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Abstract: 

Tidal forcing and its fortnightly variation are known to be one of the main regulating agents of 

physical and biogeochemical signatures in the Strait of Gibraltar and surrounding areas. 

Samples obtained during spring and neap tides in the region were analyzed to determine the 

influence of this tidal variation on the submesoscale distribution of water masses and biological 

elements. During spring tides, strong and intermittent mixing processes between Mediterranean 

and Atlantic waters occur in the vicinity of the Camarinal Sill together with an eastward 

advection of those mixed-waters into the Alboran Sea. Furthermore, the intense suction of 

surface coastal waters into the main channel of the strait was detected as chlorophyll patches in 

the Alboran Sea during spring tides. In contrast, the most characteristic phenomenon during 

neap tides was the arrival of pulses of relatively nutrient-rich North Atlantic Central Waters to 

the surface regions of the Alboran Sea. In addition, traces of the suction of coastal waters were 

observed for the first time during neap tides. Therefore, our results show that submesoscale 

processes are crucial in the dynamics of the Strait of Gibraltar, and they must be considered for 

the correct description of the biogeochemical features of Alboran Sea, especially during an 

inactive period of the coastal upwelling. 
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1. Introduction 

 

The Strait of Gibraltar is the only connection between the Mediterranean Sea and the Atlantic 

Ocean, with a minimum width and sill depth of approximately 14 km and 300 m, respectively. 

The water circulation in the strait is described as “inverse-estuarine,” characterized by a surface 

inflow of Atlantic waters and a deep outflow of denser Mediterranean waters that is ultimately 

driven by an excess of evaporation over precipitation in the latter basin (Lacombe and Richez, 

1982). The description of the exchange as a simple one-dimensional, two-layer system flowing 

in opposite directions is a good first approximation (Armi and Farmer, 1985), but it is deficient in 

describing the 2D distribution of some variables and their changes across and along the main 

channel of the strait. 

 

The hydrodynamics of the strait are so intense that they can be considered the most important 

forcing on the distribution and behavior of biogeochemical variables (e.g., Macías et al., 2007). 

The hydrological processes in the strait, as in other coastal regions, cover a wide range of 

temporal scales including interannual, seasonal, subinertial and tidal (Lacombe and Richez, 

1982). Much attention has been paid to tidal forcing and its effects on along-strait circulation, 

including the hydraulic control of flow (Armi y Farmer, 1985; Izquierdo et al., 2001), tidal 

transport through the strait (Bryden et al., 1994; García Lafuente et al., 2000) and the vertical 

structure of the tidal currents (Bruno et al., 1999; Tsimplis and Bryden, 2000; Sánchez-Román 

et al., 2008). Essential processes in the physical-biological coupling in this area involve the 

large amplitude internal waves generated in the Camarinal Sill by the interaction between tidal-

flows and bottom topography (Armi and Farmer, 1985; Bruno et al, 2002; Vázquez et al., 2008). 

 

Subinertial flows, with periods ranging from days to months, have been found to be principally 

forced by the atmospheric pressure fluctuations over the western Mediterranean Sea (Crepon, 

1965; Candela et al., 1989; García Lafuente et al., 2002, Vázquez et al., 2008). Both Candela et 

al. (1989) and García Lafuente et al. (2002) found that subinertial barotropic flows were 

consistently counter-phase (180º) to the atmospheric pressure fluctuations for oscillating 

periods between 3 and 80 days. Thus, within this period range, an increase (or decrease) in the 

atmospheric pressure over the Mediterranean is followed by a subsequent decrease (or 

increase) in the intensity of the Atlantic inflow. This modulation of the inflow velocity has also 

been found to have an effect on the position of the Atlantic Jet and Western Alboran Gyre 

(Macías et al., 2008a). The opposite effect of this meteorological forcing can be observed in the 

velocity of the Mediterranean outflow; thus, these atmospheric pressure oscillations can either 

reinforce or inhibit the generation of internal waves (Vázquez et al., 2008). 

 

There have been a number of studies on the biogeochemical features within the strait and the 

physical-biological coupling in the region. However, most research concerning the physical-



biological coupling in the area has been devoted to studying the 1D along-strait dynamics. 

