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Abstract 

The c.156_157insAlu BRCA2 mutation has so far only been reported in hereditary 

breast/ovarian cancer (HBOC) families of Portuguese origin. Since this mutation is not 

detectable using the commonly used screening methodologies and must be specifically 

sought, we screened for this rearrangement in a total of 5,440 suspected HBOC families 

from 22 labs from 13 countries from several continents. Whereas the c.156_157insAlu 

BRCA2 mutation was detected in 11 of 149 suspected HBOC families from Portugal, 

representing 37.9% of all deleterious mutations, in other countries it was detected only 

in one proband living in France and in four individuals requesting predictive testing 

living in France and in the USA, all having in common the fact that they are relatively 

recent immigrants of Portuguese origin in those countries. After performing an 

extensive haplotype study in carrier families, we estimate that this founder mutation has 

occurred 558±215 years ago. We further demonstrate significant quantitative 

differences regarding the production of the BRCA2 full length RNA and the transcript 

with exon 3 skipping in c.156_157insAlu BRCA2 mutation carriers and in controls, 

indicating that disruption of alternative transcript ratios is the mechanism causing 

hereditary breast/ovarian cancer associated with this BRCA2 rearrangement. We further 

show that the cumulative incidence of breast cancer in c.156_157insAlu BRCA2 

mutation carriers does not differ from that of other BRCA2 and BRCA1 pathogenic 

mutations, further strengthening its role as the major contributor to hereditary 

predisposition to breast cancer in Portugal. We recommend that all suspected HBOC 

families from Portugal or with Portuguese ancestry are specifically tested for this 

rearrangement, ideally prior to screening of the entire coding regions of BRCA1 and 

BRCA2. 



 3 

Introduction 

The pattern of BRCA1 and BRCA2 mutations in hereditary breast/ovarian cancer 

(HBOC) families varies widely among different populations. Many present a wide 

spectrum of different mutations throughout these genes, while some ethnic groups show 

a high frequency of particular mutations due to founder effects (Fackenthal and 

Olopade, 2007; Ferla et al., 2007). Identification of founder mutations in the various 

populations makes possible the use of more specific approaches to molecular testing 

(Filippini et al., 2007), allowing the analysis of more patients with less stringent 

selection criteria. Furthermore, a frequent founder mutation in a population allows a 

more accurate estimation of mutation-specific cumulative cancer incidence, facilitating 

also identification of genetic and environmental risk modifiers.  

The c.156_157insAlu BRCA2 mutation was first described by Teugels et al. 

(2005) in a Portuguese patient residing in Belgium. These authors demonstrated that this 

exon 3 Alu insertion originates at the mRNA level an in-frame deletion of that exon, 

which encodes a transcriptional activation domain (Teugels et al., 2005). Machado et al. 

(2007) later described a regional founder effect for this rearrangement in HBOC 

families mostly originated from central/southern Portugal. We recently evaluated the 

contribution of the c.156_157insAlu BRCA2 mutation to inherited predisposition to 

breast/ovarian cancer in families originated mostly from northern/central Portugal 

(Peixoto et al., 2009a) and found that this rearrangement is responsible for more than 

half of all deleterious BRCA2 mutations and about one-fourth of all deleterious 

mutations in HBOC families. Additionally, in light of some doubts raised about the 

pathogenic effect of BRCA2 exon 3 skipping (Diez et al., 2007), we demonstrated its 

pathogenic effect by showing that the BRCA2 full length transcript is produced almost 

exclusively from the wildtype allele in patients carrying the c.156_157insAlu BRCA2 
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rearrangement and that this mutation co-segregates with the disease in HBOC families 

and is absent in healthy blood donors, although residual exon 3 skipping in BRCA2 

mRNA can be found in negative controls (Peixoto et al., 2009a; Peixoto et al., 2009b). 

 Although all reported c.156_157insAlu BRCA2 mutations have so far been 

identified in Portuguese HBOC families (Teugels et al., 2005; Machado et al., 2007; 

Peixoto et al., 2009a), this mutation is not detected using the commonly used screening 

methodologies and must be specifically sought (Teugels et al., 2005; Peixoto et al., 

2009b), so one can not currently rule out its presence in other populations. To gain 

insight into the ancestral origin and population spread of the c.156_157insAlu BRCA2 

mutation, we screened for this rearrangement in 5,440 suspected HBOC patients from 

several countries and performed an extensive haplotype study using closely linked 

microsatellite markers and single nucleotide polymorphisms (SNPs) in carrier families. 

