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The genetics of renal cancer is dominated by inactivation of the VHL tumour suppressor gene in
clear cell carcinoma (ccRCC), the commonest histological subtype. A recent large-scale screen of
~3500 genes by PCR-based exon re-sequencing identified several new cancer genes in ccRCC
including UTX (KDM6A)1, JARID1C (KDM5C) and SETD22. These genes encode enzymes that
demethylate (UTX, JARID1C) or methylate (SETD2) key lysine residues of histone H3.
Modification of the methylation state of these lysine residues of histone H3 regulates chromatin
structure and is implicated in transcriptional control3. However, together these mutations are
present in fewer than 15% of ccRCC, suggesting the existence of additional, currently unidentified
cancer genes. Here, we have sequenced the protein coding exome in a series of primary ccRCC
and report the identification of the SWI/SNF chromatin remodeling complex gene PBRM14 as a
second major ccRCC cancer gene, with truncating mutations in 41% (92/227) of cases. These data
further elucidate the somatic genetic architecture of ccRCC and emphasize the marked
contribution of aberrant chromatin biology.

Exome sequencing based on a solution phase capture approach5 was performed on seven
cases of ccRCC, three of which carry VHL mutations, and matching normal DNAs (See
Supplementary information and Supplementary Table 1). Captured material was sequenced
using 76 basepair paired-end reads on the Illumina GAIIx platform. After read alignment,
variant calling was performed using a naïve Bayesian classifier algorithm for substitutions
and a split-read mapping approach (PinDel6 with substantial cancer-aware output filtering)
for insertion/deletions (See Supplementary Material for details). These algorithms aim to
identify somatically acquired coding and splice-site variants (i.e. present in the tumour but
not in the matching normal), and all mutations reported here were confirmed by PCR-based
capillary sequencing. 156 somatic mutations were identified, of which 92 were missense, 9
nonsense, 1 canonical splice site, 1 stop codon read-through, 11 frameshift and 42
synonymous (Supplementary Table 2).

In four cases truncating mutations were indentified in PBRM1. PBRM1 maps to
chromosome 3p21 and encodes the BAF180 protein, the chromatin targeting subunit of the
PBAF SWI/SNF chromatin remodelling complex7. The gene is comprised of 6
bromodomains involved in binding acetylated lysine residues on histone tails, 2 bromo-
adjacent homology domains important in protein-protein interaction and an HMG DNA
binding domain4. PBAF complex-mediated chromatin remodelling is implicated in
replication, transcription, DNA repair and control of cell proliferation/differentiation4,7. The
SMARCB1 and BRG1 components of this complex have inactivating mutations in rhabdoid
tumours8,9 and BRG1 mutations have been reported in multiple tumour types10. The
PBRM1 mutations included three frame-shifting insertions and a nonsense mutation; all
judged to be homozygous from SNP array and mutant allele read count data. PBRM1 was
not included in our previous PCR-based sequencing screen2 and was the only gene, apart
from VHL, with recurrent truncating mutations in the seven cases screened.

We next sequenced PBRM1 in a further 257 RCC cases, including 36 cases of papillary,
chromophobe and other non-ccRCC cancers. Truncating mutations were identified in a
remarkable 88/257 (34%) (Figure 1) of cases, all diagnosed as ccRCC (for full data see
Supplementary Tables 3, 4). PBRM1 mutations were all found in the context of
chromosome 3p loss of heterozygosity (38/38) where SNP array data was available (http://
www.sanger.ac.uk/cgi-bin/genetics/CGP/cghviewer/CghHome.cgi). Two in-frame deletion
mutations were identified – a predicted 6 amino-acid deletion
(p.M1209_E1214delMFYKKE) in the second BAH (bromo-adjacent homology) domain
likely involved in protein-protein interactions within the SWI/SNF complex4 and deletion of
an isoleucine codon (Ile57) in the first bromodomain (Figure 1). Both deletions remove
amino acids conserved to C elegans and both were in cases with 3p LOH. The ratio of nine
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missense to zero silent mutations suggests that a proportion of the missense mutations are
likely to be pathogenic. Six of nine missense mutations occur in bromodomains and one in
the second BAH domain (Figure 1). The bromodomains of PBRM1 have been shown to
have preferential binding to different acetylated lysine configurations of histone tails,
suggesting they may contribute to “reading” of the histone code11. The likelihood of the
missense mutations having functional impact was assessed using a scoring system calibrated
with protein domain alignments from Pfam (see Supplementary Methods). Three missense
mutations (p.T232P, p.A597D and p.H1204P) could be scored with these alignments. This
set of mutations was predicted to be deleterious, having a significantly lower mean score
than a typical null set of in silico generated random missense mutations falling onto the
scorable parts of the gene (p-value 0.01 Figure 2), making these mutations interesting
candidates for functional studies.

