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Abstract

Zebrafish (Danio rerio) has been used in the present work to study the fish response 

to bacterial lipopolysaccharide (LPS) exposure and LPS tolerance. These mechanisms are 

not completelly understood in mammals and, until now, totally unknown in fish. Zebrafish 

larval survival was assessed following treatment with various LPS at a variety of 

concentrations to determine the sensitivity of zebrafish to LPS-induced immune activation. 

In addition, fish pre-treated with a sublethal concentration of LPS did not die after exposure 

to a lethal concentration of LPS demonstrating, for the first time, that LPS tolerance also 

happens in fish. The time interval between pretreatment and secondary exposure as well as 

the type of pretreatment dictated the strength of protection. Since zebrafish are in intimate 

contact with microorganisms, the observed high resistance of fish to LPS suggests that 

there must be a tight control of the LPS receptor cluster in order to avoid an excess of 

inflammation. One of these components is CXCR4, which has previously been shown to 

regulate the signal transduced by TLR4. Treating fish with AMD 3100, a specific inhibitor 

of CXCR4, increased LPS treatment associated mortality. Blocking CXCR4 via chemical 

or genetic inhibition resulted in a reversion of LPS tolerance, thus further supporting the 

negative regulatory role of CXCR4 in this inflammatory response. In support of an 

inhibitory role for CXCR4 in the inflammatory cascade, IL1 transcript levels were elevated 

in both unstimulated and LPS stimulated zebrafish Odysseus (CXCR4 deficient mutant)  

larvae.



Introduction 

In mammals, microbial products such as lipopolysaccharide (LPS) or endotoxin, are 

potent inducers of inflammation that stimulates immune system cells after they are 

recognized mainly by Toll-like receptors (TLRs), a family of closely related 

transmembrane proteins that initiate signaling cascades. Gram-negative enterobacterial LPS 

signals through TLR4, which involves downstream molecules MyD88, TIRAP/Mal, IRAK 

and TRAF6, and leads to production of  proinflammatory cytokines, proteases, eicosanoids, 

and reactive oxygen and nitrogen species [1]. Gram-positive bacteria usually activate cells 

in a TLR2-dependent fashion. In the case of Pseudomonas aeruginosa LPS, the 

involvement on both TLR2 and TLR4 has been reported [2]. If the inflammatory response 

to infection is not tightly controlled, several pathological processes may develop, including 

septic shock. Although LPS-induced proinflammatory molecules such as interleukin-1 (IL-

1) or tumour necrosis factor (TNF), are important for avoiding the growth and 

dissemination of gram-negative bacteria, their overproduction can lead to endotoxin shock 

which is a severe systemic inflammatory response triggered by the interaction of LPS with 

host cells, characterized by fever, myocardial dysfunction, acute respiratory failure, 

hypotension, multiple organ failure, and in a large number of cases, death [1, 2]. It is well 

known in mammals, that a previous exposure to LPS induces "endotoxin tolerance" which 

is thought to protect the host from the endotoxic or septic shock, although the involved 

mechanisms have not been fully understood. In fact contradictory results have been 

reported. Tolerance can limit neutrophil proinflammatory responses limiting neutrophil 

responses in vivo, potentially preventing excessive cell activation [3]. 

In recent years, zebrafish (Danio rerio) has been widely used in research areas such 

as cancer, stem cell research or development, however, due to its advantages is starting to 

be used in other fields. It could also be appreciated in immunology and infectious diseases 

research: zebrafish larvae are transparent, easy to rear and only the innate immune system 

is present until several weeks postfertilization, thus simplifying analysis of immune 

responses [4]. In addition, physiological responses can be studied with the whole organism. 

Moreover, Purcell et al. [5] have characterized  the key components of the TLR-signaling 

pathway including MYD88, TIRAP, TRIF, TRAF6, IRF3, IRF7 in zebrafish. It is also 



already reported that the main receptor for LPS is expressed in zebrafish at early times of 

infection [6, 7], however, accessory molecules such as CD14, that are essential for the 

response to LPS in mammals, seem not to be present in the zebrafish genome [8].

