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ABSTRACT 21 

Sixty bacterial strains were encountered by random amplification of polymorphic DNA 22 

(RAPD) and repetitive extragenic palindromic (REP) typing in a series of 306 Lactococcus 23 

lactis isolates collected during the manufacturing and ripening stages of five traditional, 24 

starter-free cheeses made from raw milk. Among the 60 strains, 17 were shown to produce 25 

bacteriocin-like compounds in both solid and liquid media. At a genotypic level, 16 of the 26 

strains were identified by molecular methods as belonging to L. lactis subsp. lactis and one 27 

to L. lactis subsp. cremoris. Among the L. lactis subsp. lactis strains, phenotypic and 28 

genetic data determined that eleven produced either nisin A (nine strains) or nisin Z (two 29 

strains), and that five produced lactococcin 972. Variable levels of the two bacteriocins 30 

were produced by the different strains. In addition, nisin was shown to be produced in 31 

inexpensive, dairy- and meat-based media, which will allow the practical application of its 32 

producing strains in industrial processes. Specific PCR and nucleotide and deduced amino 33 

acid sequence analysis identified as a lactococcin G-like bacteriocin the inhibitor produced 34 

by the single L. lactis subsp. cremoris isolate. Beyond the use of bacteriocins as functional 35 

ingredients for the biopreservation of foods, the newly identified bacteriocin-producing L. 36 

lactis strains from traditional cheeses may also be useful for designing starter cultures with 37 

protective properties and/or adjunct cultures for accelerating cheese ripening. 38 
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1. Introduction 43 

Many microbial groups produce bacteriocins -peptides and proteins with bactericidal 44 

activity. The bacteriocins of some bacteria inhibit growth of closely related microbes, while 45 

others inhibit a much wider range of microorganisms, including food-borne pathogens and 46 

spoilage microorganisms such as Listeria monocytogenes, Bacillus cereus, Staphylococcus 47 

aureus and Clostridium tyrobutyricum (Gálvez et al. 2008). 48 

From a biochemical point of view, two types of bacteriocins have been identified in 49 

lactic acid bacteria (LAB), those characterized by the presence of dehydrated 50 

(dehydroalanine and dehydrobutyrine) and/or thioether amino acids (lanthionine and -51 

methyllanthionine), usually referred to as lanthibiotics (or class I), and those containing 52 

unmodified amino acids (non-lanthibiotics) (Jack et al. 1995). Non-lanthibiotics are divided 53 

into classes II through IV depending on their size and the presence of non-protein moieties. 54 

Both lanthibiotics and non-lanthibiotics are synthesized via a ribosomal pathway, but the 55 

former are later modified enzymatically. In the last 25 years, intensive research into the 56 

bacteriocins produced by LAB has been undertaken with the aim of improving the 57 

microbial quality and safety of fermented products (de Vuyst and Leroy 2007). 58 

Lactococcus lactis strains are the majority LAB components of commercial starter 59 

cultures used by the dairy industry for the manufacture and ripening of cheese and 60 

fermented milks (Limsowtin et al. 1995). Lanthibiotic and non-lanthibiotic bacteriocins 61 

produced by L. lactis from different sources have been identified and characterized 62 

(Venema et al. 1995). The first bacteriocin isolated from L. lactis was nisin (Mattick and 63 

Hirsch 1947), a 34-amino acid lanthibiotic. This is currently approved and exploited in over 64 

50 countries as a food additive (code E234) (Delves-Broughton et al. 1996). To date, five 65 
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natural nisin variants (A, Z, Q, U, and F) have been identified (de Kwaadsteniet et al. 66 

2008). Other lanthibiotics produced by L. lactis include the single peptide lacticin 481 and 67 

the two-component system lacticin 3147 (de Vuyst and Leroy 2007). Non-lanthibiotic 68 

bacteriocins from L. lactis include pediocin-like bacteriocins (class IIa) such as lactococcin 69 

MMFII, two-peptide component bacteriocins (class IIb) such as lactococcin G and M, thiol-70 

activated bacteriocins (class IIc) such as lactococcin B, and heat-labile, lactococcus-specific 71 

bacteriocins (class IId) such as lactococcin A (diplococcin) and lactococcin 972 (Venema et 72 

al. 1995; Oppegård et al. 2007). 73 

The incorporation of bacteriocin-producing lactococci as starter or adjunct cultures in 74 

the manufacture of fermented foods provides an attractive and economic alternative to the 75 

addition of purified bacteriocins (indeed, metabolic compounds produced during 76 

fermentation are no longer considered additives). Bacteriocin-producing L. lactis has 77 

therefore been experimentally tested in the manufacture of several cheese varieties (Ryan et 78 

al. 1996; Martínez-Cuesta et al. 2001; O’Sullivan et al. 2003; Rilla et al. 2003; Garde et al. 79 

