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Abstract 18 

The bile adapted strain Bifidobacterium animalis subsp. lactis IPLA-R1 19 

secretes a high molecular weight exopolysaccharide (HMW-EPS) when grown on 20 

the surface of agar-MRSC. This EPS is composed of L-rhamnopyranosyl, D-21 

glucopyranosyl, D-galactopyranosyl and D-galactofuranosyl residues in the ratio of 22 

3:1:1:1. Linkage analysis and 1D and 2D-NMR spectroscopy were used to show that 23 

the EPS has a hexasaccharide repeating unit with the following structure: 24 

α-D-Galf-(1→2)-α-L-Rhap 25 
     1 26 
     ↓ 27 
     2 28 

  →4)-β-D-Glcp-(1→3)-α-L-Rhap-(1→2)-α-L-Rhap-(1→4)-β-D-Galp-(1→ 29 
 30 

Treatment of the EPS with mild acid cleanly removed the terminal D-31 

galactofuranosyl residue. The eps cluster sequenced for strain IPLA-R1 showed high 32 

genetic homology with putative eps clusters annotated in the genomes of strains 33 

from the same species. It is of note that several genes coding for rhamnose- 34 

precursors are present in the eps cluster, which could be correlated with the high 35 

percentage of rhamnose detected in its EPS repeated unit.  36 

 37 
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1. Introduction 41 

Bifidobacteria are Gram-positive non-spore forming, non motile, non 42 

filamentous rods which can display various shapes, the most typical one is bifurcated 43 

with spatulated extremities. They are strict anaerobes, with high G+C content 44 

belonging to the phylum Actinobacteria and they are normal constituents of a healthy 45 

gut microbiota of animals. Currently more than 30 species are included in the genus 46 

Bifidobacterium, whilst most abundant in the human gastrointestinal tract are B. 47 

adolescentis, B. angulatum, B. bifidum, B. breve, B. catenulatum, B. longum and B. 48 

pseudocatenulatum. Bifidobacteria are regarded as probiotic microorganisms and 49 

are increasingly being consumed as supplements in foods or in pharmaceutical 50 

formulations, to promote a healthy gut microbiota balance. The species most often 51 

found in functional dairy products is Bifidobacterium animalis subsp. lactis1.  52 

Probiotics have been defined as “live microorganisms, which when 53 

administered in adequate amounts confer a health benefit on the host”2. The degree 54 

of scientific evidence of probiotic effect in humans is scarce since most of these 55 

beneficial claims are based on the extrapolation of results of in vitro and animal 56 

model experiments. There are only a limited number of reports showing efficacy of a 57 

few specific probiotic strains in human intervention studies. Several meta-analyses 58 

collecting clinical evidence have demonstrated probiotic efficacy in alleviating lactose 59 

intolerance, antibiotic associated diarrhoea, atopic allergy in infants and some 60 

inflammatory bowel diseases3,4.  One of the potential mechanisms by which probiotic 61 

bacteria can elicit their health benefits is through the surface molecules such as the 62 

exopolysaccharides (EPS). These biopolymers are exocellular carbohydrates that 63 

can be: covalently linked to bacterial surface forming a capsule; they can be non-64 
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covalently associated with the surface or be totally secreted. Several health benefits 65 

have been in vitro attributed to EPS, such as cholesterol lowering capability, 66 

prebiotic effect and modulating the immune response5. Bifidobacteria isolated from 67 

human intestinal origin are able to synthesise EPS composed of more than one type 68 

of monosaccharide6,7. Regarding the putative role of EPS produced by bifidobacteria 69 

in the gut environment, it has been reported that bile salts induce their synthesis in 70 

some strains of B. animalis subsp. animalis8. Thereby, it seems that these polymers 71 

could have a protective role for the producing bacteria. This property is interesting for 72 

orally delivered strains since it could help bifidobacteria to survive the challenges, 73 

mainly acidic conditions and high concentration of bile salts that they will encounter 74 

on their transit from the mouth to the small intestine. In the large intestine, EPS-75 