The SDF1-CXCR4 system plays a role in hematopoietic cell migration during 

mammalian development [9] and recently has been implicated in germ cell and neuronal 

migration in developing zebrafish [10- 13]. Cell migration is not only involved in aspects of 

development, organogenesis and organ function, but also plays a role in several 

pathological processes, such as the spread of tumour cells and formation of metastases [9] 

and the inflammatory  responses. In fact, CXCR4 belongs to the cluster that participates in 

the LPS recognition after LPS binding protein and CD14 transfers the LPS from the 

extracellular space to the membrane, probably inhibiting the TLR4 in order to control an 

excess of inflamatory response [14]. 

In this work we have explored the use of zebrafish larvae as a new model for the 

study of LPS exposure associated mortality and LPS tolerance which is a hypo-responsive 

state to a second exposure to LPS. The advantages of using zebrafish, highly appreciated in 

other fields such as stem cells research, development and cancer, are also very useful for 

the study of immune response against infections.

Material and methods

Zebrafish and embryos were maintained according to standard protocols [15]. 

Odysseus mutants [11], which have a mutation in the CXCR4 gene, were also maintained 

according to standard protocols. All the mortality experiments were conducted using 

replicates of 10-15 fish each. Fish were maintained in 6 wells plates at 28 ºC during the 

treatments. 

Zebrafish larvae were bathed in a range of concentrations of Escherichia coli

0111:B4, P. aeruginosa LPS (Sigma). Zebrafish larvae of 2, 5 and 10 days post fertilization 

(dpf) were treated with 0, 5, 25, 50, 150 and 200 µgr/ml of 0111:B4 E. coli LPS. The same 

concentrations were used for Pseudomonas aeruginosa LPS (Sigma) Mortality was 

recorded regularly for 48 hours. 



Tolerance experiments were conducted using two days larvae that were exposed to 

sublethal LPS concentrations (50 µg/ml of E. coli 0111:B4 or 2,5; 5 and 10 µg/ml of P. 

aeruginosa). At different times post treatment, larvae were exposed to a lethal 

concentration of E. coli 0111:B4 or P. aeruginosa LPS. 

Cross tolerance experiments were conducted using one or two pretreatments of 50 

µg/ml of different PAMPs (E. coli 0111:B4 LPS, E. coli 055: B5 LPS (Sigma), P. 

aeruginosa LPS,  glucans (Macrogard), lipoteichoic acid from Staphylococcus aureus

(Sigma), poly I:C (Sigma)) followed by a lethal concentration of E. coli LPS (150 µg/ml).

To investigate the involvement of CXCR4 on the larvae response to LPS, treatments 

with AMD3100 (Sigma) which is a pharmacological specific CXCR4 inhibitor, were 

studied. In order to find a non toxic concentration for zebrafish larvae several 

concentrations were assayed (1 ng/ml, 10 ng/ml, 100 ng/ml, 1 µg/ml, 10 µg/ml, 100 µg/ml). 

Treatments with AMD 3100 alone or combined with a sublethal LPS pretreatment, 

previous to a lethal LPS concentration exposure, were used. Zebrafish Odysseus mutants, 

which have a mutation in the CXCR4 gene, were also used to clarify CXCR4 role in LPS 

tolerance.

