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We used catalysed reported deposition –fluorescence in situ hybridisation (CARD-

FISH) to analyse changes in the abundance of the bacterial groups Alphaproteobacteria, 

Gammaproteobacteria, and Bacteroidetes, and of hydrocarbon-degrading Cycloclasticus 

bacteria in mesocosms that had received polycyclic aromatic hydrocarbons (PAHs) 

additions. The effects of PAHs were assessed under four contrasting hydrographic 

conditions in the coastal upwelling system of the Rías Baixas: winter mixing, spring 

bloom, summer stratification and autumn upwelling. We used realistic additions of 

water soluble PAHs (approx. 20-30 μg/L equivalent of chrysene), but during the winter 

period we also investigated the effect of higher PAHs concentrations (10-80 μg/L 

chrysene eq) on the bacterial community using microcosms. The most significant 

changes observed were a significant reduction (68±5%) in the relative abundance of 

Alphaproteobacteria. The magnitude of the response of Cycloclasticus bacteria (positive 

with probe CYPU829) to PAHs additions varied depending on the initial environmental 

conditions, and on the initial concentration of added PAHs. Our results clearly show 

that bacteria of the Cycloclasticus group play a major role in low molecular weight-

PAHs biodegradation in this planktonic ecosystem. Their response was stronger in 

colder waters, when their background abundance was also higher. During the warm 

periods, the response of Cycloclasticus was limited, possibly due to both, a lower 

bioavailability of PAHs caused by abiotic factors (solar radiation, temperature), and by 

inorganic nutrient limitation of bacterial growth. 
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Organic pollutant contamination is a constant problem in many coastal waters 

adjacent to urban areas. In addition to occasional oil tanker accidents, there are many 

recurrent sources of marine oil pollution that introduce organic pollutants, particularly 

PAHs: uncontrolled releases from crude oil plants, contaminated freshwater and 

terrestrial run-off, etc (Head and Swannell, 1999). Although the toxic effect of these 

contaminants on higher organisms, such as fish, molluscs and other invertebrates are 

well known (e.g. Preston, 2002), the effects on natural microbial communities are less 

clear (Castle et al., 2006). A heavy oil spill drifting over the water surface, prevents gas 

exchange and eliminates light and may as well directly leach toxins into the water. 

Immediately after an oil spill, the soluble fraction of polycyclic aromatic hydrocarbons 

(PAHs) is released into the water column. This fraction is highly toxic and remains 

dissolved in seawater even after the insoluble fraction has been removed. Low 

molecular weight (LMW) PAHs with less than three benzene rings disappear rapidly, 

mostly within 2-3 days. By contrast, high molecular weight (HMW) PAHs with more 

than four benzene rings remain in the water column for at least 9 days (Yamada et al., 

2003).   

Bacteria represent the predominant agents of hydrocarbon degradation in the 

marine environment and might be both, stimulated or negatively affected, by the 

hydrocarbons. A remarkable decrease in bacterial diversity has been frequently reported 

following exposure to hydrocarbons, as a consequence of a strong selection for 

hydrocarbon-degrading bacteria (e.g. Nyman et al., 1999; Röling et al., 2002; Castle et 

al., 2006). Many hydrocarbon-degrading marine bacteria, mostly belonging to genus 

within the Gammaproteobacteria subclass, have been isolated in recent years (see 
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review by Head et al., 2006). A recent study by McKew et al. (2006) showed that 

different petroleum hydrocarbons are degraded by different bacterial taxa. Particularly, 

they found that PAH-degrading bacterial communities, dominated by the genus 

Cycloclasticus, were distinct from those degrading alkanes. The genus Cycloclasticus, a 

component of the Gammaproteobacteria subclass, had been previously identified as a 

key player in the degradation of petroleum aromatic hydrocarbons (Geiselbrecht et al., 

1998; Kasai et  al 2002), accounting for up to 25% of the total bacterial population in 

severely oil-polluted waters (Maruyama et al., 2003; Harayama et al., 2004).  
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To date, quite a number of studies have investigated changes in bacterial 

composition associated to PAHs pollution using molecular techniques such as DGGE 

(denaturing gradient gel electrophoresis) of PCR amplified 16S rRNA genes. However, 

no consistent pattern of variability emerged from the application of these molecular 

tools (Macnaughton et al.,. 1999; Kasai et al., 2001; Ogino et al., 2001; Castle et al., 

