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Abstract

In this paper we explore connections between the underlying physics of dissipative systems
and nonlinear robust control. In particular, we concentrate on the problem of stabilizing
stationary solutions of nonlinear dissipative systems with states distributed in space. Dissi-
pative systems are equipped with an entropy function which we employ to relate dissipation
with the Hamilton-Jacobi-Bellman equation. This relation allows us to establish formal
links between the dynamic properties of dissipative systems, passivity and optimal stabiliz-
ing control, as it is understood in systems theory. Robustness issues in controller design,
are also discussed in the context of front or pulse spatial pattern stabilization.
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1 Introduction

Dissipation is a physical concept closely related to the first and the second law of thermody-
namics. The first law ensures conservation of mass and energy in all its forms. The second law
determines the way in which the different forms of energy and material species evolve (relate
and convert one into each other) through transport phenomena and chemical reactions, taking
place on a given spatial domain. The evolution criterion is formally stated in terms of a concave
function, called entropy, which never decreases in isolated processes and achieves its maximum
at equilibrium. Thus, systems out of equilibrium spontaneously evolve to equilibrium through
irreversible processes that produce entropy. In this way, dissipation is a positive function that
quantifies the rate at which entropy is produced (Glansdorff and Prigogine, 1971).

This notion remains valid for open systems, we will refer to as Dissipative Systems. Now, in
addition to entropy production, there exists an entropy flux between the system and its sur-
roundings as materials and energy flow through the domain. In this context, dissipation imposes
a particular relationship between transport processes and their associated thermodynamic forces
(gradients) which guides the dynamic evolution of the system. However, the combined action
of fluxes and rate processes can move the states of the system far away from equilibrium thus
giving room to a rich variety of complex behaviors. From a control perspective, understanding
the interplay between fluxes and dissipation seems essential to guide (control) the evolution of
dissipative systems. Such objective was stated in 1934 by Donnan and Guggenheim (Demirel,
2002) in the following terms:

”A finite amount of organization may be purchased at the expense of a greater amount of dis-
organization in a series of interrelated spontaneous actions”

With the intention of developing efficient ways of purchasing organization, we explore, in this
paper, connections between the underlying physics of dissipative systems and nonlinear robust
control. In particular, we concentrate on the problem of stabilizing stationary solutions of
nonlinear dissipative systems with states distributed in space (Distributed Process Systems).
This class of dissipative systems plays a central role in many biological systems (Murray, 1993;
Demirel, 2002) as well as in chemical and material processing industries (Christofides and Daou-
tidis, 1997a), as many of its operations involve convection diffusion and reaction phenomena.
Interesting examples include, to name a few, catalytic reactors, chemical vapor deposition units,
crystallization or thermal processing.

The control of distributed process systems has received considerable attention from the control
community over the last years. Excellent surveys on this topic, covering both theoretical and
applications aspects, can be found in (Balas, 1983; Lasiecka, 1995; Christofides, 2001). Standard
approaches rely on a state-space-like representation of the original infinite dimensional system by
spatial discretization of the set of partial differential equations. Common discretization schemes
include finite differences or finite elements. Standard linear or nonlinear finite dimensional
control design methods are then employed to construct the controller (see for instance Dochain
et al, 1992).
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Alternative control design methods, which take into account the spatially distributed nature of
the system, are based on spectral decomposition schemes which retains the essential properties of
the spatial differential operator. This approach was extensively employed by Christofides and
co-workers to derive robust stabilizing nonlinear controllers based on feed-back linearization
(Christofides and Daoutidis, 1996; Christofides and Daoutidis, 1997b; Christofides, 2001).

A different -although complementary- approach is the one proposed by Ydstie and Alonso (1997)
and Alonso and Ydstie (1996; 2001) to develop passive stabilizing controls for distributed process
systems. The approach settles its roots on the second law of thermodynamics and passivity, as
it is understood in systems theory (Desoer and Vidyasagar, 1975; Sepulchre et al, 1997). The
second law, in the exergy form, gives convexity which in turns provides a general answer to
the question of finding Lyapunov function candidates to assess system’s evolution. Passivity
concepts link inputs to outputs while preserving the infinite dimensional structure of the system.
These two concepts were employed by Hangos et al (1999) to assess structural stability properties
in chemical process plants. Alonso et al (2000) applied them to design stabilizing high gain
decentralized controllers for convection-diffusion-reaction processes. The theory was recently
extended to hyperbolic process systems by Ydstie (2002).

In this work, we maintain the thermodynamic formalism to explore new links between the
underlying physics of dissipative process systems and nonlinear control. The existence of an
entropy-like function will allow us to relate dissipation with a Hamilton-Jacobi-Bellman type
equation. Such connection will open direct ways to establish passivity conditions for dissipative
systems. In this regard, one main conclusion is that any dissipative system is in fact passive when
appropriate inputs and outputs are selected. We also derive an optimal stabilizing control result
which can be considered as a general re-statement of Prigogine’s Minimum Entropy Production
principle (Glansdorff and Prigogine, 1971). In the light of these results, we finally discuss
robustness issues in controller design, as it may become a relevant problem in the control of
front or pulse-type spatial pattern formation.

The paper is organized as follows: In Section 2 we provide a general description of dissipative
systems and their relevant properties. Connections with passivity are established in Section
3. In Sections 4 and 5 we develop the main results on optimal and robust stabilizing control
of dissipative and discuss their implications in controller design. these ideas and results are
illustrated, through the paper, on two examples involving complex reaction networks and a
class of nonlinear diffusion-reaction dissipative system.