Quantitative PCR assays were performed using the 7300 Real Time PCR System 

(Applied Biosystems) using pooled samples of 4-5 fish larvae. cDNA amplification was 

performed using specific primers designed by Primer 3 software [16]. 0.5 l of each primer 

(10 M) was mixed with 12.5 l of SYBR green PCR master mix (Applied Biosystems) in 

a final volume of 25 l. The standard cycling conditions were 95 º for 10 min, followed by 

40 cycles of 95º 15 s and 60 º for 1 min. The comparative CT method (2-ΔΔCT method) 

was used to determine the expression level of analyzed genes [17]. The expression of the 

candidate genes was normalized using –actin as a housekeeping gene. IL-1 was amplified 

with primers Forward ATC TCC ACC ATC TGC GAA TC and Reverse: AAC CTG TAC 

CTG GCC TGT TG and –actin was amplified with primers: Forward: CAA CGG AAA 

CGC TCA TTG C and Reverse: CGA GCA GGA GAT GGG AAC C. Data were analyzed 

using a Student's t-test and differences were considered statistically significant at p<0.05.



Results

1. Mortality caused by LPS exposure. 

Only the highest concentrations (150 and 200 µg/ml) of E. coli 0111:B4 were able 

to induce zebrafish larvae mortalities (Figure 1). However, LPS from Pseudomonas 

aeruginosa, was able to kill the fish at lower concentrations (50-100 µg/ml) than E. coli 

LPS (Figure 2).

The final E. coli LPS concentrations of 150 µg/ml or 50 -100 µg/ml of P. 

aeruginosa were reproducibly  lethal concentrations for wild type zebrafish embryos. 

2. Induction of tolerance using LPS and pathogen associated molecular patterns 

(PAMPs).

In order to know if low LPS concentrations could produce tolerance in zebrafish, 2 

dpf embryos were first treated with a sublethal concentration of 50 µg/ml of E. coli

0111:B4 LPS followed by a exposure to a lethal concentration of the same LPS serotype. 

The timing of administration of sublethal and lethal concentrations was critical (Figure 3). 

Tolerance was always observed when the time interval between pretreatment with the 

sublethal and exposure to the lethal concentration was at least 24 hours. Exposure to a 

sublethal treatment 6 h before the exposure to the lethal concentration was not sufficient to 

confer protection. On the contrary, tolerance was observed when 4 days was the difference 

between treatments with the sublethal and lethal concentrations. 

In all the conducted experiments, tolerance was always observed when LPS from E. 

coli 0:111 was used as sublethal concentration one day before of a lethal concentration of 

E. coli LPS (150 µg/ml) or Pseudomonas LPS (50-100 µg/ml). However, tolerance was not 

observed when larvae were pretreated with sublethal concentrations of Pseudomonas LPS 

(data not shown). 

Other PAMPs (pathogen associated molecular patterns) were investigated to 

determine their ability to induce cross tolerance (protection) to LPS exposure. While some 

protection was observed with a single pretreatment, two treatments of 50 µg/ml of each 

PAMP were more effective in the induction of tolerance (Figure 4). In this case, LTA and 



the two E. coli LPS produced a complete protection of fish and poly I:C induced a delay in 

mortalities caused by a lethal concentration of LPS. 

IL-1 transcript levels increased with time in larvae following a lethal exposure to 

LPS (Figure 5). A decrease in IL-1 transcript levels was observed in larvae treated with a 

sublethal concentration after 3 h. 

3. CXCR4 involvement on the response to LPS treatment (AMD3100 treatment and 

Odysseus mutant fish).

With the aim to determine if CXCR4 has a role in the LPS tolerance of fish, we 

blocked its function via chemical and genetic approaches. First, after using a range of 

several concentrations of AMD3100, a pharmacological specific CXCR4 inhibitor [18, 19], 

we found that the 10 µg/ml concentration was non toxic for zebrafish larvae). Larvae 

exposed to AMD3100 were more sensitive to LPS treatment; lower concentrations of LPS 

led to lethality in the presence of AMD3100 (Figure 6A). Moreover, fish receiving 

AMD3100 treatment during the tolerization period were not able to survive after the 

exposure to a lethal concentration of LPS although they were treated previously with a 

protective sublethal concentration of LPS as in the experiments already described (Figure 

6B). 