Four PBRM1 truncating mutations have been previously described in breast cancer12.
Although there is frequent 3p21 LOH in small-cell lung cancer, no evidence for PBRM1
inactivation was found13. To further evaluate the contribution of PBRM1 mutation in human
cancer, copy number was evaluated and the coding exons were sequenced through a series
of 727 cancer cell lines of various histologies. SNP array copy number analysis (http://
www.sanger.ac.uk/cgi-bin/genetics/CGP/cghviewer/CghHome.cgi) identified one
homozygous deletion in the HCC-1143 breast cancer cell line, previously described12.
Sequencing analysis identified five homozygous truncating mutations (Supplementary Table
5). Frame-shifting deletions were identified in the VHL-mutant A704 renal cancer, NCI-
H2196 small-cell lung cancer and TGBC24TKB gall bladder cancer lines. Nonsense
mutations were identified in the NCI-H226 squamous-cell lung cancer and PANC-10-05
pancreatic adenocarcinoma lines. Interestingly, a PBRM1 truncating mutation has been
reported in a comprehensive pancreatic cancer mutational screen14.

To obtain further support that PBRM1 can act as a cancer gene, we examined data from
several insertional mutagenesis screens in mice. Analyses of transposon insertion sites from
a forward genetic screen performed using a conditional Sleeping Beauty transposon
system15 in a mouse pancreatic cancer model16 revealed a significant enrichment of
insertion events in Pbrm1 amongst all genes hit using Monte Carlo simulation analyses as
previously described17. Insertions were found in pancreatic dysplasia, intraductal (panIN)
and high grade invasive tumours suggesting Pbrm1 inactivation is an early event in this
model. The mixed forward and reverse pattern of insertions is indicative of inactivation, as
demonstrated by RT-PCR showing premature termination of the Pbrm1 cDNA via splicing
into the inserted transposon (Figure 3). These data suggest that loss of Pbrm1 cooperates
with Kras in driving pancreatic tumour development in this model. Intriguingly, Setd2,
previously implicated human ccRCC, was also found to rank significantly in frequency
among all insertion sites and two tumours had both Setd2 and Pbrm1 insertions. These
comparative oncogenomic data provide independent support for PBRM1 as a cancer gene
and suggest further investigation of the role of PBRM1 (and SETD2) in human pancreatic
cancer is warranted.

Abrogation of PBRM1 expression via siRNA knockdown in ccRCC cell lines was
investigated to assess possible consequences of PBRM1 loss. Greater than 60% knockdown
of PBRM1 RNA and protein resulted in a significant increase in proliferation 4/5 RCC lines
(Figure 4A, B and Supplemental Information). No effect was seen, however, in A704 which
carries a homozygous truncating PBRM1 mutation and expresses no PBRM1, confirming
the specificity of the assay. Further, knockdown of PBRM1 resulted in significantly
increased colony formation in soft-agar and increased cell migration (Figure 4C, D),
indicative of an increase in transformed phenotype. Taken together, these data support
PBRM1 having a tumour suppressor role in ccRCC.
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Transcriptional profiling before and after PBRM1 knockdown was performed using gene
expression microarrays. Gene set enrichment analysis following PBRM1 knockdown
showed that PBRM1 activity regulates pathways associated with chromosomal instability
and cellular proliferation (Figure 4E, Supplementary Table 6), the latter being consistent
with previous studies identifying PBRM1 as critical transcriptional regulator of p21/
CDKN1A in breast cancer cell lines12 and work showing that PBRM1/Baf180 is implicated
in regulating TP53 mediated replicative senescence 18. The PBAF complex has been shown
to localise at kinetochores during mitosis19 and SMARCB1 has been implicated in spindle
checkpoint control20, which would support the loss of PBRM1 giving rise to a chromosomal
instability/spindle checkpoint expression phenotype. It may be of interest to further explore
spindle checkpoint control in PBRM1 mutated ccRCC as a potential therapeutic opportunity.