2006) and other fermented products (Diop et al. 2009). Following its addition, starter lysis 80 

is increased (O’Sullivan et al. 2003) and peptidolytic and transamination activities, key 81 

factors in the formation of aroma and taste compounds, may also be enhanced (Martínez-82 

Cuesta et al. 2003; Fernández de Palencia et al. 2004). In addition to its technological 83 

applications, bacteriocin-producing L. lactis has been assayed for the treatment of mastitis 84 

in cows (Ryan et al. 1999; Twomey et al. 2000; Klostermann et al. 2009), and is being 85 

evaluated as an antipathogenic agent in human gastrointestinal infections (O’Connor et al. 86 

2006; Millette et al. 2008). 87 

The aim of the present work was to screen for bacteriocin production in a large number 88 

of L. lactis strains isolated during the manufacturing and ripening stages of different 89 
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batches of five traditional, Spanish, starter-free cheeses made from raw milk. Efforts were 90 

also made to identify these antimicrobial compounds by searching for bacteriocin-encoding 91 

genes. Of the 17 bacteriocin producers detected, phenotypic and genetic analyses identified 92 

eleven as nisin producers, five as lactococcin 972 producers, and a single producer of 93 

lactococcin G. 94 

 95 

2. Material and Methods 96 

2.1. Strains, media and culture conditions 97 

A series of 306 lactococcus-like isolates collected during the manufacture and ripening 98 

of five Spanish traditional, starter-free cheeses made from raw milk were grouped by typing 99 

and identified by partial ARDRA, sequencing and sequence comparison. These isolates 100 

came from Casín (80), Cabrales (106), Genestoso (63), Peñamellera (44), and Valle del 101 

Narcea (13) cheeses. Representative isolates of the 60 different strains found were tested 102 

for the production of antimicrobial compounds against a series of Gram-positive indicator 103 

bacteria. The indicator strains included L. lactis subsp. cremoris MG 1363, L. lactis subsp. 104 

lactis NCDO 497 (nisin producer), L. lactis subsp. lactis IPLA 972 (lactococcin 972 105 

producer), Lactobacillus sakei CECT 906
T
, Lactobacillus plantarum LL 441 (plantaricin C 106 

producer), Listeria innocua 86/26 and Staphylococcus aureus CECT 86
T
. Cryopreserved 107 

cultures of cheese isolates and control strains in glycerol were recovered on M17 agar 108 

plates (lactococci), de Man, Rogosa and Sharpe (MRS) agar plates (lactobacilli), or in 109 

tryptone soy broth (TSB) (L. innocua and S. aureus), and incubated at the corresponding 110 

optimum temperature for 24 h. Micrococcus luteus CECT 245 (=ATCC 10240) was used as 111 

the indicator strain for measuring nisin activity. This strain was grown in nutrient broth 112 

(NB) with shaking at 37ºC for 24 h. 113 



 6 

 114 

2.2. Identification and typing of isolates 115 

Total genomic DNA from isolates was purified from overnight cultures using the 116 

GenElute
TM

 Bacterial Genomic DNA kit (Sigma-Aldrich, St. Louis, MO, USA) following 117 

the manufacturer’s recommendations. Electrophoresis was performed in 1% agarose gels, 118 

and the bands stained with ethidium bromide (0.5 g/mL) and photographed under UV 119 

light. Isolates were grouped by repetitive extragenic palindromic (REP) fingerprinting 120 

employing the polymerase chain reaction (PCR) and the primer BoxA2-R (Table 1), as 121 

reported by Koeuth et al. (1995), followed by random amplification of polymorphic DNA 122 

(RAPD) typing with the primer M13 (Table 1), as reported by Rossetti and Giraffa (2005). 123 

Reproducibility studies of the combined REP and RAPD techniques showed a percentage 124 

similarity of over 95%. 125 

Representative isolates of the REP and RAPD groups were identified by partial 126 

ARDRA, followed by sequencing of representative amplicons and comparison of the 127 

sequences obtained against those in databases. For ARDRA, the 16S rRNA genes were 128 

almost completely amplified using the universal primers 27-F and 1492-R (Table 1). 129 