2006).  PCR-based techniques allow for a reasonably good characterization of the 

phylogenetic composition of a sample, but they give limited information on the 

proportions of distinct bacterial groups. In addition, PCR techniques are time-

consuming and expensive and do not allow for an exhaustive study of the temporal 

dynamics of a given bacterial group. One of the major advantages of fluorescence in 

situ hybridisation (FISH) techniques is that they allow for quantification of the actual 

abundance of a given phylogenetic group.  Some authors have compared the results 

emerging from PCR techniques (clone libraries, DGGE) and FISH (Castle and 

Kirchman, 2004; Alonso-Sáez et al., 2007), and concluded that both techniques give 

different information and are, thus, complimentary.  The number of studies assessing 

the effect of PAHs on the bacterial composition using FISH techniques are rather 

limited (Syutsubo et al., 2001; Yakimov et al., 2004; Castle et al., 2006).   
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The research project IMPRESIÓN (Impact of the oil spill from the Prestige on 

the planktonic microbial food web) was designed to assess the effects of the soluble 

fraction of PAHs derived from the Prestige oil spill on the planktonic microbial food 

web of the coastal Atlantic waters under four contrasting hydrographic conditions in the 

coastal upwelling system of the Rías Baixas: winter mixing, spring bloom, summer 

stratification and autumn upwelling (i.e. Cermeño et al., 2006). Within this project we 

analysed the changes in the abundance of three major phylogenetic groups of bacteria, 

and particularly of the hydrocarbon-degrading bacteria belonging to the genus 

Cycloclasticus using CARD-FISH (Pernthaler et al., 2002). We hypothesized that the 

dynamics of the bacterial groups and, particularly, that of Cycloclasticus following 

PAHs addition would vary depending on the experimental and environmental 

conditions such as the concentration of added PAHs, microbial assemblage 

composition, seawater temperature, and seawater nutrient concentrations. 

 

Results. 

For each of the 4 experiments we filled six mesocosms with seawater from the Ría de 

Vigo. Two (March and July) or three (September and January) replicates were used as 

controls (no PAHs addition) and two or three were amended with PAHs. The soluble 

fraction of PAHs was obtained from Prestige–like heavy fuel oil. PAHs addition was 

done after the first sampling (day 0). The experiments lasted 9 days and were sampled 

every 24h during the first 5 days and thereafter, every 48 h. At each sampling point we 

determined the abundance of three major bacterial groups (Alphaproteobacteria, 

Gammaproteobacteria and Bacteroidetes) and of the hydrocarbon-degrading bacteria 

Cycloclasticus using CARD-FISH and specific oligonucleotide probes. 
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In table 1 we have summarized the initial environmental conditions for each of 

the experiments. The lowest seawater temperature corresponded to early March 2005 

due to strong winter mixing. Confinement in the mesocosms produced a spring 

phytoplankton bloom composed of the diatoms Lauderia annulata and Chaetoceros 

socialis during this experiment (M. Varela, pers. comm.) at the expenses of the high 

initial nutrient levels. Dissolved inorganic nitrogen (DIN) and phosphorous (DIP) 

concentrations were the lowest during summer stratification (July), coinciding with low 

chlorophyll-a (chla) levels. During winter mixing (January), maximum concentrations 

of DIN and silicate were recorded, accompanied by extremely low levels of particulate 

matter, prokaryotic abundance and chlorophyll-a. The highest initial chlorophyll-a 

concentration was observed in September, but, these values quickly decreased after day 

1, associated to a decaying diatom bloom (M. Varela, pers. comm.), to levels as low as 

1.6 mg chla m-3 at day 3. The levels of dissolved inorganic nitrogen in the mesocosms 

also decreased dramatically from day 0 to day 1 (from 5.9 to 0.7 μM) in September. 

 

Initial bacterial community composition. 

The mean contribution of Bacteria to total prokaryotic abundance (PA) in the 

initial samples for each experiment ranged from 80%, in September, to 89% in March, 

and did not show significant differences between the 4 experiments (Fig. 1). The 

Bacteroidetes group always dominated the initial bacterial community, contributing 

from 20 to 36 % to total prokaryotic abundance. The initial relative abundances of 

Alpha-, Gammaproteobacteria, and Bacteroidetes were significantly different between 

experiments (ANOVA test, p<0.03, n=20). The Alphaproteobacteria and Bacteroidetes 

groups were relatively more abundant in January, March and July than in September 
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(Bonferroni test, p<0.03, n=20). Gammaproteobacteria were significantly more 

abundant in January than in September (Bonferroni test, p=0.025, n=20). Cycloclasticus 

initial abundance was very close to the detection limit (10
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3 cell mL-1), except in January, 

when their initial abundance was approx. 3 x 103 cell mL-1).  

 

 Dynamics of prokaryotes after PAHs addition. 