producing bifidobacteria will meet a complex ecosystem inhabited by a vast number 76 

of microorganisms. Salazar and co-workers have reported that a number EPS 77 

isolated from bifididobacteria have an ability to in vitro modulate the composition of 78 

human intestinal microbiota 9.A similar effect has been recently shown in vivo using 79 

rats fed with the EPS-producing strain B. animalis subsp. lactis IPLA-R110. 80 

Additionally, the EPS produced by this strain was able to in vitro counteract the 81 

cytotoxic effect of bacterial toxins upon colonocyte-like Caco-2 cells. This EPS-82 

fraction was analysed by size exclusion chromatography coupled with multi-angle 83 

laser light scattering detection (SEC-MALLS) and it was found a distribution of three 84 

molecular weight peaks differing in size11. 85 

Whilst there are a number of reports of EPS producing bifidobacteria, very 86 

little work has been undertaken to fully characterise the EPS that they produce, as 87 

well as their genetic determinants. The structures of the EPS produced by B. bifidum 88 

BIM B-46512 and B. longum JBL0513 both of human origin, have recently been 89 
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reported. But, as far as we know, the functional characterization of genes coding for 90 

enzymes involved in EPS-synthesis in Bifidobacterium has not been undertaken to 91 

date. A recent comparative analysis of bifidobacterial genomes shows that the 92 

presence of putative eps clusters seems to be an ubiquous character in this genus14. 93 

Thereby, the aim of this study was to analyse the structure of the EPS produced by 94 

B. animals subsp. lactis IPLA-R1, a promising strain with probiotic potential, and to 95 

analyse the sequence of the putative eps cluster coding for proteins involved in the 96 

synthesis of this polymer. 97 

 98 

2. Results and Discussion 99 

2.1. Structure of the HMW-EPS polymer synthesised by strain IPLA-R1 100 

The crude-EPS sample purified from B. animals subsp. lactis IPLA-R1 had a 101 

protein content of 3.9% and the molecular weight distribution was similar to that 102 

previously reported by SEC-MALLS11: a high molecular weight fraction (HMW) with 103 

average molecular weight of 3.5 x 106 Da, a middle weight EPS (3.0 x 104 Da) and a 104 

low molecular weight EPS (4.9 x 103 Da). Dialysis of the crude-EPS sample against 105 

a 100 kDa cellulose acetate membrane separated the HWM-EPS, which was 106 

isolated in the retentate with reasonable purity. By SEC-MALLS separation, the 107 

average molecular weight of the HMW-EPS in the retentate was measured as 3.5 x 108 

106 Da. The purity of the HMW-EPS was also determined by comparison of the 109 

anomeric region of the NMR spectra before (Fig 1a) and after dialysis (Fig1b), only a 110 

small amount of additional material (assumed to be middle weight EPS) was present. 111 

Six anomeric protons appear in the anomeric region of the 1H NMR spectrum of the 112 

HMW-EPS suggesting that the repeating unit is a hexasaccharide; from this point 113 
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forward, the anomeric signals of the individual monomers are arbitrarily labelled as A 114 

to F, in decreasing order of their chemical shifts.  115 

The results of monomer analysis and determination of the absolute 116 

configuration of the monomers indicate that the polysaccharide is composed of L-117 

rhamnose, D-galactose and D-glucose in a molar ratio of 2.85:1.97:1. After 118 

performing linkage analysis, five unique methylated alditol acetates were obtained 119 

including: a 1,4,5-tri-O-acetyl-2,3,6 -tri-O-methylglucitol (from 1,4-Glcp); a 1,4,5-tri-O-120 

acetyl-2,3,6-tri-O-methylgalactitol (from 1,4-Galp); a 1,2,5-tri-O-acety-3,4-di-O-121 

methylrhamnitol (from 1,2-Rhap); a 1,2,3,5-tetra-O-acetyl-4-O-methylrhamnitol (from 122 

1,2,3- Rhap); and a 1,4-di-O-acetyl-2,3,5,6-tetra-O-methylgalactitol (from t-Galf). 123 