There are at least three main water masses involved in the circulation through the strait 

(Gascard and Richez, 1985): Surface Atlantic Water (SAW), NACW and Mediterranean 

Outflowing Water (MOW). In a west-east section, the position of the Atlantic-Mediterranean 

Interface (AMI) and the distribution of the nutrient-enriched NACW are dependent on the 

fortnightly tidal-amplitude variation (Gascard and Richez, 1985; Gómez et al., 2001; Macías et 

al., 2006). Tidal forcing controls the pulsating mixing processes occurring in the Camarinal Sill, 

which, in turn, conditions the presence of patches with high chlorophyll concentrations within the 

Atlantic Jet (AJ) (Macías et al., 2006). Also, the pulsating presence of the different types of 

water masses throughout the tidal cycle conditions the presence of different chlorophyll maxima 

associated to specific water interfaces (Macías et al., 2008b; Bartual et al., 2011). 

 

Recent studies, however, have suggested the importance of submescoscale processes and the 

2D interaction between the coastal zones and the main channel in creating the biological 

signatures found within the strait. Using a coupled physical-biological model and field data, 

Macías et al. (2007) found that the high chlorophyll patches at the eastern section of the strait 

could not be explained by in-situ growth of phytoplankton triggered by the fertilization of the 

upper layer, as had been previously suggested (e.g., Gómez et al., 2000; Echevarría et al., 

2002). The authors suggested that the existence of a surface divergence just east of the 

Camarinal Sill, as simulated by the model of Izquierdo et al. (2001), could induce not only the 

ascent of the interface, but also a lateral advection of coastal waters into the center of the 

channel during the maximum outflowing current shortly before high-water time. 

 

These coastal chlorophyll-enriched waters would then be advected towards the Mediterranean 

Sea, which explains the previously observed pulsating patterns of chlorophyll in the AJ (Macías 

et al., 2006). This hypothesis was recently confirmed by Vázquez et al. (2009), who used in-situ 

data and satellite images showing how the generation of internal waves induced transport of 

chlorophyll-enriched coastal waters to the channel and their advection towards the Alboran Sea. 

Bartual et al. (2011) found evidence of a change in the plankton primary production pattern 

concomitant with the presence of an internal bore in the main channel of the strait, which was 

consistent with the arrival of active coastal plankton communities. 

 

Nevertheless, the 2D nature of the current field and associated biological signatures has not 

been rigorously assessed. Previous works have described the 2D characteristics of the strait 

(Gómez et al., 2000; Echevarría et al., 2002), although the variability due to the tidal cycle was 

not taken into account properly because of a sampling resolution that was inadequate in 

resolving this short-scale variability (i.e., hourly). These previous studies elucidated two 

mechanisms that can support the high phytoplankton biomass on the eastern side of the strait: 

(i) a shallower position of the AMI towards the north-east and (ii) an injection of nutrients into the 

upper layer by mixing processes due to hydraulic jumps or arrested topographic waves above 



the Camarinal Sill. Nevertheless, these works did not analyze the submesoscale phenomena 

described above, which are known to be critical in the dynamics of this ecosystem. 

 

The present work is the first comprehensive description of the submesoscale 2D structure of 

water mass distributions and biogeochemical signatures within the Strait of Gibraltar for the 

analysis of tidal-scale patterns and meteorological-induced variability. We will focus on the tidal 

scale, highlighting the differences between spring and neap tide periods and proposing 

mechanisms for the observed distribution patterns that take into account the local conditions 

(i.e., the tidal amplitude and phase) and climatic conditions over the Mediterranean basin. 

 
2. Materials and Methods.  

 

2.1. Data analysis 

 

Data were obtained on a cruise during September and October of 2008 on the research vessel 

B/O “Sarmiento de Gamboa”. The study area covered the Strait of Gibraltar and the western 

Alboran Sea (Figure 1), and it was surveyed twice to account for the fortnightly tidal variability; 

thus, the data was acquired under different tidal conditions (spring and neap tides). All 53 

stations were sampled twice (once during spring and once during neap tides).The different grids 

obtained were designated “D1” for the spring tide phase and “D2” for the neap tide phase 

(Figure 2 A,B). 

 

A combined CTD probe (Seabird SBE-911) was used to register the physical structure of the 

water column and the distribution of water masses. Median of data from the upper 75 m of the 

water column was used for all the variables. Following the time-averaged transport and 

interfaces structure simulated in a 3-layer hydrodynamic model by Sannino et al. (2007), this 

section of the water column (Atlantic and/or interfacial layer) finally ends entering  into the  

Alboran Sea. 