In addition to estimate the age of the c.156_157insAlu BRCA2 mutation, we used real-

time RT-PCR to quantify the preferential production of the transcript lacking exon 3 by 

the mutated allele and its (presumably residual) production by both alleles in non-

carriers. 

 

Materials and methods 

 

Families 

This study comprised a total of 5,440 suspected HBOC families from 22 labs 

from 13 countries from several continents. From Portugal, 149 new suspected HBOC 

families were selected for BRCA1 and BRCA2 mutation screening using previously 

described criteria (Peixoto et al., 2006; Peixoto et al., 2009a) after written informed 

consent. Molecular testing at the Department of Genetics of the Portuguese Oncology 
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Institute, Porto, Portugal (IPO-Porto) started by looking for the c.156_157insAlu 

BRCA2 mutation, followed by full BRCA1 and BRCA2 mutation screening with the 

previously reported methodology (Peixoto et al., 2006; Peixoto et al., 2009a; Peixoto et 

al., 2009b). The c.156_157insAlu BRCA2 mutation was additionally screened in 5,291 

suspected HBOC families living in countries other than Portugal in whom no 

deleterious BRCA1/BRCA2 mutations had previously been found, with the following 

distribution: 1,209 from Spain (356 from Girona, 341 from Madrid, 151 from 

Valladolid, 132 from Zaragoza, 123 from Santiago de Compostela, and 106 from 

Barcelona), 1,087 from France (650 from Clermont-Ferrand, 428 from Saint-Cloud, and 

9 from Villejuif, all the latter with Portuguese ancestry), 820 from Holland (Groningen), 

758 from Denmark (Odense), 400 from Greece (Athens), 219 from Switzerland 

(Geneva), 200 from Belgium (Brussels), 185 from Israel (Tel Aviv), 144 from Brazil 

(98 from Porto Alegre and 46 from S. Paulo), 103 from Canada (Montreal), 91 from 

India (Chennai), and 75 from Italy (Rome). Besides the suspected HBOC families, two 

consecutive series of breast cancer patients from Rio de Janeiro, Brazil (390), and Ponta 

Delgada, Azores (86), were also screened for the c.156_157insAlu BRCA2 mutation. 

Additionally, predictive testing was performed in four individuals from two additional 

families (two relatives from each family living in Rhode Island, USA, and in Villejuif, 

France, respectively) with the c.156_157insAlu BRCA2 mutation identified elsewhere. 

For the purpose of haplotype studies and age estimation of the c.156_157insAlu 

BRCA2 mutation, the 14 HBOC families we previously reported (Peixoto et al., 2009a) 

and the family (four c.156_157insAlu carriers) initially identified by Teugels et al. 

(2005) were also included. The geographic origin of the c.156_157insAlu BRCA2 

positive families was inferred from the birthplace of the oldest carrier or of the oldest 

family member most likely to be a carrier. 
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Screening for the c.156_157insAlu BRCA2 mutation 

The detection of the c.156_157insAlu BRCA2 mutation was performed at the 

Department of Genetics of IPO-Porto for the suspected HBOC families from Portugal, 

for those originating from the Athens, Barcelona, Madrid and Zaragoza labs, as well as 

for predictive testing of four individuals from two additional families leaving in Rhode 

Island and Villejuif, respectively. The remaining cases were analyzed at the respective 

labs (except the cases from Rio de Janeiro, which were analyzed in Toronto) using the 

same protocol and a positive control provided by the Portuguese lab.  

Screening for the c.156_157insAlu BRCA2 mutation was performed using two 

independent PCRs (Peixoto et al., 2009a; Peixoto et al., 2009b), one for exon 3 

amplification and another specific for the Alu rearrangement. Using this strategy, we 

expect two bands in positive cases in the first PCR (one band if negative) and one band 

in the second PCR (none if negative). The second PCR helps to control the first PCR for 

eventual problems with preferential amplification of the shorter fragment (wild type), 

whereas the first PCR controls for eventual absence of amplification in the second PCR. 