Amplicons were purified using GenElute
TM

 PCR Clean-Up columns (Sigma-Aldrich), 130 

digested with the restriction enzymes HaeIII and HinfI (Invitrogen Ltd., Paisley, UK), and 131 

electrophoresed as above. When required, amplicons were sequenced by cycle extension in 132 

an ABI 373 DNA sequencer (Applied Biosystems, Foster City, CA, USA). Sequences were 133 

compared to those in the GenBank database using the BLAST program 134 

(http://www.ncbi.nlm.nih.gov/BLAST/), and to those held by the Ribosomal Database 135 

Project (http://rdp.cme.msu.edu/index.jsp). 136 

http://www.ncbi.nlm.nih.gov/BLAST/
http://rdp.cme.msu.edu/index.jsp
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 137 

2.3. Antimicrobial activity 138 

Antimicrobial activity was successively examined by an agar spot test and a well-139 

diffusion assay. For the former, overnight cultures of isolates were spotted (5 l) on the 140 

surface of M17, MRS and TSB agar plates and incubated at 30ºC for 24 h. Spots were then 141 

covered with 10 ml of soft agar (0.75%) inoculated at 0.25% with indicator bacteria. These 142 

plates were then incubated under the conditions required by the indicator species. Positive 143 

cultures were subjected to a well-diffusion assay with neutralized, filter-sterilized 144 

supernatants, essentially as reported by Schillinger and Lücke (1989). Briefly, 20 ml of agar 145 

medium at 45 C were vigorously mixed with 200 l of an overnight culture of the indicator 146 

strain and poured into Petri dishes. Supernatants from overnight cultures of the producing 147 

strains were neutralized to pH 6.5-7.0 with NaOH 0.1 M, centrifuged at 14,000 rpm for 5 148 

min, and filter-sterilized through a 0.20 m pore membrane (Millipore, Bedford, MA, 149 

USA). Aliquots of 50 l of each supernatant were placed in wells excavated into the agar. 150 

The inhibition of indicator growth was examined after incubation for 24 h under 151 

appropriate culture conditions. 152 

 153 

2.4. Search for bacteriocin-encoding genes by PCR 154 

Genes coding for the most common bacteriocins produced by L. lactis strains were 155 

sought by specific PCR. Based on published sequences and sequences on the databases, 156 

primers were designed for genes encoding nisin, lacticin 3147, lacticin 481, lactococcin 157 

972, lactococcin A, lactococcin B, lactococcin G, lactococcin M, and lactococcin Q (Table 158 

1). 159 
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Amplifications were all conducted under standard conditions at an annealing 160 

temperature of 50ºC. Then, amplicons were purified and sequenced, and their sequences 161 

compared as above. 162 

 163 

2.5. Quantification of bacteriocin production 164 

Nisin released in MRS broth was quantified and its activity expressed in international 165 

standard units per mL (IU/mL) by comparing the activity of the supernatants with that of 166 

commercial nisin (Nisaplin
®
, Danisco, UK) dilutions. Cultures were centrifuged at 12,000 x 167 

g for 10 min and the supernatants adjusted to pH 2.0 with 0.02 N HCl, heated at 80ºC for 5 168 

min, and centrifuged once again under the same conditions. Dilutions of these supernatants 169 

were made in 0.02 N HCl and 50 l deposited in wells made in NB agar plates previously 170 

inoculated with approximately 1.0×10
8
 colony forming units (cfu)/mL of M. luteus CECT 171 

245. The diameter of the inhibition halos was measured and concentrations determined 172 

against a standard curve for commercial nisin dilutions prepared in the same way. 173 

Lactococcin 972 was quantified by a non-competitive enzyme-linked immunoassay 174 

(NCI-ELISA) with rabbit polyclonal antibodies raised against the purified bacteriocin, 175 

which were supplied by the Immunotechnology External Service of the University of 176 

Oviedo (Spain). NCI-ELISA was essentially performed as described by Sánchez et al. 177 

(2008). Briefly, flat-bottom polystyrene microtiter wells (Maxisorp; Rochester, NY, USA) 178 

were coated with culture supernatants or different concentrations of pure lactococcin 972, 179 

washed and incubated with the primary (1:1,000) and the secondary (1:40,000) antibody 180 

goat anti-rabbit IgG peroxidase conjugate (Sigma). Plates were revealed with 2,2-azino-181 

bis[3-ethylbenzothiazoline-6-sulfonic acid] (ABTS; Sigma-Aldrich) as the substrate and the 182 
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absorbance at 405 nm recorded in a Benchmark Plus microplate reader (Bio-Rad 183 