The interface between the Atlantic and Mediterranean Waters (AMI) was assumed to 

correspond to the 37.5 isohaline westward of the Tarifa Narrow (Figure 1) and the 37 isohaline 

eastward of this point (Gascard and Richez, 1985; Garcia Lafuente et al., 2002). The presence 

of NACW was determined by examining each CTD profile and was denoted by the presence of 

salinities < 36.2 (Gascard and Richez, 1985). The presence of this water mass is denoted by a 

square on the map, and triangles indicate its absence (see Results, 3.1). 

 

Water sample data from 5, 25, 50, and 75 m were compared to the CTD records. Total 

chlorophyll was estimated from 0.5-L seawater samples filtered through Whatman GF/F filters 

using the fluorimetric method described by Yentsch and Menzel (1963) and modified by Holm-

Hansen et al. (1965). The fluorescence data from the CTD’s vertical profiles was converted to 

units of chlorophyll by a linear equation using Least square fitting method (r2=0.68, p-

value<0.01) using 256 bottle samples in which the chlorophyll concentration was measured. 



 

The percentage of larger cells (i.e., microphytoplankton) was estimated by comparing the 

amount of chlorophyll extracted from the fraction of particles retained on a 20-µm mesh to the 

total chlorophyll concentration. This is referred to as the percentage of chlorophyll contained in 

cells larger than 20 µm. Five liters of seawater were filtered through a nylon mesh with a 20-µm 

nominal pore size. The fraction retained on the mesh was then collected by washing it with 

clean, filtered (Whatman GF/F, ≈0.7 µm) seawater. This fraction was filtered again through a 

Whatman GF/F filter, and its chlorophyll content was determined following the same fluorimetric 

protocol described above for total chlorophyll. 

 

The percentage of active chlorophyll was estimated using a Pulse Amplitude Modulated (PAM) 

fluorometer specifically designed to study phytoplankton cells (PhytoPAM©, see Kolbowski and 

Schreiber, 1995 for a detailed description). The PhytoPAM provides an estimate of the 

proportion of total chlorophyll within active PS II (i.e., the chlorophyll available for 

photosynthesis (Kolber and Falkowski, 1993)) or “active chlorophyll.” The measurements were 

done on board with dark-adapted seawater samples from each station and depth as in Macías 

et al. (2008b and 2009). 

 

In order to examine the associations between the different biological variables, and trying to 

avoid showing redundant information and plots; a principal component analysis (PCA) was 

performed using the Pearson correlation´s coefficient matrix. Several authors state that PCA 

used as a descriptive method (as in this work), does not require distributional assumptions 

(including normality) (Quinn and Keough, 2002; Zuur et al., 2007). Factor scores were extracted 

using a regression method. Furthermore, different Box-Cox transformations were performed for 

the data but the best correlations were found for the original data.  

 

Atmospheric pressure fields over the Alboran basin were generated using version 3.7.4 of the 

Fifth-Generation National Center for Atmospheric Research (NCAR) - Penn State Mesoscale 

Model (MM5, Grell et al., 1994) implemented for Andalusia (south of Spain) and centered at the 

Strait of Gibraltar. The model simulation was initialized using 1-degree NCEP-GFS analysis 

(Rutledge et al., 2006) and was first run in non-hydrostatic mode at a 30-km horizontal 

resolution using one-way nesting. The output from the coarse domain was then used to initialize 

the 10-km simulation. Both domains had 35 vertical levels. The time step used in integration 

was 90 s for the coarse domain and 30 s for the 10-km domain. The hourly sea-level pressure 

was derived from surface pressure and adjusted to sea level. Five representative node outputs 

of the Alboran Sea were selected and averaged to obtain the sea-level pressure during the 

different legs of the cruise. As can be seen in the Figure 3 (B,C) the model is able to reproduce 

main patterns of sea-level pressure both sides of the strait (Gulf of Cadiz and Aboran Sea).  