2 Dissipative Systems: Description and Properties

The class of systems we will consider in this work are derived from inventory balances of the
form:

dv

dt
= φ + π (1)

where v is an n-dimensional vector of conserved properties (inventories), and φ and π are
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the corresponding fluxes and production terms, respectively. Eqn (1) provides a macroscopic
description of a process system which is associated to a given spatial domain V with smooth
boundary B. On this domain, the time-space evolution of the conserved properties can be
obtained from (1) by introducing the density variables z, f and Σ so that:

v =
∫
V zdV π =

∫
V ΣdV v =

∫
B fndB

where n is a unit vector pointing outwards of the boundary B. Using these definitions and
applying the divergence theorem over the inventories, the following set of partial differential
evolution equations result:

zt + ∂kfk = Σ(z) + p (2)

where Einstein’s notation is employed to denote spatial differentiation. The vector function
z(xk, t) ∈ Z, defined over the set D = (V × B ∪ T ) with T being the semi-open time interval
[0,∞), will be referred to as the field. Vector functions fk, Σ(z) and p describe microscopic fluxes
through the domain, production densities and controls, respectively. Fluxes and production
terms in dissipative systems have a particular structure, well motivated by thermodynamic
arguments (see for instance Jou et al, 1996). In this way, the flux vector fk can be partitioned
into convective and diffusive contributions as follows:

fk = vkz − fd
k (3)

where vk denotes the k component of the fluid velocity field and fd
k represents the diffusive

contribution. A formal characterization of the structure of fluxes in (2) is summarized next in
the following assumptions:

Assumption A1. System (2) is equipped with a convex function a(z)

Assumption A2. The flux vector fd
k in (3) is related to the field z through an expression of

the form:
fd

k = L(A)X (4)

where X = ∂kA, and A is defined as the directional derivative of a(z) so that A = dza. L(A)
in (4) is assumed to be positive definite and symmetric.

Assumptions A1 and A2, simply state the formal link existing between the densities of extensive
variables z (such as internal energy and mole numbers) and their intensive counterparts A
(temperature and chemical potentials). As discussed in Alonso and Ydstie (2001), such a
connection is established through the existence of an entropy-like function (Assumption A1)
which, by being convex, makes the map z → A one-to-one. In fact, a(z) was employed by the
authors to construct a convex function bounded from below which set up the basis to derive
passive conditions. The process is as follows: given a stationary reference z∗, the new convex
function b(z; z∗) is constructed as the difference between the original a(z) and its supporting
hyperplane at z∗ so that:

b(z; z∗) = a(z) − a(z∗) − (z − z∗)T A∗ (5)
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As shown in Lemma 2 (Alonso and Ydstie, 2001), b(z; z∗) is bounded by the fields as:

0 ≤ q0 ‖z − z∗‖2
2 ≤ b(z; z∗) ≤ q1 ‖z − z∗‖2

2 (6)

where q0 and q1 are strictly positive constants. It must be noted that since b(z; z∗) is itself
convex, the map (z − z∗) → (A − A∗) is also one-to-one.
On the other hand, Eqn (4), in Assumption A2, imposes a relationship between diffusive fluxes
and thermodynamic forces X (the spatial gradients of A) known in irreversible thermodynamics
as the Onsager-Casimir relationships (see for instance Jou et al, 1996 or Demirel, 2002).Finally,
Σ(z) in (2) is assumed to be Lipschitz continuous. Such a condition, is expressed next as an
assumption:

Assumption A3. There exists a reference z∗ and a positive constant µ such that:

(A − A∗)T [Σ(z) − Σ(z∗)] + �µ(z; z∗) = µ(A − A∗)T (A − A∗) (7)

with �µ(z; z∗) ≥ 0 for every z.

Note that condition (7) can always be imposed on Σ(z) in terms of A, since it is Lipschitz and
the map (z−z∗) → (A−A∗) is one-to-one. Consequently, there always exists a positive constant
µ such that �µ(z; z∗) ≥ 0. The reason for writing the Lipschitz condition as in (7) is that it will
allow us to easily state connections with time independent states operating both near and far
from thermodynamic equilibrium (see Demirel, 2002). In this spirit, we include the following
definition:

Definition 1. Pure Dissipative Systems are defined as those which, in addition to Assumptions
A1-A2, satisfy that �0(z; z∗) > 0 for every z �= z∗ and �0(z∗; z∗) = 0 in (7). If �0(z; z∗) ≥ 0 only
for z such that ‖z − z∗‖ ≥ ε for some positive ε, the system will be Dissipative.