This strategy of two independent PCRs, followed by sequencing of the genomic 

fragments in positive cases, allows the unambiguous detection of the c.156_157insAlu 

BRCA2 mutation (Peixoto et al., 2009a; Peixoto et al., 2009b). Positive and negative 

controls were used in all runs and all positive cases were confirmed in a second 

independent sample. 

 

Real-time RT-PCR analysis 

Primers and probes for the transcripts BRCA2 wild type (BRCA2-wt) and BRCA2 

lacking exon 3 (BRCA2-Δex3) were designed with Primer Express 2.0 (Applied 
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Biosystems, Foster City, USA). The forward primer for the BRCA2-wt transcript was 

TGAAATTTTTAAGACACGCTGCAA and the reverse primer was 

GGTTCGTAATTGTTGTTTTTATGTTCAG. The forward primer for the BRCA2-Δex3 

transcript was TCCAAAGAGAGGCCAACATTTT and the reverse primer was 

TTCACTGTGCGAAGACTTTTATGTC. The probes were 5’-FAM-

AAGCAGATTTAGGACCAATA-MGB-3’ for the normal transcript (exon 2-3) and 5’-

FAM-AACAAAGCAGGAAGGAAT-MGB-3’ for the BRCA2-Δex3 transcript (exon 2-

4). Primers and probes for the BRCA2 and GUSB (endogenous control) genes were 

purchased from Applied Biosystems. PCR reactions were performed in a 20 µl volume 

reaction containing 9 µl of synthesized cDNA, 10 µl of TaqMan universal PCR master 

mix, 1 µM of each primer and 0.25 µM of probe. PCR was performed in separate wells 

for each primer/probe set and each sample was run in triplicate. PCR parameters were 

as follows: 50°C for 2 min, 95ºC for 10 min, followed by 50 cycles at 95°C for 15 s and 

60°C for 1 min. Each plate included multiple non-template controls and serial dilutions 

of a control to construct the standard curve of each transcript and endogenous control. 

To determine the relative expression levels of the target transcripts in each sample, the 

comparative CT method was performed as described by Schmittgen and Livak (2008) . 

The relative expression of the transcripts in two different groups (that included ten 

carriers and eight controls) was calculated using the 2-ΔCT method. The ratio 2-

ΔCTBRCA2-Δex3/2-ΔCTBRCA2-wt was calculated for each sample. The Mann-Whitney U 

Test was used to compare the relative expression of those transcripts between the two 

groups. Statistical analysis was performed with SPSS version 11 and statistical 

significance was considered whenever P< 0.05. 

 

Mutation-specific cumulative incidence 
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The cumulative incidence of breast cancer in women with the c.156_157insAlu 

BRCA2 mutation was derived using the method of Kaplan and Meier, with unaffected 

individuals censored at the age of last follow-up or death without breast cancer. Only 

individuals shown to be carriers or obligate carriers were used for this calculation.  

 

Microsatellite and SNP typing  

Haplotype analysis was carried out in families in which the c.156_157insAlu 

BRCA2 mutation was detected in at least one family member in addition to the proband. 

A total of 15 probands and 62 family members, including the three informative families 

previously reported (Peixoto et al., 2009a) and the one described by Teugels et al. 

(2005), were genotyped for polymorphic microsatellite markers flanking BRCA2 as 

described (Peixoto et al., 2009a). The D13S1699 marker was not included in this study 

because we could not rule out preferential allelic amplification. The physical distances 

of the genetic markers were derived from the National Center for Biotechnology 

Information (NCBI) Map Viewer (genome build 36.3) 

(http://www.ncbi.nlm.nih.gov/projects/mapview/). All nine markers were assayed by 

PCR using fluorescently 5’-labeled primers. PCR products were run on an ABI PRISM 

310 Genetic Analyser (Applied Biosystems) together with the fluorescence labeled 

DNA fragment size standard TAMRA.  

