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Abstract: The preparation of a new type of derivatives of the naturally occurring 

antioxidant hydroxytyrosol is reported. Hydroxytyrosyl alkyl ethers were obtained in high 

yield by a three-step procedure starting from hydroxytyrosol isolated from olive oil waste 

waters. Preliminary results obtained by the Rancimat method have shown that these 

derivatives retain the high protective capacity of free hydroxytyrosol. 
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1. Introduction 

In the production of Virgin Olive Oil (VOO) 80% of the olive fruit is discarded [1]. In this way, 

over 10 million tons per year of solid or semisolid wastes are produced worldwide in the olive 

industry, whose storage and/or recycling represent a serious environmental problem due to its high 

content in organic matter [2]. These wastes are rich in polyphenols, including hydroxytyrosol (1), 

which are scarcely soluble in the VOO extracted in the process [3]. On the other hand, the small 

fraction of liposoluble hydroxytyrosol derivatives passing into the VOO is sufficient to protect it from 
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oxidation and rancidity throughout their lifespan [4]. In fact, it has been shown that hydroxytyrosol is 

superior in protecting fatty foods against oxidation than other antioxidants used in food such as 

butylated hydroxytoluene (BHT) or α–tocopherol [5]. So, in an effort to exploit this natural residue, 

several procedures for the isolation and purification of hydroxytyrosol from olive industry wastes have 

been reported [6-13]. Simultaneously, an explosion in research into the biological properties of 

hydroxytyrosol has occurred during the past few years, and, as a consequence, it has been 

demonstrated that this biophenol presents diverse interesting activities, including antimicrobial, 

hypotensive, hypoglycemic, platelet anti-aggregation, cardioprotective, and anti-inflammatory 

activities, and also inhibition of several lipoxygenases, and apoptosis induction in HL-60 cells, among 

others [14-18]. Moreover, an effort in the synthesis of hydroxytyrosyl derivatives with a better 

hydrophile/lipophile balance (HLB) has been carried out, for their possible use in the protection of 

fatty foods against oxidation, as well as to increase its bioavailability in the body. In this sense, the 

syntheses of isochromans [19-21] and esters [22-27] derivatives have been published in recent years. 

Such derivatives have shown similar or even improved activities [28] with respect to hydroxytyrosol 

itself, proving to be, in most cases, more liposolubles. In this short communication, the synthesis of a 

new type of hydroxytyrosol derivative is presented: alkyl hydroxytyrosyl ethers (4a–h). 

2. Results and Discussion 

For their syntheses, hydroxytyrosol isolated from olive oil waste waters (OOWW) was used in 

order to give an added value to this type of residue. Pure hydroxytyrosol (1) was transformed into its 

known dibenzyl derivative (2) [29] by reaction with benzyl bromide/potassium carbonate in acetone. 

Alkylation of the free alcoholic group with the corresponding alkyl iodides yielded the intermediate 

compounds 3a–h, in good to excellent yields. The desired alkyl hydroxytyrosyl ethers 4a–h were 

obtained in excellent yields after hydrogenolytic cleavage of the protecting Bn groups (Scheme 1). The 

results are summarized in Table 1. 

Scheme 1. Synthesis of alkyl hydroxytyrosyl ethers. 
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Table 1. Yields (%) of pure compounds obtained. 

entr

y 
n  

Alkylatio

n Product 

(R = Bn) 

Yield 

(%) 
 

Deprotectio

n 

Product 

(R = H) 

Yield 

(%) 

1 0  3a 91  4a 96 

2 1  3b 86  4b 88 

3 2  3c 78  4c 91 

4 3  3d 84  4d 98 

5 5  3e 82  4e 91 

6 7  3f 80  4f 83 

7 11  3g 67  4g 82 

8 17  3h 60  4h 98 

 

New compounds (3a–h and 4a–h) were characterized by their elemental analyses, and their 

structures were determined by spectroscopic (NMR and MS) methods. As it can be seen in Table 1, the 

alkylation step yields decreased as the length of the alkyl chain increased, as a result of the worse 

solubility of the corresponding alkyl iodide in the media. In fact, in the cases of using n-dodecyl (entry 

7) and n-octadecyl iodide (entry 8), reactions were conducted at 50ºC instead of room temperature. 