To illustrate the implications of Definition 1 on a dynamic context, let as consider the class
of well-mixed systems (with states not distributed in space) on closed domains. In this case,
equations (1) become of the form:

·
z= Σ(z) (8)

By choosing a reference z∗ and computing the time derivative of b(z; z∗) we have that:

·
b= (A − A∗)T [Σ(z) − Σ(z∗)] = −�0(z; z∗)

Since, from Eqn (6), b is positive definite, we can explore the dynamic properties of the system
with the help of LaSalle’s theorem (see Khalil, 1996). To that purpose, let us define the set

Ω = {z ∈ Z | ‖z − z∗‖ ≥ ε}, where according to Definition 1,
·
b≤ 0. Let E ⊂ Ω be the set of

points where �0(z; z∗) = 0, and M the largest invariant set in E. Then, every solution in Ω
approaches M as t → ∞. Note that for pure dissipative systems, the only element of the set
M is z∗, the equilibrium state. One important consequence of this argument, we will make use
of later on in the sequel, is that the time integral of �0(z; z∗), must be bounded as:
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∫ ∞

0
�0(z; z∗)dt < ∞ (9)

Finally, the description of dissipative systems is completed with the appropriate boundary
conditions. In that intention, we follow Alonso et al (2000) and partition the boundary B into
three sets of positive measure B = Bc ∪Bd ∪B0. Bc refers to that part of the boundary through
which material flows with velocity v. This boundary is divided into two disjoint sets satisfying:

v · n(B+
c ) ≥ 0

v · n(B−
c ) ≤ 0

(10)

with n being a unit vector normal to the surface and pointing outwards. Conditions (10)
characterize the regions of the boundary where material leaves and enters, respectively. On the
other hand, the sets Bd ∪ B0 define those parts of the boundary associated to diffusive fluxes
and zero fluxes conditions. Boundary conditions on B are of the form:

z(B−
c ) = z∗

fd · n(Bd) = −H[A − A∗]
fd · n(B0) = 0

(11)

where H is a positive definite matrix of transfer coefficients at the boundary and z∗ a given
reference.

We end up this section with a typical example of dissipative systems, namely that of a com-
plex reaction network. This example, taken from Gorban et al (2000), will serve to motivate
Assumption A3 as well as to illustrate the definition of pure dissipative systems.

2.1 Example 1: Dissipative Reaction Networks (Gorban et al, 2000)

Let us consider an isolated and well-mixed (homogeneous) material system where n chemical
species (involving p types of atoms) participate on a r-reaction network of the form:

∑n
i=1 αijAi =

∑n
i=1 βijAi for j = 1, ..., r

Ai represents the i-specie and αij and βij are its corresponding stoichiometric coefficients for
the j-reaction. Since the system is assumed to be isolated and well-mixed, the time evolution of
the concentrations for the n species can be described by a set of ordinary differential equations
of the form:

·
c=

r∑
j=1

νjWj (12)

where νj are stoichiometric vectors having as elements νij = βij − αij . The vector c represents
chemical specie concentrations and Wj are the net reaction rates, which are assumed to obey
the mass action law:
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Wj = k+
j

n∏
i=1

c
αij

i − k−
j

n∏
i=1

c
βij

i (13)

with k+
j and k−

j being positive kinetic parameters for the direct and inverse j-reaction rates,
respectively. The phase space for this system is the space of positive concentrations constrained
by the set of atomic conservation laws.

Next we show that system we just described is in fact Purely Dissipative (Definition 1) with
respect to a constant reference c∗, defined as:

W ∗
j = 0 for j = 1, ..., r (14)

To that purpose, let us consider the convex function:

a(c) =
n∑

i=1

ci(ln ci − 1) (15)

As discussed by Gorban et al (2000), this function is closely related to free energy for systems
at constant temperature and volume. The dual A to the field c is obtained by computing the
directional derivative of a(c), being its elements Ai = ln ci for i = 1, ..., n. Function b -see
Eqn (5)- in our example is now constructed as the difference between a(c) and its supporting
hyperplane at c∗ so that:

b(c; c∗) = a(c) − a(c∗) − A∗T (c − c∗) (16)

Substituting (15) (and the expression for A) into (16), and reordering terms, we get:

b(c; c∗) =
n∑

i=1

ci

[
ln

ci

c∗i
− 1

]
+

n∑
i=1

c∗i (17)

It is an easy matter to check whether b(c; c∗) is, in fact, positive for c �= c∗ and b(c∗; c∗) = 0.
Taking the time derivative of b along (12) and using (7) with µ = 0 we have that:

·
b = (A − A∗)T [Σ(z) − Σ(z∗)]

= −�0(c; c∗)

with

�0(c; c∗) = −(A − A∗)T
r∑

j=1

νj(Wj − W ∗
j ) (18)

Note that �0(c∗; c∗) = 0 so, in order to check whether this system is purely dissipative (Definition
1) we must show that �0(c; c∗) > 0 for any c �= c∗. To that purpose, let us define the following
auxiliary variables:

7

To cite this article: 
Alonso, A. A., Fernandez, C. V., Banga, J. R. (2004)  
Dissipative systems: from physics to robust nonlinear control. 
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 14(2), 157-179 



xj =
∏n

i=1 c
αij

i yj =
∏n

i=1 c
βij

i
(19)

zj = ϕjxj λj = yjz
−1
j (20)

for j = 1, ..., r, and ϕj = k+
j /k−

j . Using (19) and (20) we can re-write (18) as:

�0(c; c∗) =
r∑

j=1

k−
j (AT

νj)(yj − ϕjxj) =
r∑

j=1

k−
j

[
ln

yj

ϕjxj

]
(yj − ϕjxj)

�0(c; c∗) =
r∑

j=1

k−
j zj(λj − 1) lnλj

=
r∑

j=1

k−
j zjf(λj)

with f(λj) = (λj−1) lnλj . Since the phase space for the system is that of positive concentrations
and f(λj) is positive definite for every λj �= 1, then it follows that �0(c; c∗) > 0 except at λj = 1
for all j. Recovering the original variables, λj = 1 implies (for all j):

k+
j

n∏
i=1

c
αij

i = k−
j

n∏
i=1

c
βij

i

which coincides with the reference (14).

