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Background

Myelodysplastic syndromes are a diverse and common group of chronic hematologic 
cancers. The identification of new genetic lesions could facilitate new diagnostic 
and therapeutic strategies.

Methods

We used massively parallel sequencing technology to identify somatically acquired 
point mutations across all protein-coding exons in the genome in 9 patients with 
low-grade myelodysplasia. Targeted resequencing of the gene encoding RNA splic-
ing factor 3B, subunit 1 (SF3B1), was also performed in a cohort of 2087 patients 
with myeloid or other cancers.

Results

We identified 64 point mutations in the 9 patients. Recurrent somatically acquired 
mutations were identified in SF3B1. Follow-up revealed SF3B1 mutations in 72 of 354 
patients (20%) with myelodysplastic syndromes, with particularly high frequency 
among patients whose disease was characterized by ring sideroblasts (53 of 82 [65%]). 
The gene was also mutated in 1 to 5% of patients with a variety of other tumor 
types. The observed mutations were less deleterious than was expected on the basis 
of chance, suggesting that the mutated protein retains structural integrity with al-
tered function. SF3B1 mutations were associated with down-regulation of key gene 
networks, including core mitochondrial pathways. Clinically, patients with SF3B1 
mutations had fewer cytopenias and longer event-free survival than patients with-
out SF3B1 mutations.

Conclusions

Mutations in SF3B1 implicate abnormalities of messenger RNA splicing in the 
pathogenesis of myelodysplastic syndromes. (Funded by the Wellcome Trust and 
others.)
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The myelodysplastic syndromes are 
a heterogeneous group of hematologic can-
cers characterized by low blood counts, 

most commonly anemia, and a risk of progression 
to acute myeloid leukemia.1 These disorders have 
increased in prevalence and are expected to con-
tinue to do so. Blood films and bone marrow–
biopsy specimens from patients with myelodys-
plastic syndromes show dysplastic changes in 
myeloid cells, with abnormal proliferation and dif-
ferentiation of one or more lineages. Target genes 
of recurrent chromosomal aberrations have been 
mapped,2,3 and several genes have been identi-
fied as recurrently mutated in these disorders, 
including NRAS (encoding neuroblastoma RAS vi-
ral oncogene homologue), TP53 (encoding tumor 
protein p53), RUNX1 (encoding runt-related tran-
scription factor 1), CBL (encoding Cas-Br-M eco-
tropic retroviral transforming sequence),4,5 TET2 
(encoding tet oncogene family member 2),6,7 ASXL1 
(encoding additional sex combs–like protein 1),8,9 
and EZH2 (encoding enhancer of zeste homo-
logue 2).10 With the exception of TET2, most of 
these genes are mutated in no more than 5 to 15% 
of cases, and generally the mutation rates are low-
er in the more benign subtypes of the disease.

The myelodysplastic syndromes can be divided 
into several categories on the basis of bone mar-
row and peripheral-blood morphologic character-
istics and cytogenetic changes.11 In low-risk dis-
ease, such as refractory anemia, cytopenias are the 
major clinical challenge, whereas high-risk dis-
ease, such as refractory anemia with excess blasts, 
is characterized by both cytopenias and a high 
rate of transformation to acute myeloid leukemia. 
More than a quarter of patients with myelodys-
plastic syndromes have large numbers of ring 
sideroblasts in the bone marrow,12 a sufficiently 
distinctive morphologic abnormality to warrant a 
separate designation. Ring sideroblasts are char-
acteristically seen on iron staining of bone mar-
row aspirates as differentiating erythroid cells with 
a complete or partial ring of iron-laden mitochon-
dria surrounding the nucleus. Several genetic le-
sions underpinning inherited sideroblastic anemias 
have been identified,13 including loss-of-function 
mutations in the genes ALAS2 (encoding delta ami-
nolevulinate synthase 2), ABCB7 (encoding ATP-
binding cassette, subfamily B, member 7), and 
SLC25A38 (solute carrier family 25, member 38). The 
pathogenesis of ring sideroblasts in myelodysplas-
tic syndromes, however, remains obscure, although 

gene-expression studies have revealed up-regula-
tion of genes involved in heme synthesis (including 
ALAS2) and down-regulation of ABCB7.14,15

We reasoned that the identification of recur-
rently mutated cancer genes in low-grade myelo-
dysplastic syndromes could prove useful for the 
diagnosis of these disorders and provide new in-
sights into the molecular pathogenesis of these 
syndromes.