Odysseus mutants, which are mutated in the CXCR4 gene, did not show higher 

sensitivity to LPS, but no LPS tolerance was observed (Figure 6B). To directly test the 

effect of CXCR4 loss-of-function on the downstream effects of the inflammatory cascade, 

IL-1 transcript levels were determined in Odysseus mutants before and after a sublethal 

exposure to LPS (Figure 6C). IL-1 levels were found to be high in Odysseus mutants 

without LPS exposure and additionally a significant increase in IL-1 level was seen in 

Odysseus mutants following treatment. 

Discussion

The inflammatory cascade begins with the receptors involved in the binding and 

uptake of bacteria and their products by cells of the innate immune system. It continues 

with the production of proinflammatory cytokines, such as TNF-, IL-1, and IL-8, lipid 



mediators, oxygen radicals, and tissue-damaging enzymes [20]. In this work we have 

shown that from an early age, zebrafish larvae (2dpf) are able to produce an inflammatory 

response when exposed to LPS. 

The minimum lethal LPS concentration was much higher than in mammals and this 

led us to wonder why and how fish are so resistant to LPS and in general to other PAMPs 

as it has also been reported [8, 21- 23]. Although resistance to LPS has been observed in 

other non-mammalian vertebrates [8, [24], fish live in water and therefore in intimate 

contact with a potentially high amount of microorganisms. If a high inflammatory reaction 

was triggered after each contact with external putative pathogens, fish simply could not 

survive. Thus, inflammation and sepsis should be tightly regulated in these animals due to 

their environment placement.

In agreement with it was reported for mammals [25] P. aeruginosa LPS was more 

lethal than E coli LPS. Interestingly, the pretreatment of zebrafish larvae with different P. 

aeruginosa LPS concentrations did not protect to the subsequent exposure with a lethal 

concentration with same LPS. On the contrary, the preteatment with a non lethal LPS (E. 

coli) did protect when fish were exposed to the P. aeruginosa LPS. This needs further 

research to clarify the involved molecular mechanisms. 

As observed in mammalian macrophages, exposure of zebrafish larvae to high 

concentrations of LPS produces an excess of proinflammatory cytokines and other 

molecules which leads to death. However, if the fish are first treated with a sublethal 

concentration, this induces a hypo-responsive state to a second treatment of LPS that is 

known as LPS tolerance. TLR homotolerance is consistently stronger than TLR 

heterotolerance (with other different PAMPs) [26]. This agrees with our experiments since 

although we could detect a complete protective role after two administrations of 

lipoteichoic acid (component of the surface of Gram-positive bacteria) to an exposure of a 

lethal concentration of LPS, this was not observed when only one pretreatment was given. 

However, no protection was achieved when glucan was used; this molecule interacts 

with a signalling non-TLR pattern-recognition receptor, dectin-1,

but whether this is the cause of the lack of protection 

observed needs further research. Poly I:C, which mimics a viral infection, 

showed an intermediate effect. These different responses are incompletely understood 



mechanisms in mammals and, until now, totally unknown in fish.

IL-1 has been involved as a mediator of tolerance in vivo in mammals [27]. Our 

results show that the expression of IL-1 increases when fish are treated with high LPS 

concentrations, which would imitate the over-production of proinflammatory cytokines that 

is produced in the cases of sepsis. However, IL-1 decreases in the hypotolerized state 

induced by lower LPS concentrations which is in agreement with the reported inhibited 

expression of many cytokines, e.g., TNF, IL-1ß, IL-6, and IL-12 in cases of LPS tolerance 

[28].

Several studies have pointed out that the chemokine receptor CXCR4 seems to be a 

functional part of the LPS-sensing apparatus [14, 27], and could have a role inhibiting the 

signaling cascade initiated by TLR4. In the Odysseus fish, in which CXCR4 function is 

inhibited, the expression of IL-1 was higher than in wild types in the unstimulated state and 

was increased even more when fish were treated with LPS. 