The structure of the HMW-EPS was determined using the results of the 124 

linkage analysis and by inspection of a range of 1D and 2D-NMR spectra including: 125 

1H-1H COSY; 1H-1H TOCSY; 1H-13C HMBC; 1H-13C HSQC and 1H-13C HSQC-126 

TOCSY spectra. The first thing to note is the anomeric configuration of each of the 127 

monomers, for monomers A to D this was determined by measurement of the 128 

magnitude of the 1JC-H coupling constant for the anomeric signals A (173 Hz), B (175 129 

Hz), C (176 Hz) and D (175 Hz) these values are all greater than 170 Hz and 130 

identifies each as having α-linkages. The anomeric configuration of the two 131 

remaining monomers (E and F) was determined by measurement of the 3JH1-H2 132 

coupling constants which were both greater than 8 Hz identifying that E and F 133 

residues have β-linkages.  134 

The position of the remaining proton resonances (H-2 to H-6) was determined 135 

using a combination of the COSY and TOCSY spectra. On the 1H-1H TOCSY 136 

spectrum (120 ms, data not shown) there are cross peaks from the anomeric protons 137 

of residues A, B and C to H-4 and, in the methyl region, from H-6 to H-3, identifying 138 
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A, B and C as the rhamnose monomers. For residues D, E and F cross peaks on the 139 

COSY and TOCSY spectra identified the positions of H-1 through to H-4. The exact 140 

positions of H-5- and H-6 were not easily determined as there is poor transmission of 141 

coupling beyond H-4. The position of the remaining resonances was obtained from 142 

inspection of a 13C Dept spectrum and from the HQSC spectrum. On the 13C Dept 143 

spectrum, the C-6 resonances are located together at approximately 60 ppm. Once 144 

all the cross-peaks on the HSQC spectrum for C1/H1 to C4/H4 and for C6/6 had 145 

been assigned (Fig 2) the three remaining cross peaks must be those belonging to 146 

C/H-5s. Finally, these were assigned to individual monomers by cross reference to a 147 

HSQC-TOCSY spectrum. As the structure does not have any glycosidic links 148 

involving the hydroxyls at C6, our failure to assign the individual H-6 residues to D, E 149 

and F has no consequence for the characterisation of the EPS. For clarity, the 150 

resonance position for the 1H signals and 13C signals (H2 to H5 and C2 to C5) are 151 

indicated on the 1H-13C HSQC spectrum (Fig 2a, anomeric signals appear on the 152 

inset Fig 2b) the anomeric proton resonances are also indicated on the 1H-1H 153 

NOESY spectrum (Fig 3) and the combined chemical shift data for the complete 154 

repeating unit is presented in Table 1. 155 

The very low field chemical shift values for H-2, H-3 and the H-4 resonances 156 

of residue D, combined with the loss of this residue under mildly acidic conditions 157 

(see discussion below), is evidence for residue D being the terminal Galf. This would 158 

leave residues E and F as the 1→4 linked hexoses. One way of differentiating 159 

between galacto- and glucopyranoses is from inspection of the chemical shifts for 160 

their H-4 resonances: for a galactose H-4 is shifted substantially to lower field than 161 

that of a glucose regardless of the anomeric configuration and linkage. Data 162 

collected from assignments for lactic acid bacteria (LAB) EPS structures show that 163 



8 
 

the H-4 resonances for galactose lie in the range 4.30-3.85 δ whilst those for glucose 164 

lie in the range 3.45 -3.75δ15. The chemical shift for E H-4 (3.61) and that for F H-4 165 

(4.39) implies that E is the glucopyranose sugar and F is the galactopyranose.  166 

Information regarding the sequence of the sugar residues in the repeating unit 167 

was obtained from examination of the NOESY spectrum (Fig 3) and the anomeric 168 

region of the HMBC spectrum (not shown). On the NOESY spectrum there are 169 

strong inter residue NOEs between: A H-1 and F H-4, B H-1 and C H-2, D H-1 and B 170 