Results on the antioxidant activity of 4a–h have shown that these derivatives maintain the high 

protective capacity of free hydroxytyrosol [30]. In this way, selected results obtained by the Rancimat® 

method are shown in Figure 1. As it can be seen, all new compounds 4a–h show similar induction time 

(IT) values than hydroxytyrosol (1) and significantly higher than both BHT and α–tocopherol.  

Figure 1. Oxidative stability of lipid matrices spiked with 0,5 mM of hydroxytyrosyl 

ethers (4a–h), hydroxytyrosol (1), BHT and α–tocopherol (Vit E). Each value is the mean 

of duplicate measurements ± standard deviation. Results are expressed as Induction Time 

(IT) in hours. Data with a different letter are statistically different (p < 0.05). 
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3. Experimental  

3.1. General 

All solvent and reagents were of analytical grade unless stated otherwise. Benzyl bromide, 

palladium over charcoal (Pd/C), and the alkyl iodides (methyl, ethyl, n-propyl, n-buthyl, n-hexyl, n-

octyl, n-dodecyl and n-octadecyl iodides) were from Sigma-Aldrich (Steinheim, Germany), as well as 

2,6-di-tert-butyl-4-metylphenol (BHT) and α-tocopherol. NMR spectra were recorded on a Bruker 

Avance 500 spectrophotometer operating at 500.13 MHz (1H) and 125.75 MHz (13C). Chemical shifts 

are given in ppm with the residual solvent signals (2.49 ppm for 1H and 39.5 ppm for 13C) as 

references. Samples were dissolved (10 mg/mL) in hexadeuterated methylsulfoxide (DMSO-d6), and 

spectra were recorded at 303 K. Elemental analyses were made on a Leco CHNS-932 apparatus. High-

resolution EI, CI and FAB mass spectra were obtained on a Micromass AUTOSPECQ spectrometer. 

3.2. Isolation and purification of hydroxytyrosol from olive oil waste waters (OOWW) 

OOWW samples were supplied by the ‘Oleícola El Tejar’ oil extraction factory in Córdoba, Spain. 

These waste samples were partially de-stoned, partially de-oiled (after secondary centrifugal 

processing to obtain the residual olive oil), and had a high water content (70% of moisture). Thermal 

treatment between 140 and 180ºC, using an operating pressure of 6–10 Kg/cm2, for 0.5–1.5 hour was 

performed in a new semi industrial reactor to allow the maximum phenolic solubilization. Under these 

conditions a high hydroxytyrosol concentration of up to 2–4 g/L was found in the filtered aqueous 

phase. After the natural phenolic antioxidant was purified by a patented industrial system in the pilot 

plant of the Instituto de la Grasa (CSIC, Seville), giving a hydroxytyrosol purity of at least 94% [10]. 

Further purification by column chromatography using mixtures (1:1 and 2:1) of ethyl ether/hexane as 

eluants yielded pure hydroxytyrosol (1). 

3.3. Synthetic procedures 

2-(3,4-bis(benzyloxy)phenyl)ethanol (2): To a solution of pure 1 (0.8 g, 5,2 mmol) in dry acetone 

(25 mL), benzyl bromide (1.4 mL, 11.8 mmol) and potassium carbonate (2.9 g, 20.8 mmol)  were 

added and the resulting mixture heated to reflux for 24 h. The obtained suspension was filtered and 

concentrated to yield a crude residue, which was further purified by column chromatography, using a 

1:2 mixture of diethyl ether/hexane as eluent. The desired product 2 was obtained as a white solid 

(1.16 g, 67%). M.p.: 55-57ºC. All spectroscopic data were in good accordance with those previously 

reported [29]. 