Me thods

Study Conduct

The authors designed the study and wrote the 
manuscript on behalf of the Chronic Myeloid Dis-
orders Working Group of the International Cancer 
Genome Consortium. Data were collected and ana-
lyzed by the authors from the Wellcome Trust Sanger 
Institute and four other authors. All authors reviewed 
the manuscript and vouch for the completeness and 
accuracy of the data collection and analysis. Ge-
nome sequence data have been deposited at the Eu-
ropean Genome–Phenome Archive (www.ebi.ac.uk/
ega) (accession number EGAS00001000089).

Study Samples

Samples were obtained from patients with my-
eloid dysplastic syndromes or other cancers who 
provided written informed consent. Appropriate 
ethics-committee approval was obtained. Genomic 
DNA specimens were obtained from bone mar-
row mononuclear cells or peripheral-blood gran-
ulocytes from patients with myeloid dysplastic syn-
dromes, and constitutional DNA samples were 
obtained from buccal swabs or immunomagneti-
cally purified T cells. Myeloid dysplastic syndromes 
were classified according to World Health Orga-
nization (2008) categories,11 and ring sideroblas-
tosis was defined as more than 15% of erythro-
blasts containing at least 10 siderotic granules 
encircling more than a third of the nucleus. Lab-
oratory data at the time of DNA sampling, as well 
as subsequent data on clinical outcomes, were 
available for 123 patients.

DNA Sequencing

For exome and follow-up sequencing, libraries 
were prepared from nonamplified tumor DNA and 
whole-genome–amplified constitutional DNA sam-
ples according to standard protocols16,17 (see the 
Supplementary Appendix, available with the full 
text of this article at NEJM.org).
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Gene-Expression Profiling

RNA from immunomagnetically purified CD34+ 
bone marrow cells was previously profiled on 
microarrays (U133-plus 2.0, Affymetrix),18 and 
56 patients were genotyped for SF3B1 mutations. 
RNA from 12 samples in this cohort was also 
profiled on microarrays (SurePrint G3 Human 
Exon 2x400k, Agilent), according to the manu-
facturer’s protocol.

statistical analysis

Statistical analysis was performed with the use 
of standard methods, as described in the Supple-
mentary Appendix. When reported, q values de-
note the minimum false discovery rate at which 
the test may be called significant.

R esult s

Mutations in Protein-Coding Genes

In nine patients with low-grade myelodysplastic 
syndromes — eight who had refractory anemia 
with ring sideroblasts and one who had the chro-
mosome 5q− syndrome — 64 mutations (Table 1 
in the Supplementary Appendix) were found, rang-
ing from 0 to 20 per patient (Fig. 1A). Of these 
mutations, 2 were frameshift insertion–deletions 
(indels) and 62 were substitutions; 58 were found 
in coding sequences, 3 in introns within 10 bp of 
splice junctions (but not essential splice sites), and 
3 in untranslated regions. The mutation spectrum 
showed a predominance of transitions, especially 
C→T and G→A mutations (Fig. 1B). This spectrum 
is similar overall to those observed in colorectal, 
pancreatic, and brain cancers.19,20

Each read of a massively parallel sequencing 
run derives from a single molecule of genomic 
DNA. Thus, the proportion of sequencing reads 
reporting a variant allele provides a quantitative 
estimate of the proportion of cells in the DNA 
sample carrying that mutation.17,21 In five of the 
nine patients, the observed proportion of reads 
reporting a mutant allele showed significantly 
greater variability than was expected on the ba-
sis of chance (Fig. 1C). For example, for Patient 3, 
the fraction of reads reporting each mutation 
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Figure 1. Exome Sequencing in Nine Patients 
with Low-Grade Myelodysplastic Syndromes (MDS).