H-2, E H-1 and C H-3, and F H-1 and E H-4; identifying A(1→4)F , B(1→2)C, 171 

D(1→2)B, E(1→3)C and F(1→4)E linkages. On the HMBC spectrum inter-residue 172 

couplings are observed between: A H-1 and F H-4, B H-1 and C H-2, and D H-1 and 173 

B H-2, matching the NOE signals and, additionally, a cross peak is observed 174 

between C H-1 and A H-2.  175 

Using a combination of the results for the linkage analysis and the NMR 176 

identifies the structure for the repeating unit as: 177 

     D    B 178 
α-D-Galf-(1→2)-α-L-Rhap 179 

    1 180 
    ↓ 181 
    2 182 
→4)-β-D-Glcp-(1→3)-α-L-Rhap-(1→2)- α-L-Rhap-(1→4)-β-D-Galp-(1→ 183 
    E    C      A    F 184 
 185 

This is a novel structure and differs to those of the EPS structures that have been 186 

reported for B. bifidum BIM B-46512 and B. longum JBL0513 and is also different to 187 

the EPSs that have been isolated and characterised from LAB15. 188 

 189 

Mild acid catalysed hydrolysis of the HMW EPS 190 

It is well known that glycosidic links to Galf residues are hydrolysed in acidic 191 

solution16. Treatment of the HMW-EPS with a dilute solution of trifluroacetic acid in 192 
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an NMR tube caused the loss of the Galf residue which we were able to monitor over 193 

time (Fig 4). Within a period of 8 hours the anomeric signal, from residue D, reduced 194 

in intensity and ultimately merged with the spectral noise. It seems that the EPS 195 

IPLA-R1 could have a protective role during the transit of the producing bacteria 196 

through the upper part of the intestinal tract10. However, in the in vivo situation this 197 

Galf residue could be either partially or totally lost. Thereby, care will be needed in 198 

attempting to correlate EPS structure with biological activity measured in vitro, since 199 

the passage through the gastrointestinal tract could modify its composition.  200 

 201 

2.2 Putative eps cluster of B. animalis subps. lactis IPLA-R1  202 

 A fragment of 54,259 bp containing the putative eps cluster of the strain B. 203 

animalis subsp. lactis IPLA-R1 was sequenced and the putative function of coded 204 

proteins has been studied by homology comparison with sequences held in the 205 

GenBank database. A high genetic homology was detected among the putative eps 206 

cluster of our strain IPLA-R1 and those of the five B. animalis subsp. lactis whose 207 

genomes are currently available (data not shown). As expected, the functional maps 208 

were almost identical among the six strains; this was not surprising since it has been 209 

shown that there is a scarce inter-strain genetic variability within this Bifidobacterium 210 

species17.  211 

The best characterised eps clusters, either by homology comparison or by 212 

functional studies, are those of LAB and, in fact, a functional structure has been 213 

found among these clusters18. Taking into account this functional structure, several 214 

proteins involved in the synthesis of EPS have been found in the eps cluster of B. 215 

animalis subp. lactis IPLA-R1 (Figure 5). This is the case of glycosyltransferases 216 
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(GTF), priming-GTF (p-GTF), genes involved in export of repeated unit, its 217 

polymerization and chain length determination, as well as mobile elements 218 

(transposase and insertion sequences (IS)). However, no gene regulators have been 219 

found although this function could be played by proteins with unknown function 220 

within the cluster or others outside it. It is also surprising that a number of membrane 221 

proteins are present in the bifidobacterial eps cluster. Another remarkable feature in 222 

the IPLA-R1 eps cluster is the presence of two p-GTF, as previously denoted for B. 223 

longum subsp. longum NCC270519 and for the other B. animalis subsp. lactis 224 

strains14. This enzyme catalyses the transfer of an activated sugar to the lipid carrier 225 

C55, being the first step in the synthesis of the repeated unit that build the polymer. 226 

In B. animalis subsp. lactis IPLA-R1, one of the p-GTF was located in the 5´ end 227 