Laboratories, Hercules, CA, USA). 184 

 185 

2.6. Production of nisin in dairy- and meat-based media 186 

The production of nisin in industrial media mimicking dairy- and meat-derived products 187 

was analyzed in reconstituted skim milk (10% w/v) supplemented with 0.5% whey protein 188 

concentrate (RSM-WPC) and in meat-extract medium (8% w/v) supplemented with soy-189 

extract 2.25% (ME-SY), respectively. In both cases, the basal medium was supplemented 190 

with NaCl (2%), potassium sorbate (0.05%), and yeast extract (0.025%), and the pH 191 

adjusted to 6.4. The release of nisin in RSM-WPC and ME-SY media was quantified as 192 

above, using as a control commercial nisin dilutions and the bacteriocin produced in MRS. 193 

 194 

2.7. Analysis of plasmid content 195 

Plasmid DNA from L. lactis was extracted and purified following the procedure of 196 

O’Sullivan and Klaenhammer (1993). Plasmid preparations were electrophoresed in 0.75% 197 

agarose gels, stained with ethidium bromide (0.5 g/mL) and photographed. 198 

 199 

3. Results and Discussion 200 

3.1. Identification and typing of L. lactis isolates 201 

Typing analysis of the 306 isolates by the combined REP and RAPD techniques gave 202 

60 different fingerprinting patterns with lower percentage similarities than those recorded 203 

in a reproducibility study (Supplemented Material 1). Consequently, these 60 profiles were 204 

considered different strains and thus subjected to identification by partial ARDRA, 205 
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sequencing and comparison of the sequences. A single ARDRA profile was obtained with 206 

either HaeIII and HinfI, indicating they all belonged to a single species. Sequencing of 21 207 

16S rRNA amplicons representative of all strains showing a Spearman’s coefficient of 208 

similarity in their REP/RAPD profiles of over 0.52% (Supplementary material 1) indicated 209 

that they all could be assigned to the L. lactis species. The sequences of six amplicons, 210 

corresponding to ten strains (Supplementary material 1, codes 14, 15, 16, 44, 46, 47, 49, 50, 211 

54 and 58), were shown to match the 16S rRNA sequence of L. lactis subsp. cremoris; all 212 

others were shown to be identical to those of L. lactis subsp. lactis. Sequencing of all 10 213 

isolates of the supposed cremoris subspecies and 20 more amplicons at random from the 214 

lactis subspecies further confirmed the identity and number of strains at the subspecies 215 

level. As reported for many other traditional cheeses (Callon et al. 2004; Delgado and 216 

Mayo 2004; Psoni et al. 2007; Nieto-Arribas et al. 2009), the genetic diversity found among 217 

the L. lactis isolates from the five raw-milk cheeses was rather high. However, the presence 218 

of (genetic) L. lactis subsp. cremoris strains in such cheeses has only rarely been reported 219 

(Gaya et al. 1999; Delgado and Mayo 2004; Nieto-Arribas et al. 2009). 220 

 221 

3.2. Antimicrobial activity of L. lactis strains 222 

The production of inhibitory compounds by representative isolates of the different 223 

strains against a group of indicator bacteria including well recognized food-borne 224 

pathogens was first analyzed by an agar spot test. A variable number of the 60 strains 225 

inhibited the different indicator organisms. L. sakei CECT 906
T
, a strain reported to be very 226 

susceptible to bacteriocins and other antimicrobials (González et al. 1994), was inhibited by 227 

37 strains (61.66%). In contrast, S. aureus CECT 86
T
 was inhibited by only 11 (18.33%); 228 

additionally, in most cases only faint halos were seen. L. lactis subsp. cremoris MG 1363, 229 
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L. innocua 86/26, L. plantarum LL 441 and L. lactis subsp. lactis NCDO 497 were 230 

inhibited by 22, 18, 14 and 13 strains, respectively. Strains with antibacterial activity 231 

against any of the indicators were subsequently subjected to the well-diffusion assay. Under 232 

the conditions of this test (which requires neutralized, filter-sterilized supernatants), the 233 

number of positive strains was severely reduced, as only 17 strains showed clear inhibitory 234 

effects (Table 2). These results were not surprising; many authors have reported that 235 

confirmation in liquid media of the inhibition detected by the agar spot test is not always 236 

obtained (Schillinger and Lücke 1989; Larsen et al. 1993; Martínez et al. 1995; Hernández 237 

et al. 2005). Several colony-associated antimicrobial compounds, including fatty acids and 238 

H202, have been considered responsible for the inhibitory effects observed in solid media 239 