Previous work has demonstrated that VHL loss alone is insufficient for ccRCC
tumourigenesis arguing the need for additional genetic events21,22 (Teh, unpublished) and
has further suggested the existence of a 3p21 “gatekeeper” ccRCC mutation based on LOH
studies23. The data presented here strongly suggest that inactivation of PBRM1 comprises
this second major mutation in ccRCC development. Nearly all (36/38) PBRM1 mutant cases
fall into the hypoxia signature group as described previously2, including 13/14 cases without
demonstrable VHL point mutations where expression data is available – further indicating
the importance of PBRM1 in typical ccRCC development. The SWI/SNF complex has been
implicated in the normal cellular response to hypoxia, with impairment of the complex
rendering cells resistant to hypoxia-induced cell cycle arrest24, which would be consistent
with selection for frequent loss of PBRM1 in ccRCC. Multiple cancers have apparently
concomitant VHL, PBRM1 and SETD2 mutations, with all three genes mapping to
chromosome 3p, suggesting that the mutations are non-redundant functionally. Half
(55/107) of cases in this series with a demonstrable VHL mutation 2 have a PBRM1
mutation. Strikingly, all 9 cases with a SETD2 mutation have a mutation in either PBRM1
or VHL, with 6 of 9 cases having mutations in all three genes. Physical linkage of these
three ccRCC cancer genes together with their potential interaction may be the key driver for
the large scale 3p LOH seen in most cases of ccRCC – being particularly parsimonious in
requiring only four genetic events to unmask three tumour suppressor genes as opposed to
six if the genes were on different chromosomes.

Several other mutated genes of potential interest were identified. In particular, ARID1A
encoding the BAF250A subunit of the SWI/SNF complex was found to have two
heterozygous missense mutations - p.R1020K,c.3059G>A and p.L1872P,c.5615T>C. Both
cases (PD2126, PD2127) have a PBRM1 truncating mutation. Two homozygous ARID1A
deletions were found in SNP 6.0 data (http://www.sanger.ac.uk/cgi-bin/genetics/CGP/conan/
search.cgi) in the LB1047-RCC ccRCC and NCI-SNU-5 gastric carcinoma cell lines and
loss of ARID1A expression has been reported in RCC25. Frequent truncating ARID1A
truncating mutations have recently been reported in clear cell ovarian carcinoma 26,27. These
data all point to ARID1A being a cancer gene, likely operative in ccRCC. PD2127 was also
found to have a heterozygous truncating mutation in ARID5B, related to ARID1A and
recently implicated in childhood acute lymphoblastic leukaemia susceptibility28. The extent
to which the other mutated genes identified here contribute to ccRCC will await large-scale
follow-up screens. Similarly, exome and whole genome sequencing on a large number of
cases is likely to yield further insights.

The identification of a second major cancer gene in ccRCC further defines the genetic and
molecular architecture of this tumour type. It is remarkable that PBRM1, like the majority of
the other non-VHL mutated cancer genes identified in ccRCC, is involved in chromatin
regulation – again at least in part at the level of histone H3 modification and recognition.
Understanding the contribution of PBRM1 mutation to clinical disease progression and
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outcome as well the potential for exploiting SWI/SNF complex abrogation therapeutically
are important future areas of renal cancer research.