(annotated as “undecaprenyl-phosphate sugar phosphotraferase”) and the second 228 

one was located down-stream (annotated as galactosyl transferase CpsD). The 229 

nucleotide sequences of the two p-GTFs of the strain IPLA-R1 were different to the 230 

corresponding homologues of the type-strain DSM10140. In addition, in the strain 231 

IPLA-R1 the change in the nucleotide sequence of cpsD, but no that of the 232 

undecaprenyl-phosphate sugar phosphotraferase gene, leaded to a modification in 233 

the translated amino acid. However, we do not know if this different amino acid 234 

residue could modify the function of this p-GTF and thereby, influence the synthesis 235 

of the EPS in IPLA-R1 strain. Variations in the nucleotide sequence were also 236 

detected in the transposase IS204/IS1001/IS1096/IS1165 located at the 3´end, 237 

probably due to gain or lose of nucleotides in this mobile element during each 238 

transposition.  239 

 In relation to the structure of the HMW-EPS IPLA-R1 determined in this study, 240 

it is worth mentioning the presence of genes coding for proteins involved in the 241 
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biosynthesis of rhamnose precursors in the putative eps gene cluster of this strain, 242 

which could correlate with the high rhamnose content (50%) of its hexasaccharide 243 

repeated unit. Normally, in LAB strains, the content of rhamnose does not exceed 244 

that of the other two common EPS monosaccharides: glucose and galactose. An 245 

exception is the strain Lactobacillus rhamnosus RW9595M whose glucose: 246 

galactose: rhamnose ratio is 2:1:420 and it also presents in its eps cluster rhamnose-247 

precursor biosynthseis genes21. Additionally, in EPS isolated from intestinal strains 248 

the content of rhamnose was higher (52%) than in those isolated from foods (28%)7. 249 

In this regard, the in silico comparative analysis of five bifidobacteria species shows 250 

that rhamnose-precursor biosynthesis genes are present in three out of the five 251 

species, showing a high degree of protein homology (data not shown). These facts 252 

suggest that the high presence of rhamnose in intestinal EPS could play a role in this 253 

ecological niche, which deserves future investigation. 254 

 3. Experimental 255 

3.1. Bacterial growth and purification of the HMW-EPS 256 

The growth conditions and purification of the crude-EPS from strain B. animalis 257 

subsp. lactis IPLA-R1 (previously named A1dOxR) have previously been 258 

described11. In short, bacterial biomass grown in an anaerobic chamber [MG500 259 

(Down Whitley Scientific, West Yorkshire, UK): 80% (v/v) N2, 10% CO2, 10% H2] at 260 

37ºC for 5 days on the surface of agar-MRSC [MRS (Biokar Diagnostics, Beauvais, 261 

France) + 0.25% L-cysteine (Sigma Chemical Co. St. Louis, MO, USA)] was 262 

collected with water. The bacterial suspension was mixed with 1 volume of 2M 263 

NaOH and the crude-EPS from the cell-free supernatant was precipitated with 2 264 

volumes of chilled-absolute ethanol for 48 h at 4ºC. The precipitated fraction was 265 
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resuspended in ultra-pure water, dialysed in 12-14 kDa MWCO cellulose membranes 266 

(Sigma) against water for 3 days at 4ºC and finally freeze-dried to obtain the EPS-267 

crude fraction.   268 

A pure sample of the high molecular weight (HMW)-EPS from the crude-EPS 269 

fraction isolated from B. animals subsp. lactis IPLA-R1 was obtained by dialysis as 270 

follows. A crude-EPS sample (25 mg) was dissolved in distilled water (10 mL) with 271 

gentle heating (less than 50°C) and the HMW material was isolated in the retentate 272 

(about 10 mL), after dialysis (Spectra/Por Float-A-Lyser 100 KDa MWCO, Sigma) for 273 