(de Vuyst and Leroy 2007). Strains inhibiting the indicators used in this study were as 240 

follows: L. sakei CECT 906
T
 - 17 strains, L. lactis subsp. cremoris MG 1363 - 17 strains, L. 241 

innocua 86/26 - 10 strains, L. plantarum LL 441 - 9 strains, S. aureus CECT 86
T
 (weak 242 

inhibition) - 9 strains, and L. lactis subsp. lactis NCDO 497 - 7 strains. In the present work, 243 

the inhibitory strains were all shown to belong to L. lactis subsp. lactis, except for 2A27 244 

which proved to be a L. lactis subsp. cremoris strain. All these 17 strains showed distinct 245 

typing profiles, as depicted in Figure 1 in which the REP patterns obtained with primer 246 

BoxA2-R are summarized. 247 

Careful inspection of Table 2 shows that 11 strains did not inhibit the nisin producer 248 

indicator NCDO 497 (except for a small inhibition by strain 1AA17), suggesting that some 249 

strains might be nisin producers. In fact, the nisin production phenotype has been widely 250 

found among L. lactis strains from many ecosystems (Martínez et al. 1995; Rodríguez et al. 251 

1995; Ayad et al. 2002; Park et al. 2003; Beasley and Saris 2004; Millette et al. 2007; Dal 252 

Bello et al., 2010). At the same time, the five strains on the right of the table produced 253 
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bacteriocin-like substances that inhibited only the L. sakei strain and two L. lactis indicators 254 

(strains MG 1363 and NCDO 497). The availability of L. lactis subsp. lactis IPLA 972, the 255 

lactococcin 972 producer (Martínez et al. 1995; Martínez et al. 1999), allowed all 256 

antimicrobial producers to be assayed using this strain as an indicator. Table 2 shows that 257 

IPLA 972 was inhibited by most strains, including L. lactis subsp. cremoris 2A27, but not 258 

by these five L. lactis subsp. lactis strains. Therefore, these strains might produce 259 

lactococcin 972, a phenotype that has only been reported for strain IPLA 972 (Martínez et 260 

al. 1995). 261 

 262 

3.3.- Targeting the bacteriocin-encoding genes by PCR 263 

PCR analyses were undertaken using specific primers for genes of the most common 264 

lactococcal bacteriocins, i.e., nisin, lacticin 3147, lacticin 481, lactococcins A, B, G, and M, 265 

as well as specific primers for lactococcin 972. Amplicons of the expected size for lacticin 266 

3147, lacticin 481, and lactococcins A, B, and M, were never obtained. Sequencing of 267 

eventually-produced amplicons showed non-specific amplification of L. lactis genes. In 268 

contrast, 11 of the 17 strains produced an amplicon of the expected size for nisin (lines 1 269 

through 11 in Fig. 2A) as did five for lactococcin 972 (lines 13 to 17 in Fig. 2B). 270 

Amplicons were all sequenced to prove unequivocally they corresponded to their respective 271 

bacteriocin-encoding gene. A nucleotide difference was observed in the sequences of the 272 

nisin structural gene in two strains (1AA17 and 2BB9) with respect to the nisin A structural 273 

gene of the other nine strains. This nucleotide change corresponded to the sequence of the 274 

structural gene of nisin Z (Table 2) (Mulders et al., 1991). 275 

The sequences obtained for the lactococcin 972 gene were shown to be identical to one 276 

another as well as to the sequence from L. lactis subsp. lactis IPLA 972 (Martínez et al. 277 
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1999). Positive amplification with the L. lactis subsp. cremoris 2A27 strain was only 278 

obtained when using specific primers for the genes encoding the two-peptide, related 279 

bacteriocins lactococcin G and lactococcin Q. Analysis of nucleotide and amino acid 280 

deduced sequences indicated that this strain produced a bacteriocin almost identical to 281 

lactococcin G, although small changes at the nucleotide level leading to a few amino acid 282 

changes in both  and  peptides were noted (Supplementary material 4). 283 

The slight inhibition of L. lactis subsp. lactis NCDO 497 by 1AA17 strain is intriguing, 284 

since they both are nisin producers. The latter strain might co-produce a second, undetected 285 

bacteriocin, as has been reported recently for other L. lactis strains (Topisirovic et al. 2006; 286 

Bravo et al. 2009; Dal Bello et al., 2010). All five lactococcin 972 producers have recently 287 

been isolated during the microbial characterization of Casín cheese (Alegría et al. 2009). 288 

Since the lactococcin 972 structural gene has been found in plasmid pBL1 (11 kbp) 289 