Methods Summary
DNA samples from ccRCC patients tumour and matching normal were all obtained under
local IRB and LREC approvals for this study and processed as previously described2. DNA
fragmentation, library preparation and solution phase hybrid capture were according to
manufacturer instructions (Agilent Technologies, US) and modified from previously
published protocols5. Capillary-based Sanger sequencing for confirmations and PBRM1
followup were done as previously described2 with manual inspection of all sequencing
traces. mRNA was extracted from snap-frozen mouse pancreatic lesions and subjected to
RT-PCR using a nested PCR approach utilising primers of mouse Pbrm1 exon 23/24 and the
Carp-β-Actin Splice acceptor sequence of the T2Onc transposon cassette. Resulting bands
were gel-purified and subjected to capillary-based Sanger sequencing. PBRM1 or scrambled
control siRNAs (Santa Cruz, CA) were transfected into ccRCC cell lines using
Lipofectamine 2000 (Invitrogen, CA) according to the manufacturer's conditions. Real-time
PCR and western blotting were all done utilising standard protocols essentially as
described1. Expression analyses were carried out as previously described2.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. PBRM1 somatic mutations
Representation of PBRM1 transcript with boxes BR1-BR6, BAH1-2 and HMG indicating
the positions of the bromodomains 1-6, bromo-adjacent homology domains and high-
mobility group domain, respectively. Relative positions of mutations are indicated by
symbols. Stars – nonsense, dots – missense, red triangles – frameshift deletions, black
triangles – frameshift insertions and green triangles – in-frame deletions. Splice-site
mutations are not depicted.

Varela et al. Page 7

Nature. Author manuscript; available in PMC 2011 July 27.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 2. Analysis of PBRM1 missense mutations
Bars represent histogram of the mean score of in silico generated random missense
mutations (10,000 sets of three mutations that can be scored) and the red circle denotes the
mean score of the somatic mutations that could be scored (T232P □s = −7.78, A597D □s =
−9.69, H1204P □s = −2.76). The somatic set is significantly different from the null set (p-
value 0.01). They have a higher negative mean score and are thus predicted to be more
deleterious on average.
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Figure 3. Pbrm1 is frequently mutated in a mouse model of pancreatic cancer
To identify genes that co-operate with K-Ras in the formation of pancreatic cancer a
conditional allele of K-RasG12D and Pdx1-Cre were combined with a conditional Sleeping
Beauty transposase driver and the T2Onctg transposon donor allele29. Expression of Cre
results in expression of K-RasG12D and transposon mobilization within the epithelial
compartment of the pancreas. Isolation of the transposon insertion sites from a panel of 153
pancreatic cancers and pre-neoplastic lesions generated from this model revealed a common
insertion site in Pbrm1 suggesting that loss of Pbrm1 co-operates with K-RasG12D in
pancreatic cancer development. Statistical analysis was performed as previously
described30. Transposon insertions in the forward strand of Pbrm1 are shown in green.
Insertions in the reverse orientation are shown in red. A chromatogram from sequencing of
RT-PCR products from one tumour is shown demonstrating splicing of exon 24 of Pbrm1
into the inserted transposon, thus truncating the transcript.
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Figure 4. Knockdown of PBRM1 expression in RCC cell lines
(A) Verification of PBRM1 knockdown by western blotting. (B)Silencing PBRM1 increased
the proliferation of ACHN and 786-O with wild type PBRM1, but not A704 with a
homozygous PBRM1 truncating mutation. Data represent means of triplicate experiments
with standard deviation, p<0.01. (C) Knockdown of PBRM1 enhanced colony formation in
SN12C cells. Data represent means of triplicate experiments with standard deviation,
p<0.01. (D) Knockdown of PBRM1 enhanced cell migration in 786-O, SN12C and TK10
cells. Data represent means of triplicate experiments with standard deviation, p<0.01. (E)
Gene sets that are most significantly deregulated following PBRM1 knockdown in three
RCC cell lines using curated gene sets obtained from MSigDB (http://
www.broadinstitute.org/gsea/msigdb/) and additional curated gene sets obtained from the
PGSEA package (see Supplemental Material for details).
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