3.3.1. General procedure for alkylation of hydroxytyrosol 

A mixture of 2 (334 mg, 1 mmol), KOH (335 mg) and the corresponding alkyl iodide (3 mmol) in 

methyl sulfoxide (12 mL) was stirred at room temperature until completion of reaction (TLC). 3M HCl 

(25 mL) was added and the mixture extracted with CHCl3 (3  25 mL). The organic phase was washed 

with 2% NaHSO3 (25 mL) and water (25 mL), dried over Na2SO4, filtered and evaporated. The desired 

products 3a–h were purified by flash column chromatography over silica gel.  
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1,2-bis(Benzyloxy)-4-(2-methoxyethyl)benzene (3a): colourless liquid (91% yield); 1H-NMR δ ppm 

7.37 (m, 10H, 2 x Ph), 6.95 (d, J = 2.0 Hz, 1H, H4), 6.93 (d, J = 8.2 Hz, 1H, H7), 6.72 (dd, J = 2.0 Hz, 

J = 8.2 Hz, 1H, H8), 5.09 (s, 2H, CH2Ph in pos. 5), 5.07 (s, 2H, CH2Ph in pos. 6), 3.46 (t, J = 7.0 Hz, 

2H, H1), 3.21 (s, 3H, H1’), 2.69 (t, J = 7.0 Hz, 2H, H2); 
13C-NMR δ ppm 148.1 (C5), 146.6 (C6), 137.5 

and 137.4 (Cipso, Bn groups), 132.1 (C3), 128.3-127.4 (C3, C4 and C5, Bn groups), 121.3 (C8),  

115.4 (C4), 114.7 (C7), 72.9 (C1), 70.3 (CH2Ph in pos. 6), 70.1 (CH2Ph in pos. 5), 57.7 (C1’), 34.8 (C2); 

Elem. anal. calc. for C23H24O3 C, 79.28; H, 6.94; found: C, 78.75; H, 6.87; HRMS,  

348.172247 (0.9 ppm).  

 

1,2-bis(Benzyloxy)-4-(2-ethoxyethyl)benzene (3b): colourless liquid (86% yield); 1H-NMR δ ppm  

7.37 (m, 10H, 2 x Ph), 6.96 (d, J = 2.0 Hz, 1H, H4), 6.93 (d, J = 8.2 Hz, 1H, H7), 6.72 (dd, J = 2.0 Hz,  

J = 8.2 Hz, 1H, H8), 5.09 (s, 2H, CH2Ph in pos. 5), 5.07 (s, 2H, CH2Ph in pos. 6), 3.49 (t, J = 7.0 Hz, 

2H, H1), 3.39 (q, J = 7.0 Hz, 2H, H1’), 2.69 (t, J = 7.0 Hz, 2H, H2), 1.07 (t, J = 7.0 Hz, 3H, H2’);  
13C- NMR δ ppm 148.1 (C5), 146.6 (C6), 137.5 and 137.4 (Cipso, Bn groups), 132.2 (C3), 128.3- 

127.4 (C3, C4 and C5, Bn groups), 121.3 (C8), 115.4 (C4), 114.7 (C7), 70.7 (C1), 70.2 (CH2Ph in pos. 6), 

70.1 (CH2Ph in pos. 5), 65.1 (C1’), 35.1 (C2), 15.0 (C2’); Elem. anal. calc. for C24H26O3 x ½ H2O  

C, 77.60; H, 7.33; found: C, 77.99; H, 6.91; HRMS, 362.189060 (2.4 ppm).  

 

1,2-bis(Benzyloxy)-4-(2-propoxyethyl)benzene (3c): colourless liquid (78% yield); 1H-NMR δ ppm 

7.37 (m, 10H, 2 x Ph), 6.96 (d, J = 2.0 Hz, 1H, H4), 6.93 (d, J = 8.2 Hz, 1H, H7), 6.72 (dd, J = 2.0 Hz, 

J = 8.2 Hz, 1H, H8), 5.09 (s, 2H, CH2Ph in pos. 5), 5.07 (s, 2H, CH2Ph in pos. 6), 3.49 (t, J = 7.1 Hz, 

2H, H1), 3.30 (t, J = 6.6 Hz, 2H, H1’), 2.69 (t, J = 7.1 Hz, 2H, H2), 1.47 (m, 2H, H2’), 0.83 (t,  

J = 7.4 Hz, 3H, H3’); 
13C-NMR δ ppm 148.1 (C5), 146.6 (C6), 137.4 and 137.3 (Cipso, Bn groups),  

132.2 (C3), 128.3-127.4 (C3, C4 and C5, Bn groups), 121.3 (C8), 115.5 (C4), 114.7 (C7), 71.5 (C1’),  

70.9 (C1), 70.2 (CH2Ph in pos. 6), 70.1 (CH2Ph in pos. 5), 35.1 (C2), 22.4 (C2’) , 10.4 (C3’); Elem. anal. 

calc. for C25H28O3 C, 79.75; H, 7.50; found: C, 79.15; H, 6.88; HRMS, 376.205160 (3.5 ppm).  