Panel A shows the distribution of numbers and catego-
ries of somatically acquired point mutations among 
the nine patients. No mutations were found for Patient 
5. Panel B shows the mutation spectrum for somatical-
ly acquired point mutations. Panel C shows the frac-
tion of reads reporting mutated alleles from exome-se-
quencing data for each patient. No mutations were 
found for Patient 5. Mutations in known MDS genes or 
recurrently mutated genes identified in this screen are 
shown as colored points, with nonrecurrent mutations 
as gray points. P values were calculated with the use of 
chi-square tests of heterogeneity in observed allelic ra-
tios for mutations in patients with more than two mu-
tations.
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ranged from 32 of 65 (49%) down to 8 of 58 (14%). 
These data suggest that the population of malig-
nant cells in low-grade myelodysplastic syndromes 
is often genetically heterogeneous, with some mu-
tations restricted to subclones of the neoplasm, 
as has been described in other cancers.17,21-24

We identified 46 mutations that were predict-
ed to alter the protein-coding sequence (Table 1). 
Of these, 44 were nonsynonymous substitutions 
(including 4 nonsense substitutions) and 12 were 
silent substitutions. Two known cancer genes had 
somatic mutations in the cohort. The first of these, 
DNMT3A (encoding the DNA methyltransferase 3 
alpha protein), has been reported to be recurrently 
mutated in patients with acute myeloid leukemia 
and myelodysplastic syndromes25-27 and was mu-
tated in three of our nine patients (33%), with two 
frameshift indels and one missense mutation 
(Fig. 1 in the Supplementary Appendix). The other 
known cancer gene with a somatic mutation that 
we identified was TET2, which had a heterozygous 
substitution causing a premature stop codon, 
Q644*, in one patient.

Recurrent Mutations in SF3B1

We identified recurrent somatic mutations in a 
gene that encodes a core component of the RNA 
splicing machinery — SF3B1 — in six of the nine 
patients with myelodysplastic syndromes (Table 1, 
and Fig. 2 in the Supplementary Appendix). Four 
patients carried A→G mutations that would gen-
erate the same K700E mutation in the predicted 
protein, and two patients carried C→A or C→G 
mutations, both with a predicted H662Q protein 
consequence. On the basis of the proportion of 
reads reporting the mutant allele, the mutations 
all appeared to be heterozygous and present in 
the dominant clone of cells (Fig. 1C).

To characterize the spectrum and frequency 
of SF3B1 mutations in greater detail, both in my-
eloid cancers and other cancers, we performed 
targeted resequencing of the gene in 2087 sam-
ples (Table 2, and Table 2 in the Supplementary 
Appendix). Among 354 patients with myelodys-
plastic syndromes, 72 had SF3B1 mutations (20%). 
Mutations were particularly common in patients 
with subtypes of myelodysplastic syndromes in 
which ring sideroblasts are a prominent feature, 
with 53 of 82 patients (65%) positive for SF3B1 
changes. The subtypes represented in these pa-
tients included both refractory anemia with ring 
sideroblasts (with mutations found in 40 of 59 

patients [68%]) and refractory cytopenia with 
multilineage dysplasia and ring sideroblasts (with 
mutations in 13 of 23 patients [57%]). Mutations 
in SF3B1 were found at a lower rate in other sub-
types of myelodysplastic syndromes, with muta-
tions found in 9 of 91 patients (10%) with refrac-
tory anemia, 3 of 53 (6%) with refractory cytopenia 
and multilineage dysplasia, and 6 of 110 (5%) 
with refractory anemia and excess blasts.