The temporal dynamics of the response of prokaryotes to PAHs addition relative 

to unamended controls, revealed only important changes for PA and the relative 

abundance of Alphaproteobacteria (Figure 2). Repeated measures ANOVA 

(RMANOVA) results showed a significant effect of PAHs addition (treatment) on PA 

and the relative abundance of Alphaproteobacteria (%ALPHA) (Table 2, “Treat” 

effect). The effect of PAHs addition was stronger on PA than in % ALPHA, as reflected 

by the higher proportion of variance explained by the treatment (0.965 for PA, 0.830 for 

%ALPHA, see Table 2). There was a significant interaction between time (sampling 

day) and treatment (PAHs addition) for PA but not for %ALPHA (Table 2, “Time x 

Treat” effect). The interaction plots (see experimental procedures section) and multiple 

tests based on estimated marginal means (Figure 3A) indicate that PA was significantly 

higher from day 2 to day 8, in the treated than in the control mesocosms. A clear 

interaction effect between experiment (sampling period) and treatment was also 

detected for both PA and %ALPHA (Table 2, “Exp x Treat” effect). This means that the 

effect of PAHs addition differed between experiments. Interaction plots revealed that 

there is no significant effect of PAHs addition on PA in March, and on %ALPHA in 

July (Figure 3B and D). Whereas PAHs addition stimulated PA (positive effect), the 

relative abundance of Alphaproteobacteria was negatively affected by the treatment. 

Although the effects of PAHs were significant, the magnitude of the PA stimulation was 

rather small, being, on average, 150% relative to control (excluding data from March), 
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and  the relative abundance of Alphaproteobacteria was, on average, 68%, excluding 

data from July. 

During the last experiment (January 2006) we additionally run microcosm 

experiments in 5L-bottles, in order to test for the effect of higher PAHs concentrations 

(Figure 4). We observed a strong positive response of PA in the treatment with the 

highest PAHs concentration, where the percent relative to control reached 712% at day 

8.  In all the other 3 treatments the percent was, on average <150%. The main 

phylogenetic groups did not show any response to PAHs addition, except for 

Alphaproteobacteria, that showed a considerable reduction in all but the treatment with 

the lowest PAHs addition (on average <50%relative to control in days 7-8).  

 

Dynamics of Cycloclasticus abundance after PAHs addition. 

Cycloclasticus reached maximum abundances (15-20 x 103 cell mL-1) in March 

and January (Figures 5A and D). The specific growth rate of Cycloclasticus was also 

higher in March (1.28 d-1) and January (0.99 d-1) than in July (0.85 d-1) and September 

(0.51 d-1). In all the 4 experiments, these bacteria increased their abundance after PAHs 

addition during 2-4 days, and thereafter their numbers decreased to a constant level, 

usually still significantly higher than the background abundance measured in the control 

bags. The maximal contribution of Cycloclasticus bacteria to total prokaryotic 

abundance ranged from 0.3% in July to 6.4% in March. When taking into account the 

complete dataset, we found a significant effect of PAHs addition on the abundance of 

Cycloclasticus (RMANOVA, Table 2). There were significant time x treatment and 

experiment x treatment effects, which indicate that the effect of PAHs on the abundance 

of Cycloclasticus varied in time and that the response was different between 

experiments. Interaction plots show that the positive effects of PAHs addition was 
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significant from day 1 to 4, (Figure 3E) and that the magnitude of the response is higher 

in March and January (Figure 3F).   

In the microcosm experiments run during the last experiment (January 2006), the 

abundance of Cycloclasticus followed a similar temporal dynamics as that observed in 

mesocosms, reaching maximum abundances at day 4-5 (Fig. 6). We observed that on 

average, the half-life time of PAHs was higher in the microcosms than in the 

mesocosms (65 and 24 h, respectively), something that we attributed to a lower 

atmosphere contact area of the microcosms, and that would explain the relatively longer 

persistence  of Cycloclasticus growth in the microcosms than in the mesocosms. The 

maximal abundance (approx. 2 x 105 cells mL-1) was observed at the highest initial 

PAHs concentration, comprising 11% of the total prokaryotic community. There was a 

highly significant lineal relationship between the mean maximum abundance of 

Cycloclasticus and the mean initial PAHs concentration (r2= 0.97, p= 0.015, n= 4). 

When we did this analysis with data from the mesocosm experiments only (Fig. 7), the 

obtained model was not significant (p=0.214, n=4). The maximal abundance of 

Cycloclasticus in July and September was lower than expected by the initial 

concentration of PAHs.  

 

Discussion. 

 

  The mesocosms experiments were designed in order to describe the effect of 

PAHs derived from the Prestige oil spill on the planktonic microbial food web of the 

coastal Atlantic waters under four contrasting hydrographic conditions. Although we 

tested relatively low PAHs concentrations (20-30 μg/L chrysene eq), they were 3–6 fold 

higher than the 90% percentile of the concentrations found along the Galician coast 
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affected by the Prestige oil spill just after the accident, which rarely exceeded 5 µg/L 

chrysene eq (González et al., 2006). Experiments performed with higher PAH additions 

might have given more contrasted results, but we were interested in the effects that had 

possibly been created by that oil spill. The Prestige oil spill was found to consist of a 

complex mixture of hydrocarbons, where the aromatic fraction (mainly naphthalene, 

phenanthrene, and alkyl derivatives) comprised ca. 53% (Alzaga et al., 2004). PAHs  

represented 99.7 % of the water soluble fraction of the Prestige oil and alkanes were 

almost undetectable (J. Albaigés, pers. comm.). Although it was not possible to use 

exactly the Prestige oil, we used an oil with a very similar composition (see 

Experimental procedures section). 
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After fuel addition bacterial abundances usually tend to increase according to 

both experimental and field observations (Ohwada et al., 2003; Nayar et al., 2005; 