Tidal height and tidal currents were predicted to classify the sampling stations (Section 2.2), the 

prediction of the tidal currents shown in Figure 2 C were based on the tidal constants extracted 



from the least squares harmonic analysis (Foreman and Henri, 1989) of two years long time 

series recorded by an ADCP moored at Camarinal Sill (“P” in Figure 1). Full details could be 

revised in Alonso del Rosario et al. (2003). Tidal height prediction has been built on the base of 

the tidal constants for Tarifa Harbour published in the Admiralty tables of the Spanish 

Hydrographic Service.   Additionally, current velocity (west-east component) was recorded by a 

one-point current meter (Anderaa RCM7) located over the Camarinal Sill at a depth of 100 m 

(“C” in Figure 1). The original current velocity series was filtered to isolate the sub-inertial signal 

(periods greater than 33 hours) by applying a FFT filter. 

 

In addition, MODIS Level 2 surface chlorophyll images at a 1-km resolution 

(http://oceancolor.gsfc.nasa.gov/) were used to obtain synoptic images of the region for each 

different tidal amplitude (spring and neap tides). MODIS chlorophyll images were geo-located, 

atmospherically-corrected (level-2) and projected. 

 

2.2. Temporal framework and presentation of results 

 

The time scale of sampling for the entire grid was on the order of 5 days, so the tidal-scale 

effects on the distribution of the different variables could not be resolved in the entire domain, 

which occurs on a scale of hours. Therefore, sampling stations were classified within tidal-

specific periods following the same criteria as in Macías et al. (2008b) and assuming 

homogeneity in the tidal cycles occurring during each tidal amplitude. The tidal cycle was 

referenced to the tidal level in Tarifa, a town near the middle section of the strait (Figure 1), and 

was divided into three stages of four hours: HW-2 (from 4 hours before high water to high water, 

representing conditions before the tidal shift), HW+2 (from high water to 4 hours after high 

water, representative of the conditions just after the tidal shift) and LW (from 2 hours before low 

water to 2 hours after low water, coinciding with the deceleration of the inflowing flux). 

 

The selection of these stages was related to the primary hydrodynamic processes known to 

dominate the strait´s dynamics and served as periods of reference to analyze the water mass 

distribution and plankton patterns along the entire tidal cycle (Macías et al., 2008b). At HW-2 

(i.e., shortly before HW), the Camarinal Sill is predicted to have high current velocities and an 

enhanced outflow that are related to the generation of arrested internal waves (Bruno et al., 

2002) and the reversion of the surface Atlantic flow (Izquierdo et al., 2001). These arrested or 

stationary internal waves are then established over the sill 2–3 h before high water (Alonso Del 

Rosario et al., 2003), and at HW (when the tide turns), they start to propagate eastward. Around 

HW+2, both internal waves and the surface Atlantic water move towards the Mediterranean, 

completely reestablishing the inflow. Around the time of LW, the outflow over the Camarinal Sill 

begins to increase, and the internal waves created in the previous outflowing phase usually 

reach the eastern side of the strait (Farmer and Armi, 1988; Macías et al., 2006). 

 



Results are presented in horizontal maps of integrated values up to a 75-m depth, with the 

sorting of stations being dependent on the tidal stage described above and using the Krigging 

interpolation. 

 

3. Results 

 

3.1. Water masses and physical structure of the water column 

 

3.1.1. Spring tides 

 

During the entire tidal cycle, surface salinity was constant at both boundaries of the study area. 

Salinity reached values of 36.2-36.3 in the Atlantic sector and 36.7-36.85 in the Mediterranean 

side (Figure 4 B,E,H). During HW-2 and just above the Camarinal Sill, there was a salty patch 

(salinity = 38) (Figure 4 B). Furthermore, during HW+2, a band of salty water (salinity = 37) was 

present in the surface layers from the east side of the Camarinal Sill to the eastern sector of the 

strait (Figure 4 E). 

 

NACW was irregularly distributed, extending primarily in the western region of the study area 

(Figure 4 B,E,H). This water mass was only detected westward of Cape Espartel (stations 

marked with squares), but not in the northern coastal platform near Trafalgar Cape. 

 

In general, the AMI was deeper in the southern margin of the strait, an effect that was variable 

over the tidal cycle, and was more marked at HW-2 (Figure 4 A). The minimum depth (-10m) 

was located over the sill (HW-2) (Figure 4 A). During LW, the pattern of the AMI depth was 

different from the other tidal stages (Figure 4 G). It was located deeper, with an east-west 

gradient being the deepest values close to Tarifa. Moving eastward from Tarifa, the gradient 

became steeper, with the minimum depth located in the northern Alboran coast (-70m). 