SF3B1 mutations were noted in other myeloid 
cancers, including acute myeloid leukemia (in 3 
of 57 patients [5%]), primary myelofibrosis (6 
of 136 [4%]), essential thrombocythemia (6 of 
189 [3%]), and chronic myelomonocytic leuke-
mia (5 of 106 [5%]) (Table 2). SF3B1 mutations 
were also seen in 1 to 5% of patients with other 
types of tumor (Table 2): breast cancer (in 2 of 
172 patients [1%]), renal cancer (1 of 30 [3%]), 
chronic lymphocytic leukemia (2 of 40 [5%]), 
multiple myeloma (1 of 32 [3%]), and adenoid 
cystic carcinoma (1 of 27 [4%]). In addition, 
among 746 cancer cell lines,28 we found vari-
ants in 8 (1%): melanoma (2 lines), lung cancer 
(1), bladder cancer (1), breast cancer (1), endo-
metrial cancer (1), chronic myeloid leukemia (1), 
and teratoma (1).

The distribution of observed mutations across 
the gene was striking (Fig. 2). All mutations  
appeared to be heterozygous substitutions. No 
frameshift indels, splice-site mutations, or non-
sense substitutions were seen. The mutations clus-
tered in exons 12 to 15 of the gene, and 1 variant 
in particular, K700E, accounted for 59 of the 108 
variants observed (55%; 95% confidence interval 
[CI], 45 to 64). Several other amino acid residues 
in this region were also hot spots for mutation, 
including E622 (5 mutations), R625 (7), H662 (7), 
K666 (13), and I704 (3) (Fig. 2).

Splicing of messenger RNA is carried out by 
the spliceosome, a complex of five small nuclear 
ribonucleoproteins (snRNPs) together with other 
proteins.29 The SF3B1 protein is a core component 
of one snRNP, the U2 snRNP, which recognizes 
the 3′ splice site at intron–exon junctions. The 
SF3B1 gene encodes a protein with an N-terminal 
domain involved in protein–RNA and protein–
protein interactions, together with a C-terminal 
region consisting of 22 so-called HEAT domains 
(Huntingtin, elongation factor 3, protein phospha-
tase 2A, and the yeast PI3-kinase TOR1). The mu-
tations we have identified cluster most strongly 
in the fourth, fifth, and sixth HEAT domains 
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Table 1. Somatically Acquired Indels, Missense, and Nonsense Substitutions in Eight of the Nine Study Patients 
with Low-Grade Myelodysplastic Syndromes in Whom Mutations Were Found.

Patient No. and Mutation DNA Change Protein Change

5q−

Patient 7

DNMT3A c.2247delG p.R748fs

Refractory anemia with ring sideroblasts

Patient 1

SF3B1 c.1986C→A p.H662Q

Patient 2

IMP5 c.43C→A p.L15I

PCDHGA1 c.2069C→T p.T690I

TEX15 c.4018G→A p.A1340T

COL17A1 c.2408G→A p.G803E

SEMA6A c.440A→G p.Y147C

NPSR1 c.211C→G p.L71V

SSR2 c.325A→G p.T109A

SF3B1 c.2098A→G p.K700E

Patient 3

GABRA4 c.644C→T p.P215L

DNMT3A c.2273insA p.V758fs

IRF1 c.195C→A p.Y65*

SF3B1 c.2098A→G p.K700E

Patient 4

PREB c.546G→C p.K182 N

RAD52 c.359G→T p.W120L

DNMT3A c.1528G→A p.G510S

CTSL1 c.742G→T p.A248S

TMEM132C c.2134C→T p.R712C

TEAD1 c.35T→G p.I12S

DMD c.4829A→T p.E1610V

FHL2 c.173A→T p.D58V

ODZ3 c.5885A→G p.D1962G

NAA16 c.1406C→T p.T469I

SYNE2 c.8249T→A p.L2750H

ZNF334 c.887G→A p.S296 N

CSTF1 c.1047A→T p.L349F

SKAP2 c.718G→C p.V240L

SF3B1 c.2098A→G p.K700E

Patient 6

CENPE c.1556C→T p.T519I

UBA1 c.1861A→T p.S621C

SDCCAG1 c.2764G→A p.V922 M

CDH13 c.1559C→G p.P520R
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(Fig. 2). The structure of a multiprotein U2 snRNP 
subcomplex containing SF3B1 reveals that the 22 
tandem helical HEAT repeats wrap in an S-shape 
around the outer surface of the complex.30,31 The 
sixth HEAT domain falls at the hinge of this shell-
like structure.