 

1,2-bis(Benzyloxy)-4-(2-butoxyethyl)benzene (3d): colourless liquid (84% yield); 1H-NMR δ ppm  

7.37 (m, 10H, 2 x Ph), 6.96 (d, J = 2.0 Hz, 1H, H4), 6.93 (d, J = 8.2 Hz, 1H, H7), 6.72 (dd, J = 2.0 Hz,  

J = 8.2 Hz, 1H, H8), 5.08 (s, 2H, CH2Ph in pos. 5), 5.07 (s, 2H, CH2Ph in pos. 6), 3.49 (t, J = 7.0 Hz, 

2H, H1), 3.34 (t, J = 6.5 Hz, 2H, H1’), 2.69 (t, J = 7.0 Hz, 2H, H2), 1.44 (m, 2H, H2’), 1.28 (m, 2H, H3’), 

0.85 (t, J = 7.4 Hz, 3H, H4’); 
13C-NMR δ ppm 148.1 (C5), 146.6 (C6), 137.5 and 137.4 (Cipso, Bn 

groups), 132.2 (C3), 128.3-127.4 (C3, C4 and C5, Bn groups), 121.3 (C8), 115.5 (C4), 114.7 (C7),  

71.0 (C1), 70.2 (CH2Ph in pos. 6), 70.1 (CH2Ph in pos. 5), 69.6 (C1’), 35.1 (C2), 31.3 (C2’), 18.8 (C3’), 

13.7 (C4’); Elem. anal. calc. for C26H30O3 C, 79.97; H, 7.74; found: C, 79.52; H, 7.38; HRMS, 

390.218471 (2.6 ppm).  

 

1,2-bis(Benzyloxy)-4-(2-(hexyloxy)ethyl)benzene (3e): colourless liquid (82% yield); 1H-NMR δ ppm 

7.37 (m, 10H, 2 x Ph), 6.96 (d, J = 2.0 Hz, 1H, H4), 6.93 (d, J = 8.2 Hz, 1H, H7), 6.72 (dd, J = 2.0 Hz, 

J = 8.2 Hz, 1H, H8), 5.08 (s, 2H, CH2Ph in pos. 5), 5.07 (s, 2H, CH2Ph in pos. 6), 3.49 (t, J = 7.0 Hz, 

2H, H1), 3.33 (t, J = 6.5 Hz, 2H, H1’), 2.69 (t, J = 7.0 Hz, 2H, H2), 1.45 (m, 2H, H2’), 1.24 (m, 6H, 

H3’−H5’), 0.84 (t, J = 7.0 Hz, 3H, H6’); 
13C-NMR δ ppm 148.1 (C5), 146.6 (C6), 137.5 and 137.4 (Cipso, 
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Bn groups), 132.2 (C3), 128.3-127.4 (C3, C4 and C5, Bn groups), 121.3 (C8), 115.5 (C4), 114.7 (C7), 

71.0 (C1), 70.2 (CH2Ph in pos. 6), 70.1 (CH2Ph in pos. 5), 69.9 (C1’), 35.1 (C2), 31.0 (C4’), 29.1 (C2’), 

25.3 (C3’), 22.0 (C5’), 13.8 (C6’); Elem. anal. calc. for C28H34O3 C, 80.35; H, 8.19; found: C, 79.55;  

H, 7.86; HRMS, 418.250377 (1.0 ppm).  

