples were incubated
for 25min at 241C and the crosslinking reaction was then
terminated with 120mM glycine for 5min, before washing cells
once with 20mM Hepes-KOH pH 7.9 and once with lysis buffer
(50mM Hepes-KOH pH 7.5, 140mM NaCl, 1mM EDTA). Cell
pellets were then resuspended in three volumes of lysis buffer
supplemented with Complete Protease Inhibitor (Roche), Protease
inhibitor cocktail (Sigma), 2mM sodium b-glycerophosphate and
2mM sodium fluoride, before freezing droplets in liquid nitrogen.
Frozen cells were ground in the presence of liquid nitrogen using a
SPEX SamplePrep LLC 6850 freezer/mill. After grinding, we added
0.25 volumes of extraction buffer (50mM Hepes-KOH pH 7.5,
140mM NaCl, 1mM EDTA, 5% Triton X-100, 0.5% sodium
deoxycholate, plus protease inhibitors as above), which we showed
in analogous experiments was sufficient to disrupt replication
complexes if the cells had not been treated with a crosslinking agent
(Giacomo de Piccoli and KL, unpublished data). Samples were then
sonicated and insoluble material removed by centrifugation at
16 000 g for 15min. We then incubated the cell extracts with
antibody-coated magnetic beads for 2 h, before washing twice each
with buffer 1 (50mM Hepes-KOH pH 7.5, 140mM NaCl, 1% Triton
X-100, 0.1% sodium deoxycholate, 1mM EDTA, plus protease
inhibitors), buffer 2 (50mM Hepes-KOH pH 7.5, 500mM NaCl, 1%
Triton X-100, 0.1% sodium deoxycholate, 1mM EDTA, plus
protease inhibitors) and buffer 3 (10mM Tris–HCl pH 8.0, 250mM
LiCl, 0.5% NP-40, 0.5% sodium deoxycholate, 1mM EDTA). After a
final wash with TE pH 8.0, we incubated the immunoprecipitated
protein samples at 651C for 10min with elution buffer (50mM Tris–
HCl pH 8.0, 10mM EDTA, 1% SDS). For experiment in Figure 5A,
the samples were then treated overnight with 100 mg/ml RNase A in
elution buffer, before extraction of DNA and analysis by real-time

PCR as described previously (Calzada et al, 2005). The specific
enrichment of Rfa1 at each tested sequence was calculated
according to the formula 2(Ct 12CA5�Ct 9E10), where ‘Ct 12CA5’ is
the threshold cycle number (Ct) for real-time PCR analysis of DNA
purified from a control immunoprecipitate with 12CA5 monoclonal
antibody, and ‘Ct 9E11’ is the corresponding Ct value for the
immunoprecipitate of Rfa1–18MYC with 9E10 monoclonal antibody
(Calzada et al, 2005). The specific enrichments for each time point
were then normalised relative to the background value observed in
G1-arrested cells for the non-origin sequence. For the experiment in
Figure 5B, Laemmli buffer was added to the eluted sample, before
incubation for a further 30min at 951C to reverse the crosslinks
(Kanemaki and Labib, 2006). The associated proteins were then
analysed by SDS–PAGE.

Flow cytometry
Samples were fixed with 70% ethanol and then processed for flow
cytometry as previously described (Kanemaki et al, 2003), before
analysis with a Becton Dickinson FACScan machine and CellQuest
software.

Two-hybrid screen for partners of Mcm10
A two-hybrid screen with full-length Mcm10 as bait was performed
by the company Hybrigenics, using a library of random fragments
of yeast genomic DNA.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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