72 hours at 4°C against three changes of distilled water per day. The content of the 274 

dialysis membrane were freeze dried to provide HMW-EPS.  275 

The purity of the HMW-EPS was determined by SEC-MALLS and NMR analysis. 276 

For SEC-MALLS, solutions of EPS in deionised water (1 mg mL-1) were prepared 277 

and left for 24 h to completely dissolve. Samples (100 µl) were injected onto an 278 

analytical SEC system comprising three columns Aquagel-OH 40, 50 and 60 (15 µm 279 

particle size, 25 cm x 4 mm, Varian, Oxford, UK) connected in series. The neutral 280 

analytes were eluted with deionised water flowing at 1 mL min-1. The concentration 281 

of the EPS fractions eluting from the column were determined by a differential 282 

refractometer (Optilab rEX, Wyatt technology, Santa Barbara, USA) and the weight 283 

average molecular weight was measured using a Dawn-EOS MALLS operating with 284 

a 690 nm laser (Wyatt technology, Santa Barbara). 285 

3.2. Monomer composition and linkages of the HMW-EPS  286 

The monomer composition of the HMW-EPS was determined after acid 287 

hydrolysis by HPAEC-PAD. The HMW-EPS (1 mg mL-1) was treated with 2M TFA 288 

(120°C for 2 h) and the identity of the released monomers was determined using 289 



13 
 

high performance anion exchange chromatography (HPAEC) on a Dionex BioLC 290 

system (Sunnyvale CA, USA) equipped with a CarboPac PA20 column (150 mm x 3 291 

mm). Monomers were eluted using a sodium 10 mM hydroxide mobile phase at a 292 

flow rate of 0.5 mL min-1 and detected using a pulsed amperometric detector (PAD) 293 

ED50 (Dionex) operating with a dual potential waveform. The ratio of monomers was 294 

determined by comparison of the detector response to calibration standards of the 295 

individual monomers (galactose, glucose and rhamnose, 5-100 ppm). The absolute 296 

configurations of monosaccharides were determined by conversion to their butyl 297 

glycosides using the procedure described by Gerwig et al22. 298 

For linkage analysis, the HMW-EPS was permethylated using the procedures 299 

described by Stellner et al23. The methylated-polysaccharide was hydrolysed by 300 

treatment with 2M TFA (120 °C for 2 h) and the methylated monosaccharides 301 

converted to their corresponding methylated alditol acetates. The identity of the 302 

variously methylated alditol acetates was determined by GLC-MS and by analysis of 303 

the individual fragmentation patterns observed in the MS. GLC-MS analyses were 304 

performed on an Agilent 7890A GC system (Santa Clara, CA, USA) coupled to an 305 

Agilent 5675c quadrupole MS. The samples were eluted from a HP-5 column (30 m 306 

x 0.25 mm-id, 0.25 µm film) using helium as carrier (9 psi, flow rate 1 mL min-1) and 307 

using the following temperature programme: start temperature 155°C, hold time 1 308 

min, and a final column temperature of 195°C reached via a rising gradient of 0.75°C 309 

min-1.  310 

3.3. NMR structure of the HMW-EPS  311 

NMR spectra were recorded for HWM-EPS samples that were dissolved (10 312 

mg mL-1) directly in D2O (Goss Scientific Instruments Ltd., Essex, UK). NMR spectra 313 

were recorded at a probe temperature of 70°C. The elevated temperature was 314 
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initially chosen as it shifted the HOD signal to higher field, into a clear region of the 315 

spectrum. The higher temperature also increased spectral resolution by reducing the 316 

sample viscosity. All of the NMR spectra were recorded on a Bruker Avance 500.13 317 

MHz 1H (125.75 MHz 13C) spectrometer (Bruker-biospin, Coventry, UK) operating 318 

with Z-field gradients where appropriate, and using Bruker’s pulse programs. 319 

Chemical shifts are expressed in ppm relative to either internal or external acetone; δ 320 

2.225 for 1H and δ 31.55 for 13C. The 2D gs-DQF-COSY spectrum was recorded in 321 

magnitude mode at 70°C. TOCSY experiments were recorded with variable mixing 322 

times (60, 90, 120 ms). The 2D-heteronuclear 1H-13C HSQC, and phase sensitive 323 