(Martínez et al. 1999), the plasmid content of the lactococcin-producing strains was 290 

analyzed. The plasmid profiles of the different lactococcin producers varied (Supplemented 291 

material 3), and none of the bands was shared by all strains. This further strengthens the 292 

view of the typing results, and suggests these isolates are indeed different strains and that 293 

the lactococcin operon may be located in plasmids of variable size. 294 

 295 

3.4. Bacteriocin production in laboratory and industrial media 296 

The activity of nisin released into the culture medium by the different producers was 297 

measured by comparing the inhibition halos against a standard curve for commercial nisin 298 

(Supplementary Material 2), using M. luteus CECT 245 as the indicator. Nisin activity 299 

ranged from <20 to about 125 IU/mL (Table 2). Activity of the major producers was 300 
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comparable to or higher than that of L. lactis subsp. lactis NCDO 497 (85 IU/mL), and 301 

those reported on the literature for wild L. lactis isolates (Ayad et al., 2002). Nisin activity 302 

was further assayed and quantified in industrial media simulating dairy (RSM-WPC) and 303 

meat products (MS-YS). The quantification of nisin in these two media showed a general 304 

decrease of around 10% in bacteriocin production in RSM-WPC (average 67.3 IU/mL; 305 

range 16.7-118 IU/mL). On the contrary, production of nisin in MS-YS was shown to be 306 

greatly enhanced in all strains. As compared to that in MRS, nisin activity in this latter 307 

medium showed, depending on the strain, a 2-4 fold increase (average 196 IU/mL; range 308 

97-346 IU/mL). Nisin production shows primary metabolite kinetics and is only produced 309 

during the exponential growth phase (de Vuyst and Vandamme, 1992). Accordingly, strains 310 

2BB9 and 3AA28 were shown to reach the highest cell density and were the best nisin 311 

producers in all media and under all conditions assayed. The production of nisin in low-cost 312 

media would facilitate the practical application of the producers for the industrial 313 

manufacture of nisin as a food preservative, but also their inclusion as starters or adjunct 314 

cultures for the preservation of dairy and meat fermented products. 315 

Variable amounts of lactococcin 972 were also measured in the supernatant of the 316 

producing strains by an immunoassay (Table 2). Two strains, Q1-6 and T2-43, were shown 317 

to produce two-fold bacteriocin as compared to the original producer. L. lactis resistant 318 

strains to lactococcin 972 have never been reported, except for the immunity of producers 319 

(Martínez et al., 1995; 1999). This fact would allow the use of producing-strains as the 320 

components of adjunct cultures, which may contribute to accelerate cheese ripening by 321 

increasing lysis of starter cells, as it has been proposed for producers of other bacteriocins 322 

(Martínez-Cuesta et al., 2001; Fernández de Palencia et al., 2004). In addition to their 323 
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technological value, these strains could also serve as a suitable source of lactococcin 972 324 

for molecular studies aimed to unravel its atypical mode of action (Martínez et al., 2008). 325 

 326 

4. Conclusions 327 

In conclusion, 17 bacteriocin producers were identified in a collection of 60 lactococcal 328 

strains from traditional cheeses made from starter-free raw milk, indicating that this 329 

phenotype is well spread among wild dairy L. lactis strains. Besides the discovering of new 330 

bacteriocins, it is also important to identify strains producing higher amounts of the 331 

antimicrobials (particularly those with broad inhibitory spectrum such as nisin), which 332 

would lead to their commercial application. As the bacteriocin production trait is widely 333 

spread among L. lactis from artisanal, traditional cheeses made of raw milk, these products 334 

could be a good source of strains displaying enhanced outputs. The structural gene of nisin 335 

was identified by PCR in 11 strains, which produced nisin at variable concentrations. A 336 

remaining set of five strains harboured the lactococcin 972 structural gene and variable 337 

amounts of this inhibitory peptide were measured in the culture medium. Finally, specific 338 

PCR and analysis of the amplicons strongly suggested that the L. lactis subsp. cremoris 339 

2A27 produces a two peptide, lactococcin G-like bacteriocin. Because of their broad 340 

inhibitory activity, nisin-producing strains might be of interest in the development of 341 

protective starter cultures for cheese and other fermented products. The inhibitory activity 342 

of lactococcin 972 and lactococcin G against lactococci alone renders them of interest in 343 

the design of adjunct cultures aimed at improving and accelerating cheese ripening. 344 

Autochthonous starters and adjunct cultures composed by bacteriocin-producing strains 345 

may further help to reinforce tipycity and originality of traditional cheeses. 346 

 347 
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Supplementary material 4

Lactococcin G : MKELSEKELRECVGG SIWGDIGQGVGKAAYWVGKAMGNMSDVNQASRINRKKKH

Lactococcin 2A27 : ??????KELRECVGG GAWGDIGQGVGKAAYWVGKAMGNMSDVNQASRINRKKKH

Lactococcin Q : MKELSEKELRECVGG GTWDDIGQGIGRVAYWVGKAMGNMSDVNQASRINRKKKH

Lactococcin G : MKNNNNNFFKDMEIIEDQELVSITGG KHKKWGWLAWVEPAGEFLKGFGKGAIKEGNKDKWKNI

Lactococcin 2A27 : MKNNNNNFFKDMEIIEDQELVSITGG –-KKWGWLAWVEPAAAFLKGFGKGAIKEGNKDKW???