3 Passivity Conditions in the Context of Dissipative Systems

In this section, we show that dissipative systems, as described by Eqn (2) and Assumptions
A1-A3, are in fact passive in the standard sense of system’s theory (Desoer and Vidyasagar,
1975), when appropriate inputs and outputs are selected. This result will set up the basis on
which to derive connections with optimal control and asymptotic stabilization conditions.

Since the class of systems we are dealing with are in general distributed in time and space,
let us first define the operator < α, β >V as that representing the inner product of two vector
valued functions on the domain V, so that:

< α, β >V=
∫
V

αT βdV

Using this operator, the L2-norm of a given vector valued function α is defined as:

‖α‖2
V =<α,α>V
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Lemma 1. Under assumptions A1-A3, there exists a function B(t) bounded from below and
satisfying:

B(t + T ) − B(t) ≤
∫ t+T

t
< y , u >Vds (21)

for any t, T ≥ 0, with y = A−A(z∗), u = p− p∗ + µy and z∗ being a given stationary reference
associated to a control p∗.

Proof:
Let us choose a stationary reference z∗ satisfying:

∂kvkz
∗ = ∂kfk(A∗, X∗

k) + Σ(z∗) + p∗ (22)

with boundary conditions of the form (10) and (11), and define the Kirchoff transform:

Γ =
∫ A(z)

A(z∗)
L(A)dA (23)

Using the field in deviation form (z = z − z∗) and (23), system (2) can be re-written as:

zt + ∂kvkz = ∆Γ + Σ(z) − Σ(z∗) + p − p∗ (24)

where ∆ represents the usual Laplacian operator. Differentiating b(z; z∗) -as defined in (5)- and
combining it with (24) (see also Alonso et al, 2000) we get:

bt = [A − A(z∗)]T zt (25)

= −∂k (vkb) + A
T ∆Γ + A

T [Σ(z) − Σ(z∗)] + A
T (p − p∗) (26)

= −∂k (vkb) + A
T ∆Γ − �µ(z; z∗) + µA

T
A + A

T (p − p∗) (27)

where relation (7) in Assumption A3 has been employed. Using y = A−A(z∗), u = p− p∗ +µy
and integrating over the spatial domain V, we obtain:

Bt = −
∫
Bc

b(z; z∗)v · ndB+ < A,∆Γ >V −Lµ+ < y, u >V (28)

with:

B =
∫
V

b(z; z∗)dV

Lµ =
∫
V

�µ(z; z∗)dV

Green’s formula gives us:

< A,∆Γ >V=
∫
Bd

A
T fd · ndB− < X, L(A)X >V (29)
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which combined with (28) leads to:

Bt = −
∫
Bc

b(z; z∗)v · ndB+
∫
Bd

A
T fd · ndB − Dµ+ < y, u >V (30)

with Dµ defined as:

Dµ =< X, L(A)X >V +Lµ (31)

Boundary conditions (10) and (11) make the first two terms at the right hand side of (30)
negative. In addition, under Assumptions A1- A3 Dµ ≥ 0 for some positive µ and B positive
definite. Consequently, we can bound Bt as:

Bt ≤< y, u >V

and the result follows by integration over the interval (t, t + T )

For pure dissipative systems, the term Dµ in (31) with µ = 0 has a precise physical meaning:
it quantifies the rate of entropy produced by the system on the domain. The function D0 is
positive definite for every X �= X∗, z �= z∗ and attains its minimum -D0 = 0- at the reference
(X∗, z∗). Thus for p = p∗, we have that Bt ≤ −D0 and the system evolves to the reference.
This property is known in irreversible thermodynamics as the Principle of Minimum Entropy
Production (Glansdorff and Prigogine, 1971). We will refer to Dµ as the Generalized Dissipation
Function.

Corollary 1. Let
∫ t+T
t < A, p >V ds < ∞ for every t, T ≥ 0. Then z and X are bounded in

the L2-norm

Proof:
First we note that from Lemma 1, inequality (21) can also be written in terms of the generalized
dissipation function (31) as:

B(t + T ) − B(t) ≤ −
∫ t+T

t
Dµds +

∫ t+T

t
< y, u >V ds (32)

≤ −
∫ t+T

t
Lµds +

∫ t+T

t
< y, u >V ds

For µ = 0 we have that ∫ t+T

t
< y, u >V ds =

∫ t+T

t
< A, p >V ds < ∞

and
∫ ∞
0 �0(z; z∗)dt < ∞ (Eqn (9) in Assumption 3). Then, for every t, T ≥ 0, B(t) < ∞. By

integrating (6) on the domain V, it follows that q0 ‖z‖2
V ≤ B so the field is bounded in the

L2-norm.
To show that this is also the case for X we note that, since L(A) is positive definite (Assumption
A2), there exists a positive constant δ1 such that:
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δ1

∥∥X
∥∥2

V ≤< X, L(A)X >V

Combining this inequality with (32) we have that:

δ1

∫ t+T

t

∥∥X
∥∥2

V ≤ B(t) − B(t + T ) +
∫ t+T

t
(−Lµ+ < y, u >V)ds

and the result follows since the right hand side is bounded with µ = 0, for every t, T > 0.

A number of consequences, useful for stabilization and robust control design, can be drawn
from these results. These are summarized next in the form of remarks.