Sargian et al., 2005; Bode et al., 2006). Our results also show an overall increase of PA 

after PAHs treatment as compared to the control. However, the effect of fuel additions 

on PA varied between experiments (Table 2). The magnitude of PA increment was 

considerably higher in July and September than in January, and not significant in March 

(Figure 3), thus confirming the hypothesis of a variable response of natural bacterial 

assemblages to oil additions, depending on the initial environmental (temperature, 

nutrient concentration) and biological (planktonic assemblage composition, trophic 

relationships) conditions.  

 

Effects of PAHs addition on major phylogenetic bacterial groups. 

Only a few studies in the last years have focused on the structural changes that 

occur in natural marine planktonic bacteria after oil pollution. They have used either 

qualitative (e.g. fingerprinting methods, Yakimov et al., 2004; Denaro et al., 2005; 
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Castle et al., 2006; Coulon et al., 2006; McKew et al., 2006) or quantitative methods 

(e.g. Fluorescence In Situ Hybridization, Castle et al., 2006 or Q-PCR analysis, McKew 

et al., 2007). Castle et al. (2006) found that naphthalene (a low molecular weight PAH) 

caused a reduction in the number of detectable phylogenetic groups: three days after the 

addition, both Alphaproteobacteria and Bacteroidetes groups became undetectable with 

FISH. In contrast, we did not observe such losses of entire groups at any time in the 4 

mesocosm experiments, although the concentration of PAHs in our study was one order 

of magnitude lower that the concentration used by these authors. However, we did find 

a significant reduction in the relative abundance of Alphaproteobacteria in the PAHs-

amended mesocosms (Table 2 and Figure 3D). There are at least two plausible 

explanations for the reduction of these groups after PAHs addition: they could be 

outcompeted by other groups, or their growth could be inhibited by the chemicals 

added. We did not observe a parallel increment in the relative abundance of either 

Gammaproteobacteria or Bacteroidetes groups, which would support the first 

explanation. Two recent studies provide evidence for the inhibitory effects hypothesis. 

McKew et al. (2006) suggested that Roseobacter-related bacteria, an important group of 

Alphaproteobacteria which may play a key role in the degradation of n-alkanes, could 

be inhibited by PAHs. Labbé et al. (2007) also found that the relative abundance of 

Alphaproteobacteria was about twice higher in pristine than in hydrocarbon-

contaminated Alpine soils. The fact that a reduction in Alphaproteobacteria was not 

observed in July, even a transient increment of Alphaproteobacteria occurs between day 

1 and 4,  could be related to a faster degradation of PAHs due to abiotic factors, such as 

temperature or solar radiation which were higher in that experiment (see next section).  
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Gammaproteobacteria have been found to become predominant after petroleum-

derived hydrocarbon additions (Yakimov et al., 2004; Castle et al., 2006; McKew et al., 

2006). Surprisingly, in our study we did not observe any significant effect of PAHs 
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addition over the relative abundance of Gammaproteobacteria. This contrasting finding 

could be related to the concentration of PAHs added in our mesocosm experiments as 

compared with the levels of addition in the aforementioned studies. Our highest 

concentration was approx. 30 μg/L chrysene eq, whilst the initial hydrocarbon 

concentration was e.g. 640 μg naphthlene/L in the Castle et al. (2006) study. Other 

possible explanation is related to the specificity of the probe used to detect 

Gammaproteobacteria. We did find a significant increase in Cycloclasticus abundance, 

which actually belong to Gammaproteobacteria, however it is very likely that the 

Gammaproteobacteria probe did not target Cycloclasticus (see experimental procedures 

section). Finally, It could also be related to the use of crude oil rather than soluble PAHs 

additions (Yakimov et al 2004, McKnew et al. 2006). Both these studies showed a 

dominance of the Gammaproteobacteria subclass related to alkane-dregrading bacteria 

Thalassolituus or Oleispira, that grows on aliphatic hydrocarbons, alkanoles and 

alkanoates.  

 

Cycloclasticus dynamics after PAHs addition. 