Lactococcin Q : MK-NNNNFFKGMEIIEDQELVSITGG KHKKWGWLAWVDPAYEFIKGFGKGAIKEGNKDKWKNI
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FIGURE LEGENDS 

 

Figure 1.- REP-PCR Typing of the seventeen L. lactis subsp. lactis strains bacteriocin 

producers with the primer BoxA2R. Order, lines 1 through 11 nisin producer strains 1A6, 

1A8, A16, 1A38, 1AA16, 1AA17, 1AA48, 2BB9, 3AA28, L30, and P83A; line 12, L. 

lactis subsp. cremoris 2A27; lines 13 through 17 lactococcin 972 producers Q1-2, Q1-6, 

Q1-8, T2-26, and T2-43. M, Molecular weight marker (Gene Ruler Express
TM

 DNA ladder, 

Fermentas Gmbh., Germany); molecular weight (kbp) of key bands is indicated. 

 

Figure 2.- Specific PCR amplification of the nisin structural gene (Panel A) and that of 

lactococcin 972 (Panel B) using total DNA of the wild L. lactis subsp. lactis strains 

producing inhibitory substances as a template. Order, lines 1 through 11 nisin producer 

strains 1A6, 1A8, A16, 1A38, 1AA16, 1AA17, 1AA48, 2BB9, 3AA28, L30, and P83A; 

line 12, L. lactis subsp. cremoris 2A27; lines 13 through 17 lactococcin 972 producers Q1-

2, Q1-6, Q1-8, T2-26, and T2-43; line C+, positive reaction using as a template total DNA 

from L. lactis subsp. lactis NCDO 497 and L. lactis subsp. lactis IPLA 972, respectively; 

line M, Molecular weight marker, indicating molecular weight of key bands in kbp. 

 

Supplementary Material 1.- Different profiles found by combined typing by REP-PCR 

with primer BoxA2R and RAPD with primer M13 of the 306 wild L. lactis isolates. Below, 

dendogram of similarity of the 60 different typing patterns clustered by the UPGMA 

method using the Spearman coefficient. Representative strains showing a Spearman 

coefficient of similarity in their REP/RAPD profiles of over 0.52% (broken line) were 

identified by 16S rRNA amplification, sequencing and comparison of the sequences against 

Figure
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those in GenBank and the Ribosomal Database Project (see the text). Lactococcus lactis 

subsp. cremoris strains are denoted by an asterisk. 

 

Supplementary Material 2.- Standard curve of nisin concentration (in IU/mL) by a well 

diffusion assay using different dilutions of commercial nisin (Nisaplin
®
, Danisco, UK) and 

M. luteus CECT 245 as the susceptible indicator. 

 

Supplementary material 3.- Agarose gel electrophoresis of plasmid DNA preparations 

from the L. lactis subsp. lactis strains producing lactococcin 972. Order: line 1, IPLA 972; 

line 2, Q1-2; line 3, Q1-6; line 4, Q1-8; line 5, T2-26, and line 6, T2-43. The arrow points 

out to the position of the bacteriocinogenic plasmid pBL1. 

 

Supplementary material 4.- Alignment of deduced amino acid sequence from the 

lactococcin 2A27-encoding gene with the lactococcin G and lactococcin Q sequences. 

Amino acids differing in their respective sequences are colour coded. Arrows point out to 

the signal peptidase processing sites, whose cleavage gives rise to the mature, active 

bacteriocins. Dashes indicate not amino acid at a particular position, while question mark 

symbols denote non-determined amino acids. 
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Table 1.- Primers used throughout this study. 