Single-nucleotide polymorphism (SNP) markers were used to obtain a haplotype 

spanning ~1.1Mb encompassing the region between the D13S260 and D13S1695 

microsatellite markers, where the first recombinant and/or mutational events were 

observed. In order to capture most of the genetic variation in this region and to avoid 

redundant SNP markers (i.e., markers in strong linkage disequilibrium), we performed 

Tag-SNP, namely Tagger Multimarker, using International HapMap Project CEPH 
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(Utah residents with ancestry from northern and western Europe) population data 

(www.hapmap.org). We developed SNaPshot assays for 19 SNP markers by 

multiplexed nucleotide primer extension reaction using dye label terminators (Applied 

Biosystems). The primers for multiplex amplification and single base extension 

(Supplementary Table 1) were designed using the online Primer-BLAST tool 

(http://www.ncbi.nlm.nih.gov/tools/primer-blast/). AutoDimer 

(www.cstl.nist.gov/strbase/NIJ/AutoDimer.htm) was used to test for potential hairpin 

structures and primer dimers. The 19 SNPs were PCR amplified in four multiplex 

reactions with amplicon length between 100 bp and 450 bp. Amplification was carried 

out in a 9700 Thermocycler (Applied Biosystems). After a 95ºC pre-incubation step for 

5 min, PCR was performed in a total of 35 cycles using the following conditions: 95ºC 

denaturation for 30 s, annealing at 55ºC for 30 s and extension at 72ºC during 30 s, 

followed by 10 min of final extension at 72ºC. The multiplex SNaPshot reaction and 

capillary electrophoresis was done following the manufacturer’s protocol (Applied 

Biosystems).  

 

Haplotype construction and estimation of mutation age  

Haplotype construction was performed manually based on the genotypes 

obtained of index cases and family members. We estimated the age of the 

c.156_157insAlu BRCA2 mutation from the variation accumulated in their ancestral 

haplotypes, as described by Martins et al. (2007). This method takes into account both 

recombination (c) and mutation (μ) rates in the generation of variation. The probability 

of change per generation (ε) is given by ε=1−[(1−c)(1−μ)], and the average of mutation 

and recombination events (λ) equals εt, where t is the number of generations. The 

recombination rate (c) was estimated from the physical distance between the two most 

http://www.hapmap.org/index.html
http://www.ncbi.nlm.nih.gov/tools/primer-blast/
http://www.cstl.nist.gov/strbase/NIJ/AutoDimer.htm
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distant markers (D13S1700 and D13S267) using a conversion factor calculated in 

Rutgers Map Interpolator (http://compgen.rutgers.edu/old/map-interpolator/). The 

estimate of average mutation rate used was 7.8x10−4 (Gyapay et al., 1994) for 

dinucleotides and two times lower for tetranucleotides. 

 

Results 

 

Detection of the c.156_157insAlu BRCA2 mutation 

Of the 149 Portuguese probands studied for germline mutations in the BRCA1 

and BRCA2 genes at IPO-Porto, 11 patients presented the c.156_157insAlu BRCA2 

mutation (Figure 1) and 18 patients presented other deleterious mutations in either 

BRCA1 (10 patients) or BRCA2 (8 patients) genes (data not shown). Together with the 

14 probands we previously reported with this mutation (Peixoto et al., 2009a), a total 

number of 25 HBOC families have been uncovered at IPO-Porto at the time of writing. 

Altogether, 68 individuals from these 25 HBOC families have so far been tested for the 

c.156_157insAlu BRCA2 mutation and 39 of them were shown to be carriers. The 

known geographic origins of all the c.156_157insAlu BRCA2 positive families are 

shown in Supplementary Figure 1. Although most of the families are originated from 

northern/central Portugal, most likely reflecting our target population for genetic 

testing, we also detected the c.156_157insAlu mutation in families from southern 

Portugal and Madeira Island.  

Of the 5,291 suspected HBOC families with no known deleterious mutation 

originated from other countries, only one proband tested in Clermont-Ferrand was 

shown to carry the c.156_157insAlu BRCA2 mutation. Interestingly, this patient belongs 

to a family of Portuguese origin living in France. Additionally, the two relatives living 

http://compgen.rutgers.edu/old/map-interpolator/
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in Rhode Island (family with origin in Mangualde, central Portugal) and the two 

relatives living in Villejuif (family with origin in Porto, Portugal) for whom we 

performed predictive testing, were carriers of the c.156_157insAlu BRCA2 mutation 

that had previously been identified elsewhere in Portuguese family members. Finally, 

the patient originally reported by Teugels et al. (2005) belongs to a Portuguese family 

originally from the region of Guarda (central Portugal). 