To explore the patterns of the observed amino 
acid substitutions, we scored the potential degree 
to which the missense mutations were deleteri-
ous, on the basis of a multiple alignment of HEAT 
domains from the Pfam database of protein fami-
lies (http://pfam.sanger.ac.uk).32,33 The scoring re-
veals that, as a set, the mutations are significantly 
less deleterious than random in silico–generated 
missense mutations (P<0.001) (Fig. 3A). In con-
trast, observed mutations in classic tumor-sup-
pressor genes are, on average, significantly more 
deleterious than simulated variants; examples in-
clude PBRM1 (encoding polybromo 1) (P = 0.01) 
(data not shown), as well as NF1 (encoding neu-
rofibromin 1) (P = 0.009) and PTEN (encoding the 
phosphatase and tensin homologue) (P = 0.001) 
(Fig. 3A).16,33 Mutations targeting one residue, 
R625, were predicted to be deleterious (Fig. 3A in 
the Supplementary Appendix); the recurrence of 
these mutations in seven patients indicates their 
probable oncogenic significance. Even when the 
most common K700E mutation was excluded from 

the analysis, the observed mutations remained 
significantly less deleterious than expected (P = 0.01) 
(Fig. 3B in the Supplementary Appendix). Indeed, 
when the mutations in SF3B1 are mapped onto the 
stacked consensus sequence34 for the 22 HEAT 
domains (Fig. 4 in the Supplementary Appendix), 
they tend to avoid the key structural amino acids 
or even improve alignment with the consensus. 
The results are similar with other prediction al-
gorithms, such as Polyphen and Sorting Intoler-
ant from Tolerant (SIFT) (Table 3 in the Supple-
mentary Appendix). These data, coupled with the 
absence of nonsense, splice-site, and frameshift 
mutations, suggest that the mutated SF3B1 pro-
tein is likely to retain structural integrity, albeit 
with presumably altered function.

Gene-Expression Profiles of Mutated SF3B1

We analyzed gene-expression profiles18 of CD34+ 
bone marrow cells purified from samples obtained 
from 56 patients with myelodysplastic syndromes, 
12 (21%) of whom had SF3B1 mutations. We used 
gene-set enrichment analysis35 to identify biologic 
pathways and processes that showed coordinated 
up-regulation or down-regulation in patients with 
SF3B1 mutations, after adjustment for differences 
due to disease subtype. With a false discovery rate 
of less than 10%, we identified 94 gene sets (of 

Table 1. (Continued.)

Patient No. and Mutation DNA Change Protein Change

Patient 8

EFCAB8 c.595C→T p.Q199*

SF3B1 c.1986C→G p.H662Q

CNNM1 c.2047G→A p.V683I

TMEM8C c.377T→C p.I126T

ARHGEF10L c.994G→T p.V332L

SLC17A8 c.944C→T p.P315L

Patient 9

TET2 c.1930C→T p.Q644*

ABCG8 c.904C→T p.Q302*

SF3B1 c.2098A→G p.K700E

HNRNPCL1 c.163G→A p.V55I

SLIT2 c.988G→A p.A330T

CTNND2 c.1815G→A p.M605I

CYP4F11 c.559G→A p.A187T

*	Asterisks denote premature stop codons. See Table 1 in the Supplementary Appendix for more details.

The New England Journal of Medicine 
Downloaded from nejm.org at CSIC on June 19, 2012. For personal use only. No other uses without permission. 

 Copyright © 2011 Massachusetts Medical Society. All rights reserved. 



T h e  n e w  e ngl a nd  j o u r na l  o f  m e dic i n e

n engl j med 365;15  nejm.org  october 13, 20111390

1673 screened) showing significant enrichment, 
all of which were down-regulated in patients with 
SF3B1 mutations (Fig. 3B, and Table 4 in the Sup-
plementary Appendix). Of the 50 most down-reg-
ulated gene sets in patients with SF3B1 mutations, 
7 involved key pathways determining mitochon-
drial function (Fig. 3C). Although these gene sets 
do partially overlap, genes involved in the mito-
chondrial ribosome (q<0.001) and in the electron 
transport chain (q<0.001) were notably down-regu-
lated in patients with SF3B1 mutations.