 

Name Sequence (5’→ 3’) Technique/Amplification Reference/GenBank Accession nº 

    

BoxA2-R ACGTGGTTTGAAGAGATTTTCG REP-PCR typing Koeuth et al. 1995 

M13 GAGGGTGGCGGTTCT RADP typing Rossetti and Giraffa 2005 

    

27-F AGAGTTTGATCCTGGCTCAG 16S rRNA gene S-D-Bact-0008-a-S-20 

1492-R GGTTACCTTGTTACGACTT 16S rRNA gene S-*-Univ-1492R-b-A-21 

    

Nis-F CGGCTCTGATTAAATTCTGAAG Nisin genes M65089 

Nis-R GGATTAGCTAGTAGTAACTGTTC Nisin genes M65089 

Lact3147-F GTCTTTGTGTTGTTTGGAGATG Lacticin 3147 gene AE001272 

Lact3147-R CAACTCCCGAAATAAATCATCG Lacticin 3147 gene AE001272 

Lact481-F CCAATGTCATTGCATCTGCAC Lacticin 481 gene X71410 

Lact481-R GTCCTTATGTTGCTATTCATC Lacticin 481 gene X71410 

Lcn972-F TTGTAGCTCCTGCAGAAGGAACATGG Lactococcin 972 gene Martínez et al. 1999 

Lcn972-R GCCTTAGCTTTGAATTCTTACCAAAAG Lactococcin 972 gene Martínez et al. 1999 

LactABM-F GAAGAGGCAATCAGTAGAG Lactococcin A, B, and M genes M90969, S38128, van Belkum et al. 1991 

LactA-R GTGTTCTATTTATAGCTAATG Lactococcin A gene M90969 

LactB-R CCAGGATTTTCTTTGATTTACTTC Lactococcin B gene S38128 

LactM-R GTGTACTGGTCTAGCATAAG Lactococcin M gene van Belkum et al. 1991 

LactGQ-F GAAAGAATTATCAGAAAAAG Lactococcin G and Q genes FJ938036, AB182406 

LactGQ-R CCACTTATCTTTATTTCCCTCT Lactococcin G and Q genes FJ938036, AB182406 

    

 

Table
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Table 2.- Antimicrobial activity of L. lactis strains from traditional cheeses against of a series of indicator strains assayed with neutralized 

supernatants by a well-diffusion assay. Also included, representative genotype as determined by specific PCR and bacteriocin activity or 

bacteriocin production. 

 

Indicator strain/ 

genes/bacteriocin 

production 

L. lactis
a
 strain 

1A6 1A8 1A16 1A38 1AA16 1AA17 1AA48 2BB9 3AA28 L30 P83A 2A27 Q1-2 Q1-6 Q1-8 T2-26 T2-43 

                  

L. lactis subsp. cremoris MG 1363 ++ ++ ++ ++ ++
b
 ++ + ++ ++ + ++ + ++ ++ ++ ++ ++ 

L. lactis subsp. lactis NCDO 497 - - - - - (+) - - - - - ++ ++ ++ ++ ++ ++ 

L. lactis subsp. lactis IPLA 972 ++ ++ ++ ++ ++ ++ - ++ ++ + ++ ++ - - - - - 

Lactobacillus plantarum LL 441 ++ ++ ++ ++ ++ ++ - ++ ++ - + - - - - - - 

Lactobacillus sakei CECT 906
T
 ++ +++ +++ +++ +++ +++ ++ +++ +++ ++ +++ +++ ++ ++ + ++ ++ 

Listeria innocua 86/26 ++ ++ + ++ ++ ++ - ++ ++ + ++ - - - - - - 

Staphylococcus aureus CECT 86
T
 + (+) + (+) (+) + - + + - + - - - - - - 

                  

Presence of nisA + + + + + - + - + + + - - - - - - 

Presence of nisZ - - - - - + - + - - - - - - - - - 

Presence of lcn972 - - - - - - - - - - - - + + + + + 

Presence of lcnG - - - - - - - - - - - + - - - - - 

                  

Bacteriocin production 45
c
 88

c
 75

c
 85

c
 50

c
 60

c
 <20

c
 125

c
 96

c
 70

c
 64

c
 Nd

d
 12.4

e
 5.6

e 5.6
e 8.1

e 11.8
e 

                  

 
a
Genetically, all strains are L. lactis subsp. lactis except that of 2A27 which is a L. lactis subsp. cremoris strain. 

b
The number of crosses in the test is related to the diameter of the inhibition halo; in parenthesis, weak inhibition. 

c
Nisin activity is expressed as IU per mL of culture medium (MRS). Under the same experimental conditions, nisin production by L. lactis subsp. lactis NCDO 

497 was shown to be 85 IU/mL. 
d
Nd, not determined. 

e
Production of lactococcin 972 was measured as g of protein per ml of culture medium (M17). The original producer, L. lactis subsp. lactis IPLA 972, produces 

4.9 g/mL. 

Table