 

Diverse petroleum-degrading bacteria inhabit marine environments, including 

hydrocarbonoclastic bacteria, which use hydrocarbons almost exclusively as carbon 

source (see reviews by Head et al., 2006, McKew et al., 2006). These specialists are 

usually present in very low numbers, and given the appropriate conditions can grow and 

multiply rapidly (Head et al., 2006). We observed a quick response of bacteria 

belonging to the genus Cycloclasticus after PAHs addition, reaching maximum 

abundances in about 3 days. In a very recent paper, McKew et al. (2006) identified 

bacteria belonging to the Cycloclasticus genus dominating the community of bacteria 
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degrading naphthalene, phenanthrene and pyrene. These low molecular weight PAHs 

have been shown to degrade within 2-3 days (Yamada et al., 2003). This would 

perfectly explain the rapid response of Cycloclasticus observed both in mesocosms and 

microcosms. The significant lineal relationship obtained between initial PAHs 

concentration and the maximal abundance of Cycloclasticus in the microcosm 

experiments suggests that this genus was largely responsible for the degradation of the 

low molecular weight fraction of the added PAHs. Kasai et al. (2002) also showed that 

PAHs degradation occurs in parallel with the growth of Cycloclasticus cells on the 

surface of oil-polluted grains of gravel. The explanation for the quick decline of 

Cycloclasticus abundance after day 4-5 is, however, not clear. Their abundance could 

drop off by grazing, or, they could become inactive and die off, once the substrate they 

are specialized on is depleted. The contribution of Cycloclasticus to total prokaryotic 

abundance was relatively low (from 0.3 to 6.4 %) compared to the abundance detected 

after the Nakhodka oil spill (Maruyama et al., 2003), likely reflecting a lower 

concentration of PAHs in our experiments. In July and September, the maximal relative 

abundance of the genus Cycloclasticus was the lowest (0.3 and 0.5%), which could be 

related to a predominance of other groups of hydrocarbon-degrading bacteria.  

These variability in the oil-degrading microbial community could be related to 

environmental differences, such as solar radiation, seawater temperature or nutrient 

concentrations. Dutta and Harayama (2000), for example, observed that sunlight 

promotes a decrease in the oil aromatic fraction. Significant faster photodegradation 

rates have been observed specially for low molecular weight PAHs (Nadal et al., 2006). 

The high solar radiation in July could have favoured photooxidation of PAHs, leading 

to low maximal abundances of Cycloclasticus.  

Coulon et al. (2006) recently showed that seawater temperature can lead to the 

selection of different hydrocarbon-degrading bacterial groups, and concluded that a 
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change in temperature may have a much more profound effect on the oil-degrading 

microbial communities than nutrient additions. However, Cycloclasticus is a cold-

tolerant and versatile group of bacteria that has been shown to grow in the temperature 

range 4-20 ºC (Coulon et al., 2006). Additional experiments conducted in our lab 

showed that when exposing a natural seawater assemblage amended with naphthalene 

(500 μg L
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-1) to different temperatures (from 8 to 25 ºC) Cycloclasticus growth increased 

with increasing temperature (details not shown). On the other hand, high temperatures 

can directly modify the bioavailability of the PAHs by increasing volatilisation and 

solubility of some hydrocarbons (Coulon et al., 2006), and act synergistically with UVB 

radiation enhancing photodegradation rates (Nadal et al., 2006). A faster volatilization 

of the low molecular weight PAHs during July and September, due to the higher 

ambient temperatures, could explain the relatively low abundance of Cycloclasticus 

after the simulated oil spill. The very short half-life of PAHs in July compared to the 

other 3 experiments (11 h, vs 18-24 h in March, September and January) could be 

related to a greater importance of abiotic degradation processes (volatilisation, 

photodegradation) in July than in the other 3 periods. 

Finally, the inorganic nutrient concentration was also lower in July (day 1 

dissolved inorganic nitrogen, DIN, 1.16 μM DIN) and September (DIN, 0.72 μM) than 

in March (DIN, 2.14 μM) and January (DIN, 8.66 μM). The availability of limiting 

resources is a key factor controlling hydrocarbon degradation, and some studies point 

out that nutrient concentrations might directly influence the relative degradation of 

polycyclic aromatic and saturated hydrocarbons, through a change in bacterial 

composition. Laboratory experiments using beach-simulation tanks, demonstrated that 

Cycloclasticus cells grow up to 2 orders of magnitude more after fertilization with 

nitrogen and phosphorus compared to unamended tanks (Smith et al., 1998). A stepwise 

multiple regression analysis including as independent variables temperature, DIN 
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concentration at day 1 and initial PAHs concentration, excluded temperature as a 

significant variable but resulted in a model which explained 95% of the variability 

observed in the maximum abundance reached by Cycloclasticus (Table 3). 

 

In conclusion, we clearly show that bacteria belonging to the genus 

Cycloclasticus play a major role in LMW-PAHs biodegradation in a planktonic 

ecosystem. Their response is stronger in cold waters, where their background abundance 

is also higher. During the warm periods, the response of Cycloclasticus is limited, 

possibly due to both, a higher removal of PAHs by abiotic factors (solar radiation, 

temperature), and because of inorganic nutrient limitation. 