Remark 1. Systems satisfying Lemma 1 are is in fact passive in the sense given in standard
system theory (see Desoer and Vidyasagar, 1975) with storage B, output y and input u. Note
that Pure Dissipative Systems are also passive for output A and input p since D0 ≥ 0. For
general dissipative systems there is always some positive µ such that Dµ ≥ 0. Thus any
dissipative system can be rendered passive through proportional control p−p∗ = −ωy +u′ with
gain ω ≥ µ. Such is the case since:

< y, u >V= −(ω − µ) < y, y >V + < y, u′ >V
< y, u >V≤< y, u′ >V

Remark 2. Corollary 1 guarantees that the field z(xk, t) is a member of H1,2(V; Rn). Such
a condition was imposed by Alonso and Ydstie (2001) as an assumption in what they called
the dissipation conditions. The present arguments state a direct connection with the physical
basis of dissipative systems, formalized in Assumptions A1-A3. The main consequence of hav-
ing z(xk, t) ∈ H1,2(V; Rn) is that the field z (and any Lipschitz transformation map) can be
expanded as an infinite series of the form:

z =
∞∑

j=1

cj(t)φj(x) (33)

where the set {φi}∞i=1 represents a complete orthonormal basis satisfying the Euler-lagrange
equations (Smoller, 1983):

∆φj = −λjφj (34)

with appropriate boundary conditions. The eigenspectrum Λ(∆) = {λj}∞j=1 consists of an
ordered set of positive real numbers with the property that λi < λj for every i < j. This
property will be employed later on to derive asymptotic stabilization conditions.
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4 Optimal and Robust Stabilization

So far, we have shown that dissipative systems can be rendered passive by an appropriate
selection of inputs and outputs. In the next two sections we go one step further and derive
conditions for optimal and robust stabilizing control design. To that purpose, let us consider
system (2) in deviation form with respect to a stationary reference z∗ satisfying (22), with
boundary conditions of the form (10)-(11). Defining the field z = z− z∗, the control p = p− p∗,
and using Kirchoff transform (23), system (2) becomes:

zt + ∂kvkz = ∆Γ(A;A∗) + [Σ(z) − Σ(z∗)] + p (35)

The following lemma summarizes a number of relations between the field and its dual, which
will be employed in the sequel.

Lemma 2. Let b(z; z∗) be a convex function defined as in (5), then the following inequalities
hold:

1. < A, A >V≥ δ2
0 ‖z‖2

V
2. < X, X >V≥ λ1

∥∥A
∥∥2

V
3. < A,∆Γ >V≤ −λ1δ1

∥∥A
∥∥2

V

where δ0 and δ1 are the smallest eigenvalues of the b-Hessian and L(A), respectively, over all
possible values of the field, and λ1 is the principal eigenvalue of the Laplacian operator.

Proof:

The first inequality is a direct consequence of Assumption A1. Since b is convex, its Hessian,
defined as:

H =
∂2b

∂zi∂zj

is positive definite. Therefore, there exists a one-to-one map A → z so that that A = Q(z; z∗)z
with Q being a positive definite matrix (Dennis and Schnabel, 1983):

Q(z; z∗) =
∫ 1

0
H [z∗ + ε(z − z∗)] dε

By choosing δ0 as the smallest eigenvalue of Q over all possible values of the field, inequality 1
follows.

To prove inequality 2, we note that z, and therefore its dual A, are members of H1,2(V;Rn).
Thus, we can expand each element of the field (and its dual) in terms of {φi}∞i=1 (Remark 2) so
that:

< A, A >V=
∞∑

j=1

a2
j (t) (36)
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< A,∆A >V=
∞∑

j=1

a2
j (t) < φj(x),∆φj(x) >V= −

∞∑
j=1

λja
2
j (37)

Since the eigenvalues λj are positive real numbers satisfying that λi < λj for every i < j, we can
bound (37) as < A,∆A >V≤ −λ1

∥∥A
∥∥2

V , where λ1 is the principal eigenvalue (i.e. the smallest

positive eigenvalue). In addition,
∥∥X

∥∥2

V ≥ − < A,∆A >V so by combining both inequalities
we obtain:

∥∥X
∥∥2

V ≥ λ1

∥∥A
∥∥2

V (38)

In order to prove inequality 3, we make use of Green’s formula (29) with boundary conditions
(10)-(11) so that:

< A,∆Γ >V=
∫
Bd

A
T fd · ndB− < X, L(A)X >V (39)

≤ − < X, L(A)X >V≤ −δ1

∥∥X
∥∥2

V (40)

the result then follows by combining (38) and (40)

< A,∆Γ >V≤ −δ1λ1

∥∥A
∥∥2

V

Next we connect dissipation and optimal stabilizing control by adapting Bellman-type sufficient
conditions for optimality (Sepulchre et al, 1997) to our class of dynamic systems.

Proposition 1.