To explore whether these changes were due to 
abnormal messenger RNA splicing, we undertook 
exon-specific expression profiling by using exon 
microarrays in 12 patients, 6 of whom had SF3B1 
mutations. Overall, 20 genes showed differences 
in exon usage between patients with and those 
without SF3B1 mutations (Table 5 and Fig. 5 in 
the Supplementary Appendix), although none of 
these genes has obvious relevance to myelodys-

plastic syndromes, and the number of genes is 
small relative to the thousands of genes expressed 
in CD34+ cells. We did not find consistent abnor-
malities of splicing across the transcriptome glo
bally or specifically in genes involved in mitochon-
drial function in patients with SF3B1 mutations.

Taken together, the findings on transcriptome 
profiling suggest that SF3B1 mutation is associ-
ated with systematic down-regulation of essential 
mitochondrial gene networks. The mechanism of 
down-regulation is not clear, given that we did 
not find consistent abnormalities of splicing in 
patients with SF3B1 mutations. The expression pro-
files were derived from undifferentiated CD34+ 
hematopoietic progenitor cells, in which mito-
chondrial ferritin first appears in patients with 
refractory anemia and ring sideroblasts36; such 
cells are more immature than ring sideroblasts. 
The implication is that transcriptional changes 
affecting mitochondrial pathways precede the ap-

Table 2. Variants in SF3B1 in Patients with Myeloid or Other Cancers.

Tumor Type Mutations Comments

no. of patients/total no. % (95% CI)

Myelodysplastic syndromes 72/354 20 (16–25) Whole gene screened

Refractory anemia 9/91 10 (5–18)

Refractory anemia with ring sideroblasts 40/59 68 (54–79) 8 Mutations were proven somatic

Refractory cytopenia with multilineage dysplasia 3/53 6 (1–16)

Refractory cytopenia with multilineage dysplasia 
and ring sideroblasts

13/23 57 (35–77)

Refractory anemia with excess blasts 6/110 6 (2–12)

Other subtypes 1/18 6 (0–27)

Other chronic myeloid disorders 18/629 3 (2–5) Exons 12–15 screened

Polycythemia vera 0/95  

Essential thrombocythemia 6/189 3 (1–7)

Primary myelofibrosis 6/136 4 (2–9) 2 Mutations were somatic

Chronic myeloid leukemia in transformation 0/53  

Atypical chronic myeloid leukemia 1/50 2 (0–11)

Chronic myelomonocytic leukemia 5/106 5 (2–11)

Acute myeloid leukemia 3/57 5 (1–15) Exons 12–15 screened

Other tumors 15/1047 1 (1–2) Exons 12–15 screened

Breast cancer 2/172 1 (0–4) 1 Mutation was proven somatic

Renal cancer 1/30 3 (0–17) 1 Mutation was proven somatic

Chronic lymphocytic leukemia 2/40 5 (1–17) 1 Mutation was proven somatic

Multiple myeloma 1/32 3 (0–16) 1 Mutation was proven somatic

Adenoid cystic carcinoma 1/27 4 (0–19) 1 Mutation was proven somatic

Cancer cell lines 8/746 1 (1–2) 2 Mutations were proven somatic
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K700E (55)

Adenoid cystic carcinoma

Non–small-cell lung cancer

G527L

E622D

N619K

Q534P

Bladder cancer

R568H

H662Q (7)

T663A

K666N (5); K666Q (1);
K666R (4); K666T (2)

Testicular teratoma

K700E

I689F

P718L

Melanoma

Myeloma

I704T

Breast cancer

G676D
I704N; I704V

SF3B1

N-Terminal Domain

22 HEAT Repeats

CMLRARS

CMMLRA

ET

AML

RCMD-RS

RCMD PMF

RAEB

E592K

G740R

Endometrial cancer

K666N

R590K

R625P (2); R625S

R625L (3); R625C

CLL

Proven somatic

Germline DNA not available

Proven Somatic

Germline DNA Not Available

Myeloid
Cancers

Nonmyeloid
Cancers

Figure 2. Distribution of Missense Mutations in SF3B1.