 

1,2-bis(Benzyloxy)-4-(2-(octyloxy)ethyl)benzene (3f): white solid (80% yield); mp 52−54ºC; 1H- NMR 

δ ppm 7.37 (m, 10H, 2 x Ph), 6.96 (d, J = 2.0 Hz, 1H, H4), 6.93 (d, J = 8.2 Hz, 1H, H7), 6.72 (dd,  

J = 2.0 Hz, J = 8.2 Hz, 1H, H8), 5.08 (s, 2H, CH2Ph in pos. 5), 5.07 (s, 2H, CH2Ph in pos. 6), 3.49 (t,  

J = 7.0 Hz, 2H, H1), 3.33 (t, J = 6.5 Hz, 2H, H1’), 2.69 (t, J = 7.0 Hz, 2H, H2), 1.45 (m, 2H, H2’), 1.23 

(m, 10H, H3’−H7’), 0.84 (t, J = 7.0 Hz, 3H, H8’); 
13C-NMR δ ppm 148.1 (C5), 146.6 (C6), 137.4 and 

137.3 (Cipso, Bn groups), 132.2 (C3), 128.2-127.4 (C3, C4 and C5, Bn groups), 121.3 (C8), 115.4 (C4), 

114.7 (C7), 71.0 (C1), 70.2 (CH2Ph in pos. 6), 70.1 (CH2Ph in pos. 5), 69.9 (C1’), 35.1 (C2), 31.2 (C6’), 

29.1 (C2’), 28.7 (C4’), 28.6 (C5’), 25.7 (C3’), 22.0 (C7’), 13.8 (C8’); Elem. anal. calc. for C30H38O3  

C, 80.68; H, 8.58; found: C, 79.93; H, 8.75; HRMS, 446.282509 (0.9 ppm).  

 

1,2-bis(Benzyloxy)-4-(2-(dodecyloxy)ethyl)benzene (3g): white solid (67% yield); mp 42−45ºC; 

 1H- NMR δ ppm 7.37 (m, 10H, 2 x Ph), 6.96 (d, J = 2.0 Hz, 1H, H4), 6.93 (d, J = 8.2 Hz, 1H, H7), 

6.72 (dd, J = 2.0 Hz, J = 8.2 Hz, 1H, H8), 5.08 (s, 2H, CH2Ph in pos. 5), 5.06 (s, 2H, CH2Ph in pos. 6), 

3.49 (t, J = 7.0 Hz, 2H, H1), 3.33 (t, J = 6.5 Hz, 2H, H1’), 2.69 (t, J = 7.0 Hz, 2H, H2), 1.45 (m, 2H, 

H2’), 1.22 (m, 18H, H3’−H11’), 0.84 (t, J = 7.0 Hz, 3H, H12’); 
13C-NMR δ ppm 148.1 (C5), 146.6 (C6), 

137.4 and 137.3 (Cipso, Bn groups), 132.2 (C3), 128.2-127.4 (C3, C4 and C5, Bn groups), 121.3 (C8), 

115.4 (C4), 114.7 (C7), 70.9 (C1), 70.3 (CH2Ph in pos. 6), 70.1 (CH2Ph in pos. 5), 69.9 (C1’), 35.1 (C2), 

31.2 (C10’), 29.1 (C2’), 29.0−28.6 (C4’−C9’), 25.7 (C3’), 22.0 (C11’), 13.8 (C12’); Elem. anal. calc. for 

C34H46O3 C, 81.23; H, 9.22; found: C, 81.01; H, 9.07; HRMS, 502.344735 (0.1 ppm).  

 

1,2-bis(Benzyloxy)-4-(2-(octadecyloxy)ethyl)benzene (3h): white solid (60% yield); mp 57−59ºC;  
1H-NMR δ ppm 7.37 (m, 10H, 2 x Ph), 6.96 (d, J = 2.0 Hz, 1H, H4), 6.93 (d, J = 8.2 Hz, 1H, H7),  

6.72 (dd, J = 2.0 Hz, J = 8.2 Hz, 1H, H8), 5.08 (s, 2H, CH2Ph in pos. 5), 5.06 (s, 2H, CH2Ph in pos. 6), 

3.49 (t, J = 7.0 Hz, 2H, H1), 3.33 (t, J = 6.5 Hz, 2H, H1’), 2.69 (t, J = 7.0 Hz, 2H, H2), 1.45 (m, 2H, 