Consider a dissipative system (35), with a generalized dissipation function Dµ (31). Then, there
exists a controller of the form p = −ωA with ω = 2µ which makes the system exponentially
stable and minimizes the functional:

J = B(tf )+
∫ tf

0

[
− < A, f >B +Dµ +

1
4µ

< p, p >V
]
dt (41)

Proof:

As in Lemma 1, we start by computing the time derivative of b along (35) and integrating over
the domain, so that:

Bt = − < X, L(A)X >V + < A, f >B + < A, [Σ(z) − Σ(z∗)] >V + < A, p >V (42)

Using (7) (Assumption A3) and the definition of Dµ -Eqn (31)- Eqn (42) becomes:

Bt = −Dµ+ < A, f >B +µ < A, A >V + < A, p >V (43)
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Boundary conditions (10)-(11) make < A, f >B≤ 0. Then, by applying the control law p =
−ωA we get:

Bt ≤ −Dµ − µ < A, A >V

Note that the generalized dissipation function can be bounded as Dµ ≥< X, L(A)X >V (As-
sumption 3), so by Lemma 2 Dµ ≥ δ1λ1

∥∥A
∥∥2

V and therefore:

Bt ≤ −(µ + δ1λ1)
∥∥A

∥∥2

V (44)

Using (6) and Lemma 2 we also have that

∥∥A
∥∥2

V ≥ δ2
0

q1
B (45)

Combining (44) and (45) we obtain Bt ≤ −αB, with α = (µ + δ1λ1)δ2
0q

−1
1 > 0. Applying

Gronwall lemma (see for instance Khalil, 1996) we then get B(t) ≤ B(0) exp(−αt) which implies
that ‖z‖2

V → 0 exponentially fast.

To prove the second part of the proposition (optimality), we first note that, since B decreases
and is bounded from below, the optimal control problem is well-defined. The optimal value
attained can be computed by direct substitution of (43) into (41) so that:

J∗ = B(tf ) +
∫ tf

0

[
−Bt −

(
µ − ω2

4µ

)
< A,A >V

]
dt = B(0)

Finally, we show that in fact the control law p = −ωA is the optimal one. Suppose that the
optimal control law is not p = −ωA but of the form:

p = v(t,x) − ωA

Then:

< p, p >V=< v, v >V +4µ2 < A,A >V −4µ < A, v >V (46)

and

< A, p >V=< A, v >V −2µ < A, A >V

so that Eqn (43) becomes:

− < A, f >B +Dµ = −Bt − µ < A, A >V + < A, v >V (47)

Substituting (46) and (47) into the functional we obtain:
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J = B(tf ) +
∫ tf

0

[
− < A, f >B +Dµ +

1
4µ

< p, p >V
]

dt

B(tf ) +
∫ tf

0

[
−Bt +

1
4µ

< v, v >V
]

dt

= B(0) +
1
4µ

∫ tf

0
< v, v >V dt ≥ 0

and the minimum is achieved only for v = 0. Therefore p = −ωA is optimal

Relation (7), in Assumption A3, can be interpreted as a form of the Hamilton-Jacobi-Bellman
equation (Sepulchre et al, 1997) while the objective functional (41) can be directly connected
to the dissipation function (31). In this regard, Proposition 1 allows the design of feed-back
control laws that minimizes the amount of entropy produced by the system. In particular, when
applied to isolated Pure Dissipative Systems, Proposition 1 can be considered as an alternative
statement of the Minimum Entropy Production Principle (Glansdorff and Prigogine, 1971). In
this case, µ = 0, < A, f >B= 0 (isolation) and the system spontaneously evolves with p = 0 so
to minimize the amount of entropy produced.

5 Robust Control of Dissipative Systems

Let S∞ = {φi}∞i=1 and Λ(∆) = {λj}∞j=1 be the complete set of eigenfunctions and their corre-
sponding eigenvalues, satisfying (34). We define two pair of disjoint sets (S1, Λ1) and (S2, Λ2),
each of them containing a given number of eigenfunctions and their associated eigenvalues, and
satisfying:

S∞ = S1 ∪ S2 and Λ = Λ1 ∪ Λ2

Let the number of elements in S1 be finite (so S2 contains the remaining -infinite- elements of
the original set) and associate to S1, S2 the sub-fields z1 and z2, respectively, so that the field
z can be partitioned as:

z = z1 + z2 =
∞∑

j=1

cj(t)φj(x) (48)

Employing the sets S1 and S2 to partition the remaining terms in system (35), we can formally
obtain the following equivalent representation:

(z1)t + ∂kvkz1 = ∆Γ1 + Σ1(z1, z2) + p1 (49)
(z2)t + ∂kvkz2 = ∆Γ2 + Σ2(z1, z2) + p2 (50)

where, as in (48), we have that:
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Γ = Γ1 + Γ2 =
∞∑

j=1

γj(t)φj(x) (51)

Σ = Σ1 + Σ2 =
∞∑

j=1

σj(t)φj(x) (52)

p = p1 + p2 =
∞∑

j=1

πj(t)φj(x) (53)

A particular class of partition is that in which the set S1 consists of a finite number of eigenfunc-
tions, associated to the n smallest eigenvalues. For dissipative systems, such partition allows
the decomposition of the original distributed system into a slow (possibly unstable) and a fast
and stable subsystem. This point can be easily justified in the light of the present theory. To
see this, let us consider condition (7) and integrate the expression over the domain, so that:

< A, Σ >V +Lµ = µ < A,A >V (54)

expanding A and Σ in terms of the set S∞, and using the orthonormality property of the
eigenfunctions we also have that:

< A, Σ >V=
∞∑

j=1

ajσj

< A, A >V=
∞∑

j=1

a2
j

substituting these expressions in (54) we obtain for a given µ > 0:
∞∑

j=1

(µa2
j − ajσj) = Lµ ≥ 0

In order for this inequality to hold for any field satisfying (35) we need µa2
j ≥ ajσj for all j.