 

Quantitative transcript analysis  

Real-time RT-PCR showed quantitative differences between the full length and 

the BRCA2-Δex3 transcripts in c.156_157insAlu BRCA2 mutation carriers and controls. 

The relative expression of the BRCA2-Δex3 transcript was six fold higher in carriers 

compared with controls, whereas a three fold decrease was observed for the BRCA2-wt 

transcript in patients compared with controls (Figure 2). The difference observed 

between patients and controls was statistically significant (P = 0.00032). 

 

Mutation-specific cumulative incidence 

Using the method of Kaplan and Meier, the cumulative incidence of breast 

cancer in women carrying the c.156_157insAlu BRCA2 mutation was 90% until the age 

of 60 years (Figure 3). 

 

Ancestral STR-based haplotypes and age estimate 

Nine different haplotypes were phased for 11 out of the 15 families, three of 

them reported earlier (Peixoto et al., 2009a). The results of the haplotype analyses for 

the 11 informative families are shown in Table 1 and the most parsimonious 

relationships among flanking haplotypes are presented as a phylogenetic network in 



 12 

Figure 4. The probability of mutation versus recombination was evaluated, considering 

the minimum number of stepwise mutations. In the 11 informative families, SNP 

haplotypes were constructed in order to establish if a specific microsatellite was 

different from the consensus because of a recombination event rather than a mutation 

(Supplementary Figure 2). 

Based on the mutation and recombination events observed in microsatellite 

haplotypes and assuming a generation time of 25 years, the age estimate for the 

c.156_157insAlu BRCA2 mutation is 558±215 years (Table 1).  

 

Discussion 

The c.156_157insAlu BRCA2 mutation has so far only been reported in HBOC 

families of Portuguese origin. We here show that this rearrangement accounts for 57.8% 

of the BRCA2 mutations and 37.9% of all deleterious mutations in HBOC families 

originating mostly from northern/central Portugal. This study confirms our and other 

earlier findings indicating that this is by far the most common BRCA mutation in 

Portuguese families with hereditary predisposition to breast/ovarian cancer, being 

detected in about 8% of all probands tested and presenting a nation-wide distribution 

(Machado et al., 2007; Peixoto et al., 2009a). This high frequency makes it cost-

effective to test specifically for this rearrangement prior to screening the entire coding 

regions of BRCA1 and BRCA2 in suspected HBOC families from Portugal or with 

Portuguese ancestry. Furthermore, complementing earlier data showing that the 

c.156_157insAlu BRCA2 mutation originates skipping of exon 3 (Teugels et al., 2005) 

and that residual exon 3 skipping in BRCA2 mRNA can be found in negative controls 

(Peixoto et al., 2009a; Peixoto et al., 2009b), we here demonstrate by real-time RT-PCR 

that carriers present significantly more BRCA2-Δex3 transcripts and much less full 
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length transcripts than controls, indicating that disruption of alternative transcript ratios 

is the mechanism causing hereditary breast/ovarian cancer associated with this BRCA2 

rearrangement. We further show that the cumulative incidence of breast cancer in 

c.156_157insAlu BRCA2 mutation carriers does not differ from that of other BRCA2 

and BRCA1 pathogenic mutations in our population (data not shown) or elsewhere 

(Ford et al., 1998), further strengthening its role as the major contributor to hereditary 

predisposition to breast cancer in Portugal.  

Since the c.156_157insAlu BRCA2 mutation had only been reported in HBOC 

families of Portuguese origin (Teugels et al., 2005; Machado et al., 2007; Peixoto et al., 

2009a) and is not detectable with commonly used screening methodologies, one can not 

exclude that it is present in other populations until it is specifically sought. To further 

evaluate whether or not it constitutes a population-specific founder mutation, we 

screened for the c.156_157insAlu BRCA2 rearrangement outside Portugal in more 5,291 

suspected HBOC families with no known deleterious BRCA1/BRCA2 mutations coming 

from several countries mainly from Europe, but also from Asia and North and South 

America. In addition to the family identified in Belgium by Teugels et al. (2005), we 

now detected this mutation in one proband living in France and in four individuals 

requesting predictive testing living in France and in the USA, all having in common the 

fact that they are relatively recent immigrants of Portuguese origin in those countries. 