H2’), 1.22 (m, 30H, H3’−H17’), 0.84 (t, J = 7.0 Hz, 3H, H18’); 
13C-NMR δ ppm 148.1 (C5), 146.6 (C6), 

137.4 and 137.3 (Cipso, Bn groups), 132.2 (C3), 128.2-127.4 (C3, C4 and C5, Bn groups), 121.3 (C8), 

115.5 (C4), 114.7 (C7), 70.9 (C1), 70.2 (CH2Ph in pos. 6), 70.1 (CH2Ph in pos. 5), 69.8 (C1’), 35.0 (C2), 

31.2 (C16’), 29.1 (C2’), 29.0−28.6 (C4’−C15’), 25.6 (C3’), 22.0 (C17’), 13.8 (C18’); Elem. anal. calc. for 

C40H58O3 C, 81.86; H, 9.96; found: C, 81.77; H, 10.00; HRMS, 586.438530 (0.1 ppm). 

3.3.2. General procedure for cleavage of Bn protective groups 

Palladium over charcoal (Pd-C) was added to a solution of the corresponding ether (3a–h, 1 mmol) 

in THF (20 mL) and the mixture was hydrogenated at 4 bar with magnetic stirring. After 24 h at room 

temperature the catalyst was filtered off and solvent was evaporated in vacuum, yielding the desired 

compound in each case (4a–h) that was purified by column chromatography.  
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4-(2-Methoxyethyl)benzene-1,2-diol (4a): colourless liquid (96% yield); 1H-NMR δ ppm 6.60 (d,  

J = 8.0 Hz, 1H, H7), 6.58 (d, J = 2.1 Hz, 1H, H4), 6.43 (dd, J = 2.1 Hz, J = 8.0 Hz, 1H, H8), 3.42 (t,  

J = 7.0 Hz, 2H, H1), 3.21 (s, 3H, H1’), 2.60 (t, J = 7.0 Hz, 2H, H2); 
13C-NMR δ ppm 144.9 (C5),  

143.4 (C6), 129.7 (C3), 119.3 (C8), 116.2 (C4), 115.3 (C7), 73.2 (C1), 57.7 (C1’), 35.0 (C2); Elem. anal. 

calc. for C9H12O3 C, 64.27; H, 7.19; found: C, 63.74; H, 6.94; HRMS, 168.079247 (3.6 ppm).  

 

4-(2-Ethoxyethyl)benzene-1,2-diol (4b): colourless liquid (88% yield); 1H-NMR δ ppm 6.60 (d,  

J = 8.0 Hz, 1H, H7), 6.58 (d, J = 2.1 Hz, 1H, H4), 6.44 (dd, J = 2.1 Hz, J = 8.0 Hz, 1H, H8), 3.45 (t,  

J = 7.2 Hz, 2H, H1), 3.40 (q, J = 7.0 Hz, 2H, H1’), 2.59 (t, J = 7.2 Hz, 2H, H2), 1.08 (t, J = 7.0 Hz, 3H, 

H2’); 
13C- NMR δ ppm 144.9 (C5), 143.2 (C6), 129.7 (C3), 119.3 (C8), 116.2 (C4), 115.3 (C7), 71.1 (C1), 

65.1 (C1’), 35.0 (C2), 15.0 (C2’); Elem. anal. calc. for C10H14O3 C, 65.91; H, 7.74; found: C, 65.39;  

H, 7.44; HRMS, 182.094382 (0.5 ppm).  

 

4-(2-Propoxyethyl)benzene-1,2-diol (4c): white solid (91% yield); mp 93−95ºC; 1H-NMR δ ppm  

6.60 (d, J = 8.0 Hz, 1H, H7), 6.58 (d, J = 2.1 Hz, 1H, H4), 6.44 (dd, J = 2.1 Hz, J = 8.0 Hz, 1H, H8), 

3.45 (t, J = 7.2 Hz, 2H, H1), 3.31 (t, J = 6.6 Hz, 2H, H1’), 2.60 (t, J = 7.2 Hz, 2H, H2), 1.48 (m, 2H, 

H2’), 0.83 (t, J = 7.4 Hz, 3H, H3’); 
13C-NMR δ ppm 144.9 (C5), 143.3 (C6), 129.7 (C3), 119.3 (C8), 

116.2 (C4), 115.3 (C7), 71.5 (C1’), 71.3 (C1), 35.0 (C2), 22.4 (C2’), 10.5 (C3’); Elem. anal. calc. for 

C11H16O3 x ⅓ H2O C, 65.32; H, 8.31; found: C, 65.29; H, 7.76; HRMS, 196.109392 (2.8 ppm).  