The SF3B1 gene encodes a protein with an N-terminal domain together with a C-terminal region consisting of 22 so-called HEAT do-
mains (Huntingtin, elongation factor 3, protein phosphatase 2A, and the yeast PI3-kinase TOR1). Two mutations (R1041H and E491G) 
fell outside the second through the eighth HEAT domains and are not shown. AML denotes acute myeloid lymphoma, CLL chronic lym-
phocytic leukemia, CML chronic myeloid leukemia, CMML chronic myelomonocytic leukemia, ET essential thrombocythemia, PMF pri-
mary myelofibrosis, RA refractory anemia, RAEB refractory anemia with excess blasts, RARS refractory anemia with ring sideroblasts, 
RCMD refractory cytopenia with multilineage dysplasia, and RCMD-RS RCMD and ring sideroblasts.

pearance of iron-laden mitochondria during ery-
throid development and are unlikely to be merely 
a consequence of dysfunctional mitochondria.

Clinical Phenotype of SF3B1 Mutation

Data on clinical outcome and laboratory features 
at the time of DNA sampling were available for 
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123 patients with myelodysplastic syndromes, of 
whom 34 were positive for SF3B1 mutations. SF3B1 
mutation was associated with the syndrome sub-
types defined by ring sideroblasts, refractory 
anemia with ring sideroblasts, and refractory cy-
topenia with multilineage dysplasia and ring sid-
eroblasts (P<0.001). Of the 34 patients, 8 did not 
have the latter two syndrome subtypes. Of these 
8 patients, 2 had more than 15% ring sideroblasts 
and also had excess blasts (so they were consid-
ered to have refractory anemia with excess blasts), 

and 2 others did have ring sideroblasts but at a 
level of less than 15%.

As compared with patients who did not have 
an SF3B1 mutation, patients with an SF3B1 muta-
tion had a higher median white-cell count 
(2.0×109 vs. 2.61×109 per liter, P = 0.05) (Fig. 3D), 
a higher median platelet count (117×109 vs. 
242×109 per liter, P = 0.02) (Fig. 3D), more marked 
bone marrow erythroid hyperplasia (28% vs. 
40% erythroblasts and a myeloid:erythroid ratio 
of 2.5 vs. 1.5; P = 0.009 and P = 0.007, respec-
tively), and a lower proportion of bone marrow 
blasts (4% vs. 1%, P<0.001). However, the me-
dian hemoglobin level was the same in those 
with and those without a mutation (9.5 g per 
deciliter; P = 1.00) (Fig. 3D).

In an analysis of the composite end point of 
leukemic progression or death, patients with an 
SF3B1 mutation, as compared with those with-
out an SF3B1 mutation, had significantly longer 
overall survival (P = 0.01), leukemia-free surviv-
al (P = 0.05), and event-free survival (P = 0.008) 
(Fig. 3E). After adjustment for the effects of age, 
sex, and karyotype, the presence of an SF3B1 mu-
tation was still significantly associated with lon-
ger event-free survival (hazard ratio, 0.1; 95% CI, 
0.0 to 0.7; P = 0.02). These findings suggest that 
SF3B1 mutations are associated with relatively 
benign myelodysplastic syndromes character-
ized phenotypically by the presence of ring sid
eroblasts.

Discussion

Recurrent mutation of the SF3B1 gene was found 
in 20% of patients with myelodysplastic syn-
dromes. Mutations were found in 65% of patients 
whose disease was characterized by the presence 
of ring sideroblasts, although the clonal domi-
nance of mutations in blood or bone marrow 
granulocytic cells suggests that oncogenic effects 
may not be restricted to the erythroid lineage. 
Even among patients with other subtypes of my-
elodysplastic syndromes, those with SF3B1 muta-
tions frequently had large numbers of ring sid-
eroblasts in their bone marrow.

