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Abstract 

The microstructure and mechanical behaviour of Al-based composites reinforced with TiAl 

intermetallic particles has been examined in the as-extruded state and after processing by 

equal channel angular pressing (ECAP). The latter produces a grain size reduction in the 

aluminium matrix to values of 500 nm, using route A, and 750 nm, using route C. The ECAP 

produces up to a 75% increase in the yield stress of the composites, being more rapid when 

route A is used. The strengthening effect by ECAP is much larger than that obtained by 

increasing the volume fraction of reinforcement particles from 25% to 50% in these 

composites. 

Keywords: Equal-channel angular pressing; grain refinement; metal-intermetallic composites; 

mechanical strength 

1. Introduction 

Processing by severe plastic deformation, for example by equal channel angular pressing 

(ECAP), is one of the areas of major research activity today, since it is possible to produce 

bulk materials with fine microstructures and interesting mechanical behaviour [1-2]. The 

materials produced typically show fine, submicron grains with a high retained dislocation 

density, with refinement or dissolution of precipitate and dispersoid particles present often 

occurring simultaneously. The materials obtained, with their fine-scale, heavily-worked 

microstructures, typically show high strength, in combination with good ductility, and hence 

are of considerable interest for many possible engineering applications. Much of the work 

reported has been carried out on single-phase materials, with a large amount of effort 

concentrated on the Al-Mg system where grain sizes of about 100-500 nm have been obtained 

[3-6]. Although some of the commercial alloys studied contained relatively coarse dispersoid 

or inclusion particles [7-8], only a few reports have specifically examined the role played by 
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particles in the evolution of microstructure during severe deformation [9-10]. In the case of 

Al-based composites, ECAP offers the possibility of hardening the matrix as well as helping 

modify the distribution of reinforcement particles if these are sheared during deformation. 

Significant hardening of composites has indeed been observed in an Al-6061 based composite 

reinforced with alumina particles [11-13].  

Recent studies of Al-based composites reinforced with TiAl intermetallic particles have 

confirmed the possibility of obtaining materials with a homogeneous distribution of 

reinforcement particles without any interface reactions by the direct extrusion of powders 

[14]. Although the strength of these composites was not very high at room temperature, it 

remained rather stable up to temperatures of 200ºC. A recent investigation [15] on the effect 

of processing such composites by ECAP to relatively low strain levels (2.8) confirmed that it 

was possible to improve significantly their room temperature strength by such microstructural 

refinement. The present study examines the effect of ECAP to larger strains on 

microstructural refinement of the aluminium matrix, and compares the mechanical strength 

achieved by the severely deformed composites to that produced in as-extruded materials with 

increased volume fraction or decreased size of TiAl reinforcement. 

 

2. Experimental details 

The Al-based composites were prepared from gas atomised aluminium powders of purity 

99.5% and intermetallic powders of composition Ti-49at% Al. Both types of powders had 

similar sizes, 100±25 µm. To produce smaller sized reinforcements, the TiAl atomised 

powders were mechanically milled for 5 h, at 600 r.p.m., using a Pulverisette 7 planetary ball-

mill, with a ball to powder weight ratio of 3. The intermetallic particle size was reduced to 

20±25 µm by this procedure. Mixtures of aluminium powders were prepared with 25 and 50% 

by volume of TiAl particles in both the atomised and the milled state. The powder mixtures 

were blended to a homogeneous particle distribution using the same mill without balls, at a 

rotation speed of 400 r.p.m for 10 min. The powder mixtures were then encapsulated in an 

aluminium container and extruded at 450ºC with an extrusion ratio 10:1. Bars obtained were 

studied as reference materials. In addition, the mixtures containing 25% TiAl powders were 

extruded, also at 450ºC, with a 5:1 ratio to larger diameter bars for severe plastic deformation 
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by equal channel angular pressing. ECAP was performed, at room temperature, in a 20 mm 

diameter, circular section die, with a tool angle of 120º and very small radius of curvature at 

the outer line of intersection of the two channels, producing a true strain per pass of 0.7 [1,2,4]. 

Materials were processed using both route A, without sample rotation between passes, and 

route C, with 180º rotation between passes [1,16]. 

Optical and scanning electron microscopy (SEM) was used to examine general 

microstructures, and specifically to study the particle size and distribution, and matrix grain 

size as a function of processing route and number of ECAP passes. The SEM observations 

were performed on electropolished samples with a JEOL 6500F microscope using back-

scattered electron mode to obtain images from the matrix grains. Transmission electron 

microscopy (TEM) observations were carried out using a JEOL 2010FX instrument to examine 

dislocation densities and distributions, as well as to obtain more information on the types of 

boundaries present. For both SEM and TEM studies, electropolished samples were prepared 

using a mixture of 20% nitric acid in methanol at -30ºC and 20 V. Microstructural parameters 

were quantified by image analysis of SEM photographs, measuring at least five hundred grains 

and three hundred particles for each state examined. Particle and grain size were both 

determined as the equivalent diameter value, that is the diameter of the circle having the same 

area as the given particle/grain. This parameter was chosen since both particles and grains were 

close to equiaxed/circular in morphology. The size distribution of particles and grains was 

obtained from such analyses, as has been reported previously, see refs. [14,15]. While 

experimental measurements showed little error (estimated as 1%) and good reproducibility, 

there was a wide variation in the measured sizes, with smallest measured particles/grains for a 

given state being only 10-20% of the average value, and largest measured particles/grains 

being 2-3 times the average value. As shown elsewhere [14,15] the distribution of both grain 

size and TiAl particle size for any state may be described by an approximately Gaussian size 

distribution about the average value, with a standard deviation of size of about 20% of that 

average. 

Mechanical properties were evaluated by testing samples in tension and compression at 

temperatures between room temperature and 350 ºC using a universal testing machine at a 

strain rate of 5x10-4 s-1. A heating rate of 20 K/min was used for high temperature tests and 



Publicado en Materials Science and Engineering A: 425 (2