 

4-(2-Butoxyethyl)benzene-1,2-diol (4d): white solid (98% of yield); mp 66−68ºC; 1H-NMR δ ppm  

6.60 (d, J = 8.0 Hz, 1H, H7), 6.58 (d, J = 2.1 Hz, 1H, H4), 6.44 (dd, J = 2.1 Hz, J = 8.0 Hz, 1H, H8), 

3.45 (t, J = 7.2 Hz, 2H, H1), 3.34 (t, J = 6.6 Hz, 2H, H1’), 2.59 (t, J = 7.2 Hz, 2H, H2), 1.45 (m, 2H, 

H2’), 1.29 (m, 2H, H3’), 0.85 (t, J = 7.4 Hz, 3H, H4’); 
13C-NMR δ ppm 144.8 (C5), 143.3 (C6),  

129.7 (C3), 119.3 (C8), 116.2 (C4), 115.3 (C7), 71.4 (C1), 69.6 (C1’), 35.0 (C2), 31.3 (C2’), 18.8 (C3’), 

13.7 (C4’); Elem. anal. calc. for C12H18O3 C, 68.54; H, 8.63; found: C, 68.09; H, 8.54; HRMS, 

210.125280 (1.5 ppm).  

 

4-(2-(Hexyloxy)ethyl)benzene-1,2-diol (4e): colourless liquid (91% yield); 1H-NMR δ ppm 6.60 (d,  

J = 8.0 Hz, 1H, H7), 6.58 (d, J = 2.1 Hz, 1H, H4), 6.44 (dd, J = 2.1 Hz, J = 8.0 Hz, 1H, H8), 3.45 (t,  

J = 7.2 Hz, 2H, H1), 3.34 (t, J = 6.6 Hz, 2H, H1’), 2.59 (t, J = 7.2 Hz, 2H, H2), 1.45 (m, 2H, H2’),  

1.24 (m, 6H, H3’−H5’), 0.85 (t, J = 7.1 Hz, 3H, H6’); 
13C-NMR δ ppm 144.9 (C5), 143.3 (C6),  

129.7 (C3), 119.3 (C8), 116.2 (C4), 115.3 (C7), 71.4 (C1), 69.9 (C1’), 35.0 (C2), 31.0 (C4’), 29.1 (C2’), 

25.3 (C3’), 22.0 (C5’), 13.8 (C6’); Elem. anal. calc. for C14H22O3 x ⅓ H2O C, 68.82; H, 9.35; found:  

C, 69.22; H, 8.88; HRMS, 238.157767 (3.7 ppm).  

 

4-(2-(Octyloxy)ethyl)benzene-1,2-diol (4f): colourless liquid (83% yield); 1H-NMR δ ppm 6.60 (d,  

J = 8.0 Hz, 1H, H7), 6.58 (d, J = 2.1 Hz, 1H, H4), 6.43 (dd, J = 2.1 Hz, J = 8.0 Hz, 1H, H8), 3.44 (t,  

J = 7.2 Hz, 2H, H1), 3.33 (t, J = 6.6 Hz, 2H, H1’), 2.59 (t, J = 7.2 Hz, 2H, H2), 1.45 (m, 2H, H2’), 1.23 

(m, 10H, H3’−H7’), 0.85 (t, J = 7.0 Hz, 3H, H8’); 
13C-NMR δ ppm 144.8 (C5), 143.3 (C6), 129.7 (C3), 

119.3 (C8), 116.1 (C4), 115.3 (C7), 71.4 (C1), 69.9 (C1’), 35.0 (C2), 31.2 (C6’), 29.1 (C2’), 28.7 (C4’), 

28.6 (C5’), 25.6 (C3’), 22.0 (C7’), 13.8 (C8’); HRMS, 266.188001 (0.7 ppm).  
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4-(2-(Dodecyloxy)ethyl)benzene-1,2-diol (4g): white solid (82% yield); mp 39−41ºC; 1H-NMR δ ppm 