 

Experimental procedures. 

 

Experimental setup and sampling. Six mesocosms of 1.5 m in diameter and 2 m deep 

were filled with seawater from the middle Ría de Vigo. The bags were filled from their 

bottom through a 200 μm mesh, in order to exclude mesozooplankton. Once filled, the 

bags were closed with a bottom stopper and gently transported to shore, where they 

were attached to a harbour in a protected bay. Two of the mesocosms were used as 

controls, two were treated by adding a low concentration of soluble PAHs (approx. 5-10 

μg/L chrysene eq) and two with a high concentration of soluble PAHs (approx. 20-30 

μg/L chrysene eq). Due to logistic problems during the first two experiments, which 

affected the bags with low PAH concentration, in the other 2 experiments we eliminated 

the low concentration treatment in order to triplicate the control and the high PAHs 

concentration treatments. PAHs addition took place after the first sampling (named as 

day 0). The water soluble fraction of PAHs was prepared by addition of 15 kg of 
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Prestige–like heavy fuel oil provided by the Oficina “Técnica de Coordinación del 

Programa de Intervención Científica en la Catástrofe del Prestige” in 300 liters of 0.2 

µm-filtered seawater, taken from the cultivation plant facilities of the Instituto de 

Investigaciones Marinas. The mixture was vigorously stirred with a mechanical stirrer 

during 4 hours to allow extraction of the soluble fraction into seawater. The resulting 

extract, with approx. 700 µg/L of soluble PAHs, was separated from the insoluble fuel 

oil by decantation and collected on 25 litres polyethylene barrels. Finally, the content of 

the barrels were added to the mesocosms to get the desired initial soluble PAHs 

concentrations. PAHs were measured following the MARPOLMON protocol 

(UNESCO, 1984), with modified volumes, and referred to a chrysene standard. 

A total of 4 experiments were run under contrasting initial conditions: one in 

spring (March 2005), one in summer (July 2005), one in early autumn (September 

2005) and one during winter (January 2006). The experiments were done during the 4 

most relevant periods of the seasonal cycle in the coastal NE Iberian Atlantic waters: 

winter mixing, spring bloom, summer stratification and autumn upwelling. In this paper 

we present only data from the control and high concentration treatment for the 4 

experiments. The experiments run for 9 days after the PAH additions. Samples were 

taken every day during the first 5 days, and thereafter every 2 days.  

 

Additional microcosm experiments. In January 2006 we conducted additional 

microcosm experiments in order to test the response of the community to a gradient of 

PAHs concentrations. The microcosms were run in parallel to the mesocosms and with 

the same initial seawater, although the PAHs were already added at day 0. We prepared 

a total of 10 microcosms, consisting in 5L-PET bottles, with a wide opening. The 

microcosms were kept opened and refrigerated by circulating surface seawater and were 

incubated outside the Institute. Two microcosms were used as controls (no PAHs 
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addition), the other 8 were spiked, in duplicate, with final PAHs concentration of 

approx. 10, 20, 40 and 80 μg L
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-1. These concentrations were, thus, 0.5x, 1x, 2x and 4x 

the “High” treatment in the mesocosms. The microcosms were kept for 8 days, 

sampling every 24h, except at day 6. Samples were taken for analysis of bacterial 

community composition, as described below. 

 

Bacterial community composition. Samples from the mesocosms were collected with 

an integrated 1.5 m tube minimizing stirring, to avoid resuspension from the bottom of 

the bags, and deposited into polycarbonate carboys that were brought back to the 

laboratory. Less than 30’ later, 5 ml water samples were fixed by adding to them 0.2-

μm filtered paraformaldehyde (2% final conc.) and subsequently, the samples were 

stored at 4ºC in the dark for 12-18 h. Thereafter, the samples were filtered through a 0.2 

µm polycarbonate filter (Millipore, GTTP, 25 mm filter diameter) supported by a 

cellulose nitrate filter (Millipore, HAWP, 0.45 µm), washed twice with Milli-Q water, 

dried and stored in a microfuge vial at -20ºC until further processing. 

Bacterial assemblage composition changes were monitored using Fluorescence 

In Situ Hybridisation techniques with oligonucleotide probes specific for the domain 

Eubacteria (EUB338) (Amann et al., 1990), the Alpha- (ALF968) (Glöckner et al., 

1999) and Gammaproteobacteria (GAM42a) (Manz et al., 1992) subclasses, the 

Bacteroidetes group (CF319a) (Manz et al., 1996), and the genus Cycloclasticus 

(CYPU829) (Maruyama et al., 2003). We also tried a general probe targeting 

Betaproteobacteria (BET42a) (Manz et al., 1992), but this group was very close to the 

detection limit (< 0.4 %), so these data are not included. We checked the specificity of 

the GAM42a probe using the BLAST program (Altschul et al., 1997). The probe 

sequence did not produce significant alignments with known sequences of many 

hydrocarbon-degrading bacteria, such as Cycloclasticus, Alcanivorax, Thalassolituus, 
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but it aligned to sequences from other bacteria able to degrade hydrocarbons, such as 

Pseudomonas or Marinobacter. 