Interestingly, c.156_157insAlu BRCA2 mutation was not detected in 1.209 suspected 

HBOC families from Spain, including those from Galicia, the Spanish region with 

which Portugal shares more linguistic and cultural links, as also demonstrated by our 

recent finding of a common ancestry for the Portuguese HBOC families presenting the 

R71G BRCA1 founder mutation of Galician origin (Santos et al., 2009). 
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The findings we here present indicate that, within the relatively large sample 

population studied, the c.156_157insAlu BRCA2 mutation is unique to HBOC of 

Portuguese ancestry, a fact that is hardly compatible with the age of about 2500 years 

previously estimated by Machado et al. (2007). Although geographic distribution of 

mutations is only an indirect measure of mutation age, more widespread mutations tend 

to be older than mutations showing a regional distribution. In order to get a more 

accurate mutation age estimate of the c.156_157insAlu BRCA2 rearrangement, we 

performed an extensive haplotype analysis having in mind that the size of an ancestral 

haplotype around a mutation is inversely correlated with the number of generations 

separating the common ancestor from the families carrying that rearrangement. After 

performing the haplotype reconstruction in the 11 informative families and assuming a 

generation time of 25 years, we estimate the age of the c.156_157insAlu BRCA2 

mutation to be 558±215 years, that is, most likely well after Portugal became politically 

independent (in 1143). Our estimate is consistent with the widespread distribution of the 

mutation in Portugal (Machado et al., 2007; Peixoto et al., 2009a; present report), the 

country demographic history (the North has been and still is consistently the source of migrants 

to the South), its occasional finding in countries with strong Portuguese immigration, and 

with its absence in the other populations studied (e.g. absence of the mutation in Spain, 

namely in Galicia). Nevertheless, statistical methods for estimating mutation ages are 

relatively crude (Rannala and Bertorelle, 2001), are dependent on sample 

representativeness, and estimate only the age of the common ancestor to the informative 

families that have been identified. The older age estimate advanced by Machado et al. (2007) 

was based upon a different sample of Portuguese patients (mostly from Center and South) and 

using a different age estimate method. However these authors recognize that the age of the 

mutation may be «overestimated, either because of the fact that mutation rates of the 

microsatellite markers were not taken into account or because recombination events in two 
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families were considered». On the other hand, although the mutation has so far only been 

detected in Portugal and in a few families with Portuguese ancestry living in Belgium, 

France or the USA, we can not conclusively exclude its presence in other countries that 

have strong historical links with Portugal, such as those having Portuguese as official 

language (Brazil, Angola, Mozambique, Cape Verde, Guinea-Bissau, São Tomé and 

Príncipe, East Timor, and Macau) or other countries with a large community of 

Portuguese immigrants. In fact, one of our probands with the c.156_157insAlu BRCA2 

mutation illustrates well this possibility: although she is now living in Portugal, her 

ancestors originating from North Portugal had moved several generations ago to Brazil 

and later to Angola, where reportedly various affected relatives lived.  

In conclusion, we showed that the c.156_157insAlu BRCA2 rearrangement is a 

Portuguese founder mutation originated about 558±215 years ago, accounting for the 

majority of the BRCA2 mutations and for about one third of all deleterious germline 

mutations in Portuguese HBOC families. We therefore recommend that all suspected 

HBOC families from Portugal or with Portuguese ancestry are specifically tested for 

this rearrangement, ideally prior to screening the entire coding regions of BRCA1 and 

BRCA2. Furthermore, we showed that disruption of alternative transcript ratios is the 

mechanism causing hereditary breast/ovarian cancer associated with this BRCA2 

rearrangement and that the cumulative incidence of breast cancer in c.156_157insAlu 

BRCA2 mutation carriers does not differ from that of other BRCA2 and BRCA1 

pathogenic mutations.  
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Figure legends 

 

Figure 1 - Molecular diagnosis of the BRCA2 c.156_157insAlu mutation using two 

independent PCR analyses, showing positive cases in lanes 1 and 2 and a negative case 

in lane 3. (A) PCR specific for BRCA2 exon 3, showing an additional band resulting 

from the insertion of a DNA fragment of about 350bp long within exon 3 of BRCA2 

(c.156_157insAlu mutation; lane 1 and 2). (B) PCR specific for the c.156_157insAlu 

BRCA2 mutation with positive cases being then confirmed by sequencing the amplified 

genomic fragment. Lane 4 corresponds to a positive control and NTC is a non template 

control. MW refers to 100 bp DNA standard.  