 

3.1.2 Neap tides 

 

Salinity (Figure 5 B,E,H) was low in the western side around Cape Espartel and progressively 

increased towards the Mediterranean basin. Maximum values (37.2) were observed in the 

northern Alboran area. 

 

NACW was present at all of the southern stations during HW-2 (Figure 5 B). The presence of 

NACW was more intermittent during HW+2. It was detected westward of the Camarinal sill 

around the Tarifa Narrow and at some stations in the southern section of the Alboran Sea 

(Figure 5 E). During LW, this water mass was only detected at the Atlantic stations, except at 

the most shallow stations and those located the furthest north (Figure 5 H). 

 



In general, the AMI was deeper (-200m) on the Atlantic side (Figure 5 B,D,F) and more shallow 

on the Mediterranean Side (-60m), creating a strong gradient between these areas. This 

gradient followed a west-east direction on the Atlantic side, but turned to a north-south direction 

east of the Tarifa Narrows. 

 

3.2. Biological variables 

 

Total chlorophyll, active chlorophyll (%) and chlorophyll contained in large cells (%; diameter> 

20µm) were highly correlated (Table I), so these variables were synthesized in a principal 

component. Only one extracted component had an eigen-value >1 (2.310). Bartlett's Test of 

Sphericity was passed (Chi-square value=150.181, degrees of freedom=3, p<0.01). 

Furthermore, the component explained 77% of the system’s biological variability and was well 

correlated with each variable (Table I). Positive factor scores denote high concentrations of total 

chlorophyll and high percentages of active and large-cell chlorophyll. Thus, this component 

could be associated with the gradient from coastal (i.e., more eutrophic) to open ocean (i.e., 

more oligotrophic) waters. 

 

3.2.1. Spring tides 

 

Biological variables had the same general distribution in all tidal stages during spring tides. 

Maximum values of the principal component were reduced to the north-west platform in a band 

parallel to the coastline from Trafalgar Cape to the Camarinal Sill (Figure 4 C,F,I). During HW-2, 

another relative maximum was located in the Alboran Sea between Gibraltar and Ceuta (Figure 

4 C). Maximum values of total chlorophyll, chlorophyll in large cells and active chlorophyll varied 

from 1 mg m-3, 50% and 20%, respectively, in the northern-west coast (factor score = 4.2) to 0.1 

mg m-3, 5% and 2% near Cape Espartel (factor score = -0.5). 

 

3.2.2. Neap tides 

 

During these stages (HW-2 and LW), there was a common pattern in total chlorophyll, 

chlorophyll in large cells (%) and active chlorophyll (%) following the principal component 

(Figure 5 C,I). Maximum values were found in the northern coastal stations (0.3 mg m-3, 10% 

and 5%, respectively, factor score = 0.4) with a “tongue” extending from the coast between 

Trafalgar Cape and Tarifa to the Camarinal Sill area. However, this feature was more prominent 

during HW-2 (Figure 5 C) than in LW (Figure 5 I). The distribution of stations in HW+2 was 

different than the other tidal stages (Figure 5 F) because the Cape Trafalgar area was not 

covered. Nevertheless, in this case, the biological variables seemed to have the same “tongue-

shaped” distribution, with highest values at both coastal stations on the Atlantic side (north and 

south coasts). 

 



Mean values of biological variables in this tidal cycle were lower than during spring tides (Table 

II A). Total chlorophyll and active and large-cell chlorophyll (%) were significantly different 

between spring and neap tides. Furthermore, the loading scores of the PCA were higher during 

spring tide compared to lower tides. 

 

4. Discussion 
 
 
4.1. Physical variables 

 

The two-layer approximation could not be enough accurate for the description Strait dynamics 

(Bray et al., 1995; Macías et al., 2007; Sannino et al., 2007). However, surface layer´s features 

studied here included Atlantic and/or interfacial layer. Figure 4 in Sannino et al. (2007), shows 

midpoint of interfacial layer is placed down to 80-100 meters eastward Camarinal Sill and this 

layer could have a thickness higher than 120 meters.  