6.60 (d, J = 8.0 Hz, 1H, H7), 6.57 (d, J = 2.1 Hz, 1H, H4), 6.43 (dd, J = 2.1 Hz, J = 8.0 Hz, 1H, H8), 

3.44 (t, J = 7.2 Hz, 2H, H1), 3.33 (t, J = 6.6 Hz, 2H, H1’), 2.59 (t, J = 7.2 Hz, 2H, H2), 1.45 (m, 2H, 

H2’), 1.23 (m, 18H, H3’−H11’), 0.84 (t, J = 7.0 Hz, 3H, H12’); 
13C-NMR δ ppm 144.8 (C5), 143.3 (C6), 

129.7 (C3), 119.3 (C8), 116.1 (C4), 115.3 (C7), 71.4 (C1), 69.9 (C1’), 35.0 (C2), 31.2 (C10’), 29.1 (C2’), 

28.9−28.6 (C4’−C9’), 25.6 (C3’), 22.0 (C11’), 13.8 (C12’); Elem. anal. calc. for C20H34O3 C, 74.49;  

H, 10.63; found: C, 74.11; H, 10.64; HRMS, 322.250251 (1.7 ppm).  

 

4-(2-(Octadecyloxy)ethyl)benzene-1,2-diol (4h): white solid (98% yield); mp 65−67ºC; 1H-NMR  

δ ppm 6.60 (d, J = 8.0 Hz, 1H, H7), 6.57 (d, J = 2.1 Hz, 1H, H4), 6.43 (dd, J = 2.1 Hz, J = 8.0 Hz, 1H, 

H8), 3.44 (t, J = 7.2 Hz, 2H, H1), 3.33 (t, J = 6.6 Hz, 2H, H1’), 2.59 (t, J = 7.2 Hz, 2H, H2), 1.45 (m, 

2H, H2’), 1.23 (m, 30H, H3’−H17’), 0.84 (t, J = 7.0 Hz, 3H, H18’); 
13C-NMR δ ppm 144.9 (C5),  

143.3 (C6), 129.7 (C3), 119.3 (C8), 116.1 (C4), 115.3 (C7), 71.4 (C1), 69.9 (C1’), 35.0 (C2), 31.2 (C16’), 

29.2 (C2’), 29.0−28.6 (C4’−C15’), 25.6 (C3’), 22.0 (C17’), 13.8 (C18’); Elem. anal. calc. for  

C26H46O3 x ⅓ H2O C, 75.68; H, 11.40; found: C, 75.77; H, 12.20; HRMS, 406.344308 (1.0 ppm). 

3.4. Evaluation of oxidative stability of lipid matrices 

The oxidative stability of a lipid matrix, obtained from commercial sunflower oil, was evaluated by 

an automated test using the Rancimat apparatus (Model 743, Metrohm Co. Basel, Switzerland). 

Aliquots of the purified glyceridic matrix [30] were spiked with 0.5 mM of antioxidant and subjected 

to accelerated oxidation. A flow of air (15 L/h) was bubbled successively through the matrices and 

heated at 90ºC. In this process, the volatile oxidation products are stripped from the oil and dissolved 

in the water, increasing the water conductivity. The time taken until there is a sharp increase of 

conductivity is named induction time (IT) and is expressed in hours. All determinations were carried 

out by duplicate. Data were subjected to a one-way analysis of variance (ANOVA) using Statistix 8.0. 

Differences were considered significant when p < 0.05. 

 

4. Conclusions 

 

In conclusion, we have designed and easily synthesized new alkyl hydroxytyrosyl ethers (4a–h) in 

high yield as potential antioxidant additives. All the new compounds have been completely 

characterized by spectroscopic methods. Free hydroxytyrosol recovered and purified from olive oil 

waste waters has been used as starting material. Results obtained by the Rancimat method have shown 

that these derivatives maintain the high protective capacity of free hydroxytyrosol, and further studies 

are being carried out to determine the bioavailability and toxicity of these derivatives. 
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