The absence of frameshift, nonsense, and 
splice-site mutations, the lack of key structural 
amino acid residues as sites for mutation, and the 
fact that the mutations are less deleterious than 
expected on the basis of chance all suggest that 
the mutant SF3B1 protein retains structural integ-

Figure 3 (facing page). Modeling of Mutations 
and Results of Clinical Studies.

Panel A shows bars representing the mean scores for 
computer-generated random missense mutations. The 
height of the bars represents the frequency histogram 
of this null distribution. The red squares indicate the 
mean scores for the somatic mutations on exons 12 
through 15 that could be scored, with higher scores 
representing effects predicted to be less deleterious 
than those of random mutations. The somatic set has 
a significantly higher mean score than the null set for 
SF3B1 mutations (P<0.001). This is in contrast to the 
tumor-suppressor genes PTEN (encoding the phospha-
tase and tensin homologue) and NF1 (encoding neuro-
fibromin 1), where observed mutations have a signifi-
cantly lower score than the null set. Panel B shows a 
volcano plot of the distribution of normalized enrich-
ment scores for various gene sets according to their 
nominal P values. Negative enrichment scores indicate 
gene sets that are down-regulated in patients with an 
SF3B1 mutation as compared with patients without 
such a mutation. Gene sets with significant enrich-
ment and a false discovery rate (FDR) of less than 10% 
are shown in green. Panel C shows enrichment plots 
for four mitochondrial gene sets. Each vertical stripe 
represents the rank of a gene within the gene set, 
among all 19,578 genes represented on the microarray. 
A low rank indicates genes that are especially down-
regulated among patients with SF3B1 mutations as 
compared with patients without such mutations, after 
adjustment for disease type. The name of the gene set 
is shown to the left, and the q value (the minimum 
false discovery rate at which the test may be called sig-
nificant) is shown to the right. Panel D shows box-and-
whisker plots for hemoglobin levels, white-cell counts, 
and platelet counts in patients with myelodysplastic 
syndromes according to the presence or absence of 
SF3B1 mutations. The central horizontal line within 
each box indicates the median, with the top and bot-
tom edges of each box indicating the interquartile 
range. The Ι bars extend to 1.5 times the interquartile 
range, with the circles indicating outlier data for indi-
vidual patients. Panel E shows Kaplan–Meier curves 
for event-free survival during the study period among 
patients with myelodysplastic syndromes, according to 
the presence or absence of SF3B1 mutations.
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rity and some function. It is increasingly recog-
nized that initial splicing occurs as the nascent 
RNA molecule is being transcribed, an integrated 
process in which the spliceosome is in continuous 
cross-talk with proteins involved in the initiation, 
elongation, and termination phases of the tran-
scription cycle.29 SF3B1 mutations could influence 
either splicing itself or interactions with the tran-
scriptional complex. CD34+ cells from patients 
with SF3B1 mutations show underexpression of 
several key biologic pathways, including those in-
volved in mitochondrial function, although a de-
tailed mechanistic understanding will require 
further biochemical studies. Mutations in path-
ways regulating RNA processing and protein ho-
meostasis have been described in multiple my-
eloma.37

Refractory anemia with ring sideroblasts gen-
erally has a relatively benign clinical course.38 
We have found that patients with myelodysplas-
tic syndromes and SF3B1 mutations have higher 
neutrophil and platelet counts, fewer bone mar-
row blasts, and longer event-free survival than pa-
tients with these syndromes who do not have SF3B1 
mutations. The prognostic effect is independent 
of variables that could coexist at the time the muta-
tions are acquired (age, sex, and cytogenetic ab-
normalities), indicating that SF3B1 mutations de-
fine a benign clinical phenotype. These mutations 
can be readily identified in peripheral-blood DNA, 
whereas detection of ring sideroblasts requires 
bone marrow samples. We speculate that it may 

be feasible to identify patients who have myelo-
dysplastic syndromes with a benign prognosis on 
the basis of screening for SF3B1 mutations, with-
out the need for an invasive bone marrow biopsy. 
As we piece together the genomic architecture of 
myelodysplastic syndromes, it may be possible to 
develop assays for causative driver mutations, lead-
ing to definitive diagnoses, from a single blood 
sample.
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