The analyzed data set reinforces the large discontinuity in the physical processes of the strait, 

highlighting the pulsating nature of this particular environment (Macías et al., 2006). In our 

results, interfacial mixing associated with internal waves (Wesson and Gregg, 1994; Macías et 

al., 2007; Sannino et al., 2007) was clearly visible in the high surface salinity values over the 

Camarinal Sill detected only at HW-2 and during spring tides (Figure 4 B). During spring tides 

(D1), outflowing currents higher than 1 m s-1 were predicted over the Camarinal Sill (Figure 2 

C). Consequently, approximately 2-3 hours before high water (HW-2), internal waves should be 

generated and remain arrested on the Camarinal Sill for approximately 4 hours (Vázquez et al., 

2008). These mixed waters were advected westward during the HW+2 period (salty patch along 

the main channel in Figure 4 E) when the inflow was reestablished, reaching the eastern side of 

the strait six hours after HW (Sánchez-Garrido et al., 2008; Vázquez et al., 2008). During this 

phase, westward subinertial currents were intensified (Figure 6 B) and favored the generation of 

large-amplitude internal wave events (Vázquez et al., 2008). 

 

It is worth noting that these mixing phenomena may provide a mechanism for nutrient supply to 

the surface layer of the Alboran Sea. Furthermore, this may provide a way to modify the 

biogeochemical budget of the Mediterranean Sea through the recirculation of nutrients from 

deep waters, which would otherwise be lost to the deep Atlantic Ocean (Macías et al., 2007). 

However, no mixed waters were observed throughout the entire strait during neap tides (see 

salinity distributions in Figures 5 B,E,H) so this recirculation process is less likely to happen 

during this tidal conditions. 

 

The inflow of NACW into the Alboran Sea has been described as an additional mechanism for 

nutrient input to the surface waters of the basin (Gómez et al., 2001). However, the input has 

typically been described as an intermittent process directly related to the tidal amplitude 

(Gascard and Richez, 1985; Gómez et al., 2001; Macías et al., 2006); because of the intense 



tidal flows and strong vertical mixing above the Camarinal Sill (Wesson and Gregg, 1994; 

Sannino et al., 2007) that makes NACW less identifiable (Macías et al., 2008b).This was 

observed in the present study, as no NACW signal was detected eastward of the Camarinal Sill 

during spring tides (Figure 4 B,E,H). On the other hand, during neap tides, NACW is able to 

overcome the sill more easily (Figure 5 B,E,H), especially on the southern side of the main 

channel concomitant with the deeper AMI (see below). However, enhanced westward 

subinertial currents (Figure 6 B) could reduce the Atlantic inflow, and this condition could 

impede a larger input of NACW (Macías et al., 2008a). 

 

On the tidal scale, the AMI depth was controlled by two main phenomena: (i) large amplitude 

internal waves raising the interface to ~10 m, close to the Camarinal Sill (during HW-2 in spring 

tides, Figure 4 A) and (ii) the Coriolis force proportional to the Atlantic Jet velocity. When the 

inflow was reinforced (at HW+2), the water within the AJ was forced towards the south side of 

the strait, and the AMI was located deeper in the southern part of the channel, creating a steep 

latitudinal gradient (Figures 4 E and 5 F). This Coriolis forcing, therefore, brings deep waters 

that are rich in nutrients close to the surface of the northern section of the strait. This shallower 

AMI could be broken more easily by additional mixing mechanisms, such as those induced by 

the eastward-propagating internal waves reaching the proximity of the Algeciras Bay (Sannino 

et al., 2007). This process could help to explain the quasi-permanent chlorophyll enrichment of 

the northeastern side of the channel of the strait (Gómez et al., 2000; Macías et al., 2006). 

 

In our results, clear and different patterns in the AMI depth were observed for neap and spring 

tidal cycles (Figures 4 A,D,G and 5 A,D,G). By grouping the stations independent of the 

spring/neap cycles, Bray et al. (1990) described an average AMI geography and proposed a 

semi-diurnal cycle for the AMI depth. However, while their mean interface geography is quite 

similar to the neap tide´s distribution presented here (Figure 5 A,D,G), the spring tide 

distribution (Figure 4 A,D,G) differs considerably. Furthermore, these authors proposed a 

general semi-diurnal cycle showing high oscillations of the AMI depth over the Camarinal Sill, as 

in the spring tidal cycle shown here (Figure 5 A,D,G). However, this differs from the neap tide 

distribution of the AMI presented here (Figure 5 A,D,G). Thus, the different response to tidal 

forcing should be taken into account to describe the different behavior of the AMI depth 

separately during neap and spring tides. 