When wild type zebrafish larvae were treated with a AMD3100, a pharmacological 

specific CXCR4 inhibitor [18, 19] no tolerization was obtained. Similar results were 

obtained on Odysseus fish. These observations strongly suggest that CXCR4 could have a 

key role in modulating zebrafish immune response to endotoxin LPS, since CXCR4 

impairment (genetic or pharmacological) induces higher inflammatory responses and 

reversion of tolerance. These results suggest that zebrafish may have experienced an 

evolutionary selective pressure to avoid excessive inflammatory states that might be 

associated with an increased activity of the CXCR4 receptor. Our findings agree with 

previous studies, in which CXCR4 is described as involved in LPS binding but also 

responsible for the triggering signalling. However, there is a controversy on this subject 

since some authors find that CXCR4 acts as an inhibitor of the LPS receptor TLR4 [29], 

but others state that CXCR4 interacts with TLR4 augmenting the LPS signalling [30].

Zebrafish might be a good model for studying infectious diseases, septic shock and 

tolerance to endotoxin. Zebrafish has several advantages compared with other models: a 

high number of individuals can be used, the availability of transgenic or mutant fish, and 

the ease of chemical manipulation, all of which allow facile observations of whole 

organism inflammatory reaction to external stimuli. This is a substantial benefit compared 

to other studies where only a cell line can be evaluated, and thus may not mirror the true in 



vivo response. 
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Figure Legends

Figure 1. Survival of zebrafish larvae exposed at different days post fertilization (dpf) to E. 

coli 0111:B4 LPS. Fish were bathed direcly in water with the different LPS concentrations. 

Data correspond to a representative experiment conducted 4 times.

Figure 2. Zebrafish larvae survival exposed at 2 dpf with Pseudomonas aeruginosa LPS. 

Results are + standard deviations (n= 2 replicates with 15 fish each) of a representative 

experiment repeated three times. 

Figure 3. Summary of the different experiments conducted to demonstrate LPS tolerance in 

zebrafish. 2 dpf embryos were treated with a sublethal concentration of LPS (50 µg/ml of 

E. coli 0111:B4) and then at different times postinfection, a exposure to a lethal 

concentration (150 µg/ml) of the same LPS was conducted. 

Figure 4. Survival of zebrafish larvae incubated with other PAMPS to determine if they can 

induce tolerance to LPS. Treatments with the lethal concentration of E. coli LPS were 

conducted at 7 dpf. (A) one pretreatment at 3 dpf (B) two pretreatments at 3 and 6 dpf of 

PAMPs or two E. coli LPS serotypes. Results are + standard deviations of n= 2 replicates 

from a representative experiment out of three.

Figure 5. Expression of IL-1 by qPCR showing its decrease after exposure to sublethal E. 

coli LPS concentration (50 µg/ml) compared with its increment when a lethal concentration 

was used (150 µg/ml). Results are + standard deviations of n= 4 pooled samples. *: 



indicates significant differences, p<0.05, with respect to control. #: indicates significant 

differences , p<0.05, with respect to the initial value after 30 minutes of treatment.

Figure 6. Involvement of CXCR4 on the sensitivity to LPS and tolerance.

(A) Survival of wild type fish treated with AMD3100, a specific CXCR4 inhibitor, showing 

that AMD3100 treated fish do not survive to LPS sublethal concentrations. Results are +

standard deviations (two replicates with 10 fish each). (B) Reversion of the tolerance to 

LPS in Odysseus fish and AMD3100 wild type treated fish compared with untreated wild 

type zebrafish. Fish were treated with a sublethal concentration of LPS and after one day 

they were exposed to a lethal concentration of P. aeruginosa. Results are + standard 

deviations (two replicates with 10 fish each). (C) qPCR of IL-1 of Odysseus and Tubingen 

(wild type) fish 24 hours after the treatment with 50 µg/ml of LPS. Results are + standard 

deviations of n= 4 pooled samples. *: indicates significant differences, p< 0.05, with 

respect to controls. 
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Fig 2.
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Fig. 3
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Fig 5.
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Fig 6. 
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