This argument allows us to construct expressions equivalent to (54) for each subsystem (49)
and (50). In particular we have for (50) that:

< A2, Σ2 >V +Lµ = µ < A2, A2 >V (55)

To show that an open-loop stable subsystem (50) can always be found, we make use of the
arguments employed in Proposition 1 (including Lemma 1): Define a b-function for z2 and
compute its time derivative to obtain the equivalent of (42), which now becomes for p = 0:

Bt ≤ −(δ1λ2 − µ)
∥∥A2

∥∥2

V

Bt ≤ −(δ1λ2 − µ)δ2
0

q1
B
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where λ2 represents the smallest eigenvalue in Λ2. For z2 to be exponentially stable all we have
to do is to choose some n large enough so that λ2 > µδ−1

1 . The larger n, the faster will be
the convergence ‖z2‖2

V → 0 of the stable subsystem. Such a decomposition property has been
extensively used by Christofides and co-workers (see Chrsitofides (2001) for a general overview)
to derive robust stabilizing nonlinear control schemes based on feed-back linearization of the
slow subsystem.
Under condition (55), it is straightforward to apply previous results on passivity and optimal
stabilizing control to a given partition (49) or (50). A possible control problem can be stated
as follows:
Given a dissipative system (35), the objective is to ensure the stabilization of an arbitrary
subsystem (50), while preserving the inherent dynamics of its complement (49):

(z1)t + ∂kvkz1 = ∆Γ1 + Σ1(z1, 0) (56)

This problem is of relevance in the control of front and pulse pattern formation in distributed
dissipative systems (see for instance, Shvartsman and Kevrekidis, 1998; Smagina et al, 2002).
In this context, subsystem (56) describes the desired periodic pattern which becomes unstable
by the influence of the complementary subsystem. Results on passivity and exponential sta-
bilization can, in principle, be applied to this problem. However, the resulting control laws
can produce extremely large actions due to the large µ-bound required in (55). Alternative
robust control schemes employed in finite dimensional robust nonlinear control (Khalil, 1996)
can be easily adapted to deal with dissipative distributed systems as well. One of such robust
stabilizing schemes is presented next.

Proposition 2.

Consider the dissipative system (35), let (S2, Λ2) define a given set of arbitrary modes associated
to a certain subfield z2, and Σ2(z1, z2) be bounded as:∥∥∥Σ2

∥∥∥
V
≤ η(

∥∥A
∥∥
V )

∥∥A2

∥∥
V (57)

Then a control law:

p= −ωA2− η

‖A2‖V
A2 if η(

∥∥A
∥∥
V )

∥∥A2

∥∥
V ≥ ε

p= −ωA2−η2

ε A2 if η(
∥∥A

∥∥
V )

∥∥A2

∥∥
V < ε

will make z2 to be ultimately bounded.

Proof:

As it is usual now, we start by defining a convex function b(z2, z
∗
2), computing its time derivative

along (35) and integrating over the domain to obtain, as in Proposition 1 (42):

Bt ≤< A2,∆Γ2 >V + < A2, Σ2 >V + < A2, p2 >V
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Let λ2 be the smallest eigenvalue in the set Λ2, then Lemma 2 gives:

Bt ≤ −λ2δ1

∥∥A1

∥∥2

V + < A2, Σ2 >V + < A2, p2 >V (58)

For η(
∥∥A

∥∥
V )

∥∥A2

∥∥
V ≥ ε, we substitute (57) and the control into (58), so that:

Bt ≤ −λ2δ1

∥∥A1

∥∥2

V + η(
∥∥A

∥∥
V )

∥∥A2

∥∥
V − < A2, p2 >V

and

Bt ≤ −(λ2δ1 + ω)δ2
0

q1
B

so that, whenever η(
∥∥A

∥∥
V )

∥∥A2

∥∥
V ≥ ε, B (and therefore the field) will evolve as:

B(t) ≤ B(0) exp(−αt)

with α = (λ2δ1 +ω)δ2
0q

−1
1 being a configurable parameter that can be made arbitrarily large by

increasing the gain ω.

When η(
∥∥A

∥∥
V )

∥∥A2

∥∥
V < ε we have:

Bt ≤ −(λ2δ1 + ω)
∥∥A2

∥∥2

V + η
∥∥A2

∥∥
V −

η2
∥∥A2

∥∥2

V
ε

Bt + αB ≤ ψ − ψ2

ε
(59)

with ψ = η
∥∥A2

∥∥
V . The right hand term of the inequality is only positive in the interval

ψ ∈ (0, ε) and attains its maximum at ψ = ε�2. Solution of inequality (59) gives:

B(t) ≤ B(0) exp(−αt) +
ε

4α
[1 − exp(−αt)]

In the limit as t → ∞, a bound for B (and therefore the field) is found:

lim
t→∞B =

ε

4α

which implies that the field is ultimately bounded.