 

4.2. Biological variables 

 

Atlantic waters were clearly present in the western region of the Strait of Gibraltar, especially 

near Cape Espartel. These water masses originate from the anticyclonic, quasi-permanent gyre 

in the Gulf of Cadiz (Criado-Aldenueva et al., 2006; García Lafuente and Ruiz, 2007), contained 

a biological signature typical of surface open-sea waters (Navarro et al., 2006; Macías et al., 



2008a), that was characterized by a low chlorophyll concentration and low percentages of active 

and large-cell chlorophyll (see Results 3.2, Figures 4 C,F,I and 5 C,F,I).  

 

Coastal areas, especially in the northern shelf platform in the neighborhood of Cape Trafalgar, 

had high levels of chlorophyll and high percentages of active and large-cell chlorophyll (Figure 4 

C,F,I). This zone has specific dynamics within the Gulf of Cadiz with an intense bloom in 

September (Navarro and Ruiz, 2006) due to a highly localized input of nutrients in the surface 

layer from mixing and tide–topography interactions (Vargas-Yáñez et al., 2002). At the same 

time, the dominant mesoscale circulation seems to increase the water residence time in this 

region, protecting this area from the intense hydrodynamics of the main channel (Vázquez et 

al., 2009) and, hence, increasing biological productivity. 

 

Our sampling grid did not cover the submarine ridge extending offshore from Trafalgar Cape 

because of problems with the draught of the oceanographic vessel. Satellite images show that, 

during spring tides, the area occupied by the bloom extended far (Figure 7 A,B) and reached 

the adjacent sampled area (Figures 4 C,F,I). However, the high chlorophyll zone near Cape 

Trafalgar had lower values and occupied a smaller area during neap tides (Figure 7 C). 

Consequently, there was a considerable reduction in chlorophyll and other biological variables 

in the sampled region (Table II and Figure 5 C,F,I ). During neap tides, the low tidal currents 

would not create strong mixing in the region, and the input of nutrients to the surface layer 

should be lower. This reduction in local upwelling could apparently disagree with the occurrence 

of a bloom at this time of year, as was previously reported by Navarro and Ruiz (2006). 

However, in this previous work, weekly-integrated satellite images were used, so the effects of 

the change in the tidal amplitude could not be observed. 

 

On the Atlantic side of the strait, clear differences in biological signatures between both coastal 

zones were visible (see Results 3.2), with northern areas having higher biological activity than 

southern areas. However, during neap tide conditions (Figure 5, C,F,I ), there was a “tongue” of 

relatively high chlorophyll values extending from the north coast to the center of the channel. 

During this neap tidal cycle, the predicted tidal outflow velocity was very weak (almost non-

existent) (Figure 2 C); thus, no Type I internal waves were expected (Vázquez et al., 2008). 

However, outflowing subinertial currents were reinforced during certain stages (Figure 6 B), and 

this could enhance the generation of Type II internal waves. This suggests that surface 

divergences and coastal suction are associated with these smaller topographic internal arrested 

waves typical of neap tides (Bruno et al., 2002). These tongue-shaped structures were also 

found in satellite data by Vázquez et al. (2009) during spring tides, but we present here the first 

evidence of this process during neap tides (Figures 5 C,F,I and 7 C). 

 

The generation of internal waves over the Camarinal Sill during spring tides (Bruno et al., 2002; 

Vázquez et al., 2008) has been observed to coincide with the suction of coastal waters (e.g., 



Vázquez et al., 2009), which introduce high-chlorophyll patches within the main along-strait 

circulation (Macías et al., 2006; 2008b; Bartual et al., 2011). In our data, a high chlorophyll 

patch was observed at the eastern entrance of the strait during HW-2 at spring tides (Figure 4 

C), which could originate from the suction of coastal waters in the previous outflowing event 

(see details of the mechanics and timing in Macías et al., 2006). The trace of the coastal suction 

as a “tongue” of high chlorophyll extending from the north coast to the channel could not be 

detected clearly in our sampled stations, likely due to the spatial resolution of the grid (Figure 4 

C). However, in Figure 7 B, this structure could be found extending from both coastal areas to 

the main channel around the Camarinal Sill. 