Filters for CARD-FISH were embedded in low-gelling-point agarose and 

incubated with lysozyme. Filters were cut in sections and hybridised with horseradish 

peroxidase (HRP)-labelled oligonucleotide probes and tyramide-Alexa488 for signal 

amplification following the protocol described in Pernthaler et al. (2002) and Teira et 

al. (2004).  Cells were counter-stained with a DAPI-mix (5.5 parts of Citifluor 

[Citifluor, Ltd.], 1 part of Vectashield [Vector Laboratories, Inc.] and 0.5 parts of PBS 

with DAPI (final concentration 1 µg mL-1).  

The slides were examined under a Zeiss Axioplan 2 microscope equipped with a 

100-W Hg-lamp and appropriate filter sets for DAPI and Alexa488. More than 800 

DAPI-stained cells were counted per sample. For each microscope field, 2 different 

categories were enumerated: (i) total DAPI-stained cells, (ii) cells stained with the 

specific probe. Negative control counts (hybridisation with HRP-Non338) averaged 

0.5% and were always below 1.0% of DAPI-stained cells. The counting error, expressed 

as the percentage of standard error between replicates, was < 2% for DAPI counts and < 

9% for FISH counts. 

 

Statistical analysis. In order to test for differences at day 0 between the 4 experiments, 

we used ANOVA after log or arcsine data transformation. For post hoc multiple 

comparisons we used the Bonferroni test in order to control for type I errors.  

A repeated measures ANOVA (RMANOVA) with one within-subjects factor 

(time) and two between-subjects factors (experiment and treatment) was conducted to 

asses time effects and all possible interactions. Time is a within-subjects factor because 

the same mesocosm is sampled at sequential time periods (every 24-48 h). All data 
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fitted a normal distribution (Kolmogorov-Smirnoff test), however, even after log or 

arcsine data transformation, the homogeneity of covariance matrices failed for some 

variables. For the latter case we applied the Huynh-Feldt adjustment to correct p values 

(Scheiner and Gurevitch, 1993). Profile plots and multiple comparison tests with the 

estimated marginal means were used to interpret interactions between factors. The 

marginal means are the means of each variable across levels of each factor predicted by 

the model. Interaction plots are the line plots of marginal means of a response variable 

across levels of a factor. When two factors are involved these are called interaction 

plots. We constructed the interaction plots representing time or experiment factors along 

the X-axis and the treatment factor as different lines in the same plot. Parallel or roughly 

parallel lines indicate little or no interaction. 
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Table 1. Mean ± standard error initial values for environmental and biological variables. 

Temperature (T) in ºC, salinity (Sal), dissolved inorganic nitrogen (DIN) in μM, 

dissolved inorganic phosphorous (DIP) in  μM, silicate (SiO

1 

2 

3 

4 

5 

6 

7 

4) in μM, particulate 

organic carbon (POC) in μM,  particulate organic nitrogen (PON) in μM, prokaryotic 

abundance (PA) in x105 cell mL-1, and chlorophyll-a concentration (Chla) in mg m-3.  

N=6. 

 

Sampling Period T Sal DIN DIP SiO4 POC PON PA Chla 

March 10.5 

±0.0 

35.48 

±0.02 

4.40 

±0.08 

0.52 

±0.00

3.17 

±0.04

16.1 

±1.1 

2.7 

±0.2 

7.2 

±0.3 

3.2 

±0.2 

July 20.8 

±0.0 

35.02 

±0.01 

0.58 

±0.11 

0.15 

±0.01

0.59 

±0.05

23.4 

±0.3 

3.4 

±0.2 

11.7 

±0.5 

1.9 

±0.1 

September 15.4 

±0.0 

35.73 

±0.00 

5.66 

±0.73 

0.51 

±0.08

0.41 

±0.02

33.9 

±1.6 

6.2 

±0.4 

17.4 

±0.2 

10.6 

±0.7 

January 12.4 

±0.0 

35.60 

±0.00 

7.70 

±0.44 

0.48 

±0.02

3.72 

±0.15

9.2 

±0.6 

1.3 

±0.1 

5.8 

±0.3 

0.5 

±0.0 

8 

9 

10 

11 

12 
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Table 2. Repeated measures ANOVA with one within-subjects factor (sampling day, 

time), and two between-subjects factors (experiment, exp; and treatment, treat). PA, 

prokaryotic abundance, %EUB, relative abundance of bacteria (over DAPI counts), 

%ALPHA, relative abundance of Alphaproteobacteria, %GAMMA, relative abundance 

of Gammaproteobacteria, %BACT, relative abundance of Bacteroidetes, CYCLO, 

abundance of Cycloclasticus. For each pair factor or factor combination and variable, 

the significance (upper value) and the partial η

1 

2 

3 

4 

5 

6 

7 

8 

9 

2 , which reflects the proportion of 

variance associated with each factor or factor combination, (lower value, italics) are 

given. Significant effects are in bold.  