HSQC-TOCSY were recorded using Bruker pulse sequences and 256 experiments 324 

of 1024 data points. The NOESY spectrum was recorded using a Bruker pulse 325 

sequence and 256 experiments of 1024 data points were recorded using a mixing 326 

time of 200 ms. For the majority of spectra, time-domain data were multiplied by 327 

phase-shifted (squared-) sine-bell functions. After applying zero-filling and Fourier 328 

transformation, data sets of 1024-1024 points were obtained. 329 

A mild acid hydrolysis treatment of the HMW-EPS was carried out as follows: 330 

a solution of EPS (10 mg mL-1) was mixed with 20 µl of TFA in an NMR tube and 331 

kept at 70ºC for 24 h. Hydrolysis was monitored by 1H NMR, spectra were recorded 332 

every hour for first 8 h and then after 24 h.  333 

3.4. Sequencing of the putative eps cluster of B. animalis subsp. lactis IPLA-R1 334 

Strain B. animalis subsp. lactis IPLA-R1 was grown for 24 h in 10 mL of 335 

MRSC broth to isolate DNA using the “GenElute Bacterial Genomic DNA” kit (Sigma) 336 

following the manufacturer instructions, but including a previous step of bacterial 337 

lysis with mutanolysin and lysozyme8. For sequencing the putative eps cluster, 54 338 



15 
 

pair of PCR primers were designed taking into account the sequence of the type 339 

strain B. animalis subsp. lactis DSM10140, whose genome is publicly available 340 

(GenBank accession number CP001606)24. Primers, synthesised by Thermo-Fisher 341 

Scientific GmbH (Ulm, Germany), amplified regions of about 1,000 bp. The PCR 342 

reaction mixture in a final volume of 50 µl was: 1 µl chromosomal DNA, 0.20 µM of 343 

each primer, 200 µM dNTPs (Amersham Bioscience, Upsala, Sweden) and 2.5 U 344 

Taq DNA-polymerase (Eppendorf, Hamburg, Germany). The PCR thermal conditions 345 

were an initial denaturalisation cycle 95ºC for 5 min, 30 amplification cycles of: 95ºC 346 

for 1 min, 52 or 56ºC (variable according to the pair of primers) for 50 s and 68ºC for 347 

2 min, and a final extension step of 68ºC for 10 min. Amplification was done in a 348 

UnoCycler thermal cycler (VWR International Eurolab S.L., Barcelona, Spain). PCR 349 

amplified products were visualised under UV in 1% agarose gels, after staining with 350 

ethidium bromide. Purification and sequencing of each amplicons (both strands) was 351 

performed by Macrogen (Seoul, Korea). Sequences obtained were processed with 352 

the free Chromas 1.45 software (Technelysium Pty Ltd., Australia) and used for 353 

comparison with those held in the GenBank database 354 

(http://www.ncbi.nlm.nih.gov/genbank) using the BLASTn and BLASTp tools.  355 
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 430 

Figure Legends 431 

 432 

Figure 1 500 MHz 1H NMR spectrum of the HMW-EPS obtained after separation of 433 

crude-EPS by dialysis in a 100 kDa cellulose acetate membrane; spectra recorded in 434 

D2O at 70oC. Inset shows an expanded plot of the anomeric region. 435 

 436 

Figure 2 (a): 500-MHz 1H-13C HSQC spectrum of a selected region of the HMW-437 

EPS from B. animalis subsp. lactis IPLA-R1 recorded in D2O at 70oC. The identity of 438 

the cross peaks is noted by the sugar residue (A-F) and by identifying the location of 439 

hydrogens/carbons within the ring as 2-5. (b):  anomeric region of the 500-MHz 1H-440 