 

High-level pressures were simulated in the Alboran Sea throughout the survey (Figure 6 A), and 

the derived subinertial currents did not favor the inflowing tidal currents (Figure 6 B). These 

atmospheric conditions reduced the Atlantic inflow and displaced the AJ southward, flowing in a 

south-east direction (Macías et al., 2008a). Furthermore, coastal upwelling in the northwestern 

Alboran sea was not favored by these conditions (Macías et al., 2008a), and the absence of 

active upwelling can be noticed in Figure 7 (A,B,C). Thus, on the Mediterranean side of the 

sampled grid, the origin of the measured chlorophyll should only be associated with the Atlantic 

inflow. In addition, on the Mediterranean side of the strait, mean chlorophyll concentration (and 

% active chlorophyll) was significantly higher during spring tides (Table II B), indicating a 

stronger coastal suction under these tidal conditions. Moreover, the environmental conditions of 

the chlorophyll patches moving towards the Alboran Sea should be different during spring and 

neap tides. Phytoplankton growth should be intensified during spring tides because of the 

mixing processes over the Sill, which are concomitant with coastal suction (Macías et al., 2007). 

This should bring phytoplankton and relatively high nutrient concentrations together at the 

surface during spring tides, as confirmed by the higher % of active chlorophyll during D1 (Table 

II B). 

 
This work represents the first comprehensive description of the submesoscale biogeochemical 

features in this area, including the effects of arrested internal waves and their releasing in the 

Strait of Gibraltar and the adjacent Alboran Sea. On the western side of the strait, the main 

phenomena were the mixing processes over the sill (only during spring tides). Another important 

process was the suction of high chlorophyll coastal waters from the northern platform, with high 

biological activity. This suction occurred during both spring and neap tides, but the arrival of 

chlorophyll in the Alboran Sea was more evident during spring tides. In the Alboran Sea, these 

processes caused the pulsating arrival of advected waters rich in large cells and active 

chlorophyll. Two mechanisms of nutrient inputs to the surface layer are proposed for this area: 

mixed Atlantic-Mediterranean waters (during spring tides) and the inflow of NACW to the AJ 

(during neap tides). 
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Legends: 
 
Figure 1. Map showing the location and main geographic points of the study area. “C” marks the 
location of the current meter over the Camarinal Sill at a depth of 100 m. “P” marks the location 
of the currents predicted.  
 
Figure 2. Tidal height predicted at Tarifa for the different cruises (A and B), and current velocity 
prediction over the Camarinal Sill at 45 m depth (C). Positive and negative values indicate 
currents toward the Mediterranean and Atlantic, respectively. 
 
Figure 3. Map of the area (A) showing the Buoys locations (stars), current meter mooring point 
(square) and the extraction pressure points from the model grid (black points). Comparison of 
sea level pressure (hPa) between MM5-10 km results (grey line) and buoys data (black line) in 
Cabo de Gata (B) and Golfo de Cádiz (C) Buoys locations. 
 
Figure 4. Distribution of the AMI (Atlantic Mediterranean Interface) depth of the different tidal 
stages for sampling during spring tides (A,D,G).Median of the surface salinity over the top 75 m 
(B,E,H). The presence/absence of NACW is marked by a square/triangle (B,E,H). Factor scores 
of the principal component for each station (C,F,I). 
 
Figure 5. Distribution of the AMI (Atlantic Mediterranean Interface) depth of the different tidal 
stages for sampling during neap tides (A,D,G). Median of the surface salinity over the top 75 m 
(B,E,H). The presence/absence of NACW is marked by a square/triangle (B,E,H). Factor scores 
of the principal component for each station (C,F,I). 
 
Figure 6. Time series of simulated mean atmospheric pressure in the Alboran Sea during the 
cruise (A). Time series of subinertial currents over the Camarinal Sill during the cruise (B). 
Positive and negative values indicate currents toward the Mediterranean and Atlantic, 
respectively. The lengths of the spring/neap tidal phases are indicated. 
 
Figure 7. Representative MODIS chlorophyll images for spring tides (A) (26/09/2008) and (B) 
(30/09/2008) and neap tides (C) (04/10/2010). 
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