 

Figure 2 - Real-time RT-PCR quantification of the altered transcript ratios in BRCA2 

c.156_157insAlu carriers as compared with controls. The relative expression of the 

BRCA2-Δex3 transcript was six fold higher in carriers compared with controls, whereas 

a three fold decrease was observed for the BRCA2-wt transcript in patients compared 

with controls.  

 

Figure 3 - Cumulative incidence of breast cancer among c.156_157insAlu BRCA2 

germline mutation carriers, reaching 90% at about 60 years of age. 

 

Figure 4 - Phylogenetic network showing the most parsimonious relationships among 

flanking short tandem repeat-based haplotypes in families carrying the c.156_157insAlu 

BRCA2 mutation. Circle and line sizes are proportional to the number of families and 

stepwise mutations, respectively. Dashed diamonds indicate recombination events. 
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Supplementary  Figure 1 - Map of Portugal showing the known geographical origin of 

the families with the c.156_157insAlu BRCA2 germline mutation. The black circles 

indicate the origin of the 25 families detected in Portugal (present report and those 

reported in Peixoto et al., 2009a), the open circle the origin of the family previously 

identified by Teugels et al. (2005) in Belgium, and the triangles the origin of the 

families of the four individuals (two from each) subjected to predictive testing living in 

Rhode Island, USA, and in Villejuif, France, respectively. 

 

Supplementary Figure 2 - SNP marker haplotype spanning ~1.1Mb, encompassing the 

region between the D13S260 and D13S1695 microsatellite markers, in the 11 

informative families. 

 



Table 1- Age estimation of the ancestral c.156_157insAlu BRCA2 mutation. 

Family ID Haplotypea Families, No. Mutation steps/ 
recombination events, 

No. 

Age±δ, yb 

4001; 6216 H1: 317-160-156-299-230-242-228-144-158 2 0 558±215 

5931 H2: 317-160-156-295-230-242-228-144-158 1 1  

6045 H3: 313-160-156-299-230-242-228-144-158 1 1  

14230 H4: 269-160-156-299-230-242-228-144-158 1 1  

7772; 14331 H5: 317-160-156-299-230-234-234-148-144 2 1  

14459 H6: 321-160-156-299-230-234-234-148-144 1 2  

3854 H7: 317-160-156-307-226-252-234-148-144 1 1  

12703 H8: 317-160-156-299-230-252-234-144-156 1 1  

3286 H9: 309-162-160-299-230-242-228-144-158 1 1  

Total  11 9  

a The nine microsatellite markers used were: D13S1700, D13S260, D13S1698, D13S1701, D13S171, D13S1695, D13S1694, D13S310 and 
D13S267 (from left to right). Alleles conserved in each population appear in bold.  
b The recombination rate (c) was based on the physical distance between the two most distant markers (1930.8 kilobases; c=0.030597 cM) using a 
conversion factor calculated in Rutgers Map Interpolator. The estimated probability of mutation per generation and per haplotype was 0.00624 (as 
seven dinucleotide and two tetranucleotide short tandem repeats were studied). 











Supplementary table 1 – SNaPshot assay primers used for SNP genotyping around BRCA2.  
 