13C HSQC spectrum.  441 

 442 

Figure 3: 500-MHz 1H-1H NOESY spectrum of a selected region of the HMW-EPS 443 

from B. animalis subsp. lactis IPLA-R1 recorded in D2O at 70oC. The identity of the 444 

cross peaks is noted by the sugar residue (A-F) and by identifying the location of 445 

hydrogens within the ring as 1-5. Intra-residue couplings are highlighted in red and 446 

inter-residue couplings are highlighted in yellow. For interpretation of the references 447 

to colour in this figure legend, the reader is referred to the web version of this article. 448 

 449 

Figure 4: 500-MHz 1H–13C HMBC spectrum of a selected region of the HMW-EPS 450 

from B. animalis subsp. lactis IPLA-R1 recorded in D2O at 70°C. The identity of the 451 
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cross peaks is noted by the sugar residue (A–D) and by identifying the location of 452 

hydrogens within the ring as 1–5. Intra-residue couplings are highlighted in red and 453 

inter-residue couplings are highlighted in yellow. (For interpretation of the references 454 

to colour in this figure legend, the reader is referred to the web version of this article). 455 

 456 

Figure 5: 500 MHz 1H NMR spectra of the anomeric region following the acid 457 

catalysed hydrolysis of the HMW-EPS from B. animalis subsp. lactis IPLA-R1 as a 458 

function of time; spectra were recorded in D2O at 70oC and the sample was 459 

maintained at 70oC for the full reaction period.  Sugar residues in the native HMW-460 

EPS are identified at the bottom (A to F), whereas those of the hydrolysed sample 461 

are identified at the top (A’ to F’). 462 

 463 

Figure 6: Physical map of the putative eps cluster (54,259 bp) of B. animalis subsp. 464 

lactis IPLA-R1. Predicted protein functions are categorised as follows: GTF, 465 

glycosyltransferase; p-GTF, priming-GTF/ undecaprenyl-phosphate sugar 466 

phosphotransferase / galactosyltransferase (CpsD); Rh-B, rhamnose biosynthesis 467 

precursors; P-ChL, polymerization (polymerase) – chain length determination; P-E, 468 

polymerization – export (Wzx and Wzz flippases); PB, polysaccharide biosynthesis;  469 

AcS, acyl-synthetase; Ph, phosphorilase; MP, membrane protein; T-IS, transposase 470 

– IS mobile elements; White arrows without label indicate hypothetical proteins.  471 

 472 

Table 1: 1H and 13C NMR chemical shifts of the HMW-EPS from B. animalis subsp. 473 

lactis IPLA-R1 recorded in D2O at 70oC 474 

  475 
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Figure 3 487 

 488 

.. 489 
  490 

D1-B4

F1-F4

E1-C3

B1-C2A1-F4

E1-E3

E1-C4

B1-B4

F1-F3

F1-F2

C1-C2

D1-B2

A1-A2 B1-B2

C1-C3A1-A3

A1-A5

B1-B3

B1-E3
C1-C5

D1-D4

A1-C4



24 
 

Figure 4 
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Figure 5 
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Figure 6 
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Table 1  1 

 2 
Residue  1H Chemical Shift (ppm)    13C Chemical Shift (ppm) 

  H1  H2  H3  H4  H5  H6  H6’    C1  C2  C3  C4  C5  C6 
A  5.43  4.08  3.89  3.40  3.67  1.25  1.25  100.35  79.09  70.84  73.09  69.80  17.40 
B  5.20  4.08  3.83  3.42  3.72  1.27  1.27  100.28  78.40  70.17  73.25  69.98  17.23 
C  5.06  4.32  3.98  3.62  3.77  1.29  1.29  101.36  77.53  80.74  80.37  69.81  17.44 
D  5.05  4.11  3.25  3.86  3.78  3.68*  3.90*  102.22  76.84  74.13  81.70  71.09  61.61 
E  4.70  3.39  3.73  3.61  3.64  3.68*  3.90*  104.47  74.29  75.43  75.22  71.86  61.41 
F  4.50  3.64  3.86  4.39  3.64  3.68*  3.90*  103.55  71.21  74.00  76.47  71.92  61.22 

*Represents partially overlapping H6 and H6’ resonances 3 

 4 