Effects PA %EUB %ALPHA %GAMMA %BACT CYCLO

Within-subjects       

    Time <0.001 0.006 0.011 <0.001 <0.001 <0.001 

 0.547 0.360 0.302 0.555 0.555 0.543 

    Time x Exp <0.001 0.002 <0.001 <0.001 <0.001 <0.001 

 0.775 0.585 0667 0.881 0.881 0.669 

    Time x Treat <0.001 0.301 0.332 0.089 0.957 <0.001 

 0.503 0.153 0.129 0.186 0.021 0.523 

    Time x Exp x Treat <0.001 0.450 0.166 0.996 0.965 <0.001 

 0.671 0.354 0.354 0.081 0.064 0.668 

Between-subjects       

    Exp <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

 0.904 0.904 0.938 0.947 0.947 0.970 

   Treat <0.001 0.373 <0.001 0.411 0.411 <0.001 

 0.965 0.114 0.830 0.069 0.069 0.969 

    Exp x Treat <0.001 0.959 0.011 0.271 0.271 <0.001 

 0.958 0.040 0.732 0.230 0.230 0.931 
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Table 3. Regression model relating maximum Cycloclasticus abundance (cells mL-1) to 

initial PAHs concentration (PAHs, in μg L

1 

2 

3 

4 

-1) and dissolved inorganic nitrogen 

concentration at day 1 (DIN, in μM). 

 

Independent 

variable 

N R2 Adjusted 

R2

F P Coefficient 

± SE 
Β Coef. P 

    PAHs 8 0.945 0.923 43.2 0.001 2583±332 0.842 0.010 

    DIN      5526±1897 0.315 0.033 

    Constant      -5756±14403  0.100 

5 

6 
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Figure 1. Initial composition of the bacterial assemblage during the different sampling 

periods. The relative abundance of each group (Alpha, Alphaproteobacteria; Gamma, 

Gammaproteobacteria; Bact, Bacteroidetes and Eub, Eubacteria) is expressed as 

percentage of total DAPI-stained cells. 

Figure 2. Time course of mean total prokaryotic abundance (black circles), 

Alphaproteobacteria (white circles), Gammaproteobacteria (black triangles) 

Bacteroidetes (white triangles) and Eubacteria (squares) in the PAHs-amended 

mesocosms expressed as a percentage relative to the values in the control mesocosms 

(Abundance in treat x 100/Abundance in control) in March (A), July (B), September (C) 

and January (D). The error bars represent the standard error from two replicates in 

March and July and three replicates in September and January. The horizontal lines in 

each graph represent the 200, 100% (no change) and 50% relative to control. 

Figure 3. Interaction plots showing  estimated marginal means (means of each variable 

predicted by the ANOVA model) of prokaryotic abundance (A, B), % 

Alphaproteobacteria (C, D) and Cycloclasticus abundance (E, F) in control (dashed 

lines) and PAHs-amended (solid lines) mesocosms across time (A, C, E) or experiment 

(B, D, F). Solid symbols represent a significant effect of treatment at each level of time 

or experiment; open symbols, not significant effect.  

Figure 4. Time course of total prokaryotic abundance (black circles), 

Alphaproteobacteria (white circles), Gammaproteobacteria (black triangles) 

Bacteroidetes (white triangles) and Eubacteria (squares) in microcosms amended with 

10 (A), 20 (B), 40 (C) and 80 (D) μg L-1 of PAHs, expressed as a percentage relative to 

the values in the control mesocosms. The error bars represent the standard error. The 
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horizontal lines in each graph represent the 200, 100% (no change) and 50% relative to 

control. 

Figure 5. PAHs concentrations (expressed as percentage of initial concentration, in μg 

L-1), and changes in Cycloclasticus abundance in control and PAHs-amended 

mesocosms in March (A), July (B), September (C) and January (D). 

Figure 6. PAHs concentration and changes in Cycloclasticus abundance in microcosms 

amended with 10 (A), 20 (B), 40 (C) and 80 (D) μg L-1 of PAHs. 

Figure 7. Relationship between the average maximal abundance of Cycloclasticus and 

the average initial concentration of PAHs comparing data from mesocosms (black 

symbols) and microcosms (white symbols). Dashed line represent the regression line 

obtained with microcosm data . 
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