 

SNP ID PCR amplification primers Single base extension primers  Base 
change 

1 RS379693-F 
RS379693-R 
 

ACCAGGCACGCATGTAATTC 
TGCCCAGCCAGAAACTTAAT 

ACAGTTGAAAAAGTACTTTCA 
 

A>T 

 RS9590624-F 
RS9590624-R 
 

TTGGGAGGGAGAGCACTAGA 
TGGGCTCCTACATCCAACTC 

(GACT)2GAAAGGTTATTGGAGACCTGC 
 

A>T 

 RS916732-F 
RS916732-R 
 

TCACAGAGCTGTGCAAAACC 
GCGGAATACCATCAACCATC 

(GACT)3TAGAAAGTAAATGTTTGAAAATT 
 

C>T 

 RS2806638-F 
RS2806638-R 
 

TTCATCCAACCCTTCCAGTC 
AGCCACAGCAGTGAGAAAAT 

(GACT)5ATTTTCTTCCTTTCTTTACAC 
 

A>G 

 RS206102-F 
RS206102-R 
 

AAATGAAGCCTCTGTGACAAAA 
CCAGGGTGTCAGAGGAAAAA 

(GACT)7GTTTGCATCTTTTTTGAAGG 
 

C>G 

2 RS9567445-F 
RS9567445-R 
 

GCTATGAGGCATAGTCAGCG 
GCATTTGATGTGGTTAGCATTC 

GGGAAACTCAGAAATTCAGT 
 

A>T 

 RS798972-F 
RS798972-R 
 

ACGGCCACCATCTAACAGAC 
GCAGACGCCTCCTCTCTCTA 

GACTCAATTTCACCAAAATTTTACCA* 
 

A>T 

 RS703219-F 
RS703219-R 
 

TTAGTGGCCCTGTTCTTGCT 
AAAAACACCTGGCACAAAGC 

(GACT)3GATAGTATTCCATTCCATGTCA* 
 

C>T 

 RS582274-F 
RS582274-R 
 

TCTCACCTGGCTGAAACTCC 
CTGCTTAGCAACAGGAAGGG 

(GACT)4GATTGAAAATAGTTTGATCTCTTT 
 

C>T 

 RS176059-F 
RS176059-R 
 

AAGAAAAAGGGAGAAGTTTGCC 
TAAACAAATCTGCCCCCATC 

(GACT)6TTATATTTTGAGTCTAATTTGG A>G 



Supplementary table 1 (continued) 
Multiplex SNP ID PCR Amplification primers Single base extension  primers  Base 

change 
3 RS1207952-F 

RS1207952-R 
 

TGCATGAAGCACACTGTGAA 
CTCCTTGCTAGCCTCAGGG 

GTTCAGCAGTTCTCTTTCAG 
 

A>C 

 RS2761367-F 
RS2761367-R 
 

AGCTGAGGATGGCTGAAAAA 
GACAAGCAGCCTAAGGGAAG 

GACTTCATTTTACTTTTTGTTTTGTTT* 
 

G>T 

 RS207632-F 
RS207632-R 
 

GCAACGTTACAGAGCAGTTTG 
ATGCTCCATCTCCACGTTTC 

(GACT)4GAGCATCATGTCAATCAATG 
 

C>G 

 RS6561643-F 
RS6561643-F 
 

CCTCAGCAATCCTGTGTGTG 
GGGACTGGAGGATTTTCTCA 

(GACT)5GATGTTAGCTTGTTTTCCAAGT* 
 

A>T 

 RS762900-F 
RS762900-R 
 

GGCAAAAGGCAGTGCTAGTT 
TCTATACCAATGATGAGCAATCTT 

(GACT)6GACTGAATAGGCTTAAAATCTGAA* 
 

A>G 

4 RS9595946-F 
RS9595946-R 
 

TGCCTTTCCCACTCGTTAGT 
GGCTGAATTGAGTGATGGGT 

TCTGAAAAGATTTGTGTTAATA* 
 

A>G 

 RS472873-F 
RS472873-R 
 

TTTCTGCATTGTGACTCTGCTT 
CACGGTAAAGGTTTCTGGGA 

(GACT)2AACCAACTTCCTTCGTATTT 
 

T>C 

 RS2146994-F 
RS2146994-R 
 

TCTCACCTGTGGGACCAAAT 
TAGTGCTGTTCCTTGGGGAC 

(GACT)5GATGGAGCTTTGGCCTCTTG 
 

A>C 

 RS7983065-F 
RS7983065-R 

TGATGAGACCTGGTAGTCTGTAATG 
CCCTAGCAATTCTTCTGTATTTG 
 
 

(GACT)6GAAAAAAATGATTTCCCTGAAA 
 

C>T 
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