5.1 Example: Robust Modal Control of the Fitzhugh-Nagumo System

The ideas presented so far on passivity and modal stabilization will be illustrated on a class
of dissipative system known as Fitzhugh-Nagumo (Murray, 1993). This system can be consid-
ered as a simplified version of the Hodgkin-Huxley model (Hodgkin and Huxley, 1952) derived
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to explain nerve-impulse propagation. It is described by a pair of coupled reaction-diffusion
equations of the form:

vt = k∆v + f(v) − w + p′ (60)

wt = δk∆w + ε(v − γ1w) (61)

with f(v) = v − v3. The system is defined on a rectangular domain V ∈ (−1 ≤ x ≤ 1,−1 ≤
y ≤ 1) with zero-flux conditions at the boundary. The fields v and w correspond to the
concentrations of activator and inhibitor species, respectively, and p′ represents the actuator
function to be manipulated through control. Parameters δ and ε in Eqn (61) are the ratio
of diffusivities and reaction rates for the two species. The interaction between diffusion and
nonlinear reaction in this system induces a rich variety of stationary, as well as oscillatory,
spatial patterns, usually characterized by relatively sharp concentration fronts (Shvartsman
and Kevrekidis, 1998). One of such patterns can be seen in Figure 1.

To show that the system is dissipative with respect to the homogeneous stationary reference
v∗ = w∗ = 0, we choose a simple quadratic function:

b =
1
2
(εv2 + w2)

compute A, which now becomes A = [εv, w]T , and determine �µ from relation (7). By direct
substitution we get:

�µ(v, w) = εv2(µε − 1 + v2) + (µ + εγ1)w2

which is positive definite for µ > ε−1. Consequently the system is dissipative according to
Definition 1. However, the system is not purely dissipative since �0 is negative on the interval:

v × w → (−1, 1) ×
(
− |v|

√
1 − v2

γ1
, |v|

√
1 − v2

γ1

)

Since the system is dissipative, we can use Lemma 1 (and Remark 1) to enforce passivity. In
our case this can be done by choosing an input-output pair (u, y) of the form:

u = p′ + µy

y = εv

Robust Modal Control
Finally, we illustrate on the the Fitzhugh-Nagumo system (60)-(61) the application of Proposi-
tion 1. The objective here is to ensure the stabilization of a given arbitrary sub-field (v2, w2),
associated to a spectral pair (S2,Λ2), while preserving the inherent dynamics of its complement
(v1, w1) (S1, Λ1). In this example, we assume that f(v) is unknown but satisfies an inequality
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of the form (57). The sub-field (v1, w1) we want to preserve consists of 8 modes, picked up
among the 50 slowest modes of the system. Under condition v2 = 0; w2 = 0, everywhere in V,
the modes associated to the sub-fields (v1, w1) oscillate and describe a stable limit cycle. The
oscillatory response for the 8 modes is presented in Figure 2. The effect of such behavior is a
periodic pattern as the one depicted in Figure 3.

In order to apply Proposition 1, we define a new input p = p′ − w and construct the control
law as:

p =

{
−ωv2 − η (‖v‖V ) v2

‖v‖V
if η (‖v‖V ) ‖v2‖V ≥ ε

−ωv2 − η2 (‖v‖V ) v2
ε if η (‖v‖V ) ‖v2‖V < ε

}
, (62)

The implementation of control law (62) requires measurements of the field (v, w). With these
measurements, the sub-field v2 is re-produced by discounting the modes we want to preserve.
If n is the number of elements in the set S1 = {φ1

j}n
j=1, reconstruction proceeds as follows:

v2 = v −
n∑

j=1

< v, φ1
j >V φ1

j

The effect of control law (62) with ω = 0.1; ε = 0.001, on the norm ‖v2‖V is presented in
Figure 4, showing that after a small transient the sub-field remains bounded. The evolution of
some of the modes (associated to the sub-field v2) under control as compared with the same
modes in open loop in depicted in Figure 5. Figure 6 represents the evolution of the first 10
slowest modes associated to the field v. Note that some modes (1, 2, 5 and 10) oscillate thus
demonstrating that the control law does, in fact, preserve the dynamics of the modes associated
to the sub-field v1

6 Conclusions

In this work, we explore new links between the underlying physics of dissipative process systems
and nonlinear control. The existence of an entropy-like function allows us to relate dissipation
with a Hamilton-Jacobi-Bellman type equation. Such relation is employed to state passivity
conditions for dissipative systems. In this way, one main conclusion is that any dissipative
system can be rendered passive by appropriate selection of inputs and outputs. We also con-
nect dissipation with optimal stabilizing control and use this result to re-state the principle of
Minimum Entropy Production. Finally, Robustness issues in controller design, are discussed in
the context of front or pulse spatial pattern stabilization.
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List of Figures

Figure 1. A typical spatial pattern produced by the Fitzhugh-Nagumo system, with parameters
k = 10−4, δ = 2.5, ε = 0.03, γ1 = 2. (1a) Snapshot corresponding to the v field. (1b) Snapshot
corresponding to the w field.

Figure 2. Periodic response exhibited by the active modes associated to v1 under condition
v2 = 0 and w2 = 0, everywhere in V.

Figure 3. Spatial pattern produced under condition v2 = 0 and w2 = 0, everywhere in V. (2a)
Snapshot corresponding to the v field. (2b) Snapshot corresponding to the w field.

Figure 4. Transient evolution of the norm ‖v2‖V under control law (62). The control parameters
employed were ω = 0.1 and ε = 0.001.

Figure 5. A comparison between open-loop and closed loop modal evolution for some modes
associated to v2. Plots at the left represent the open loop behavior. Plots at the right represent
the evolution under control.

Figure 6. Evolution of the first 10 slowest modes associated to the field v. Modes in oscillation
are 1, 2, 5 and 10 and belong to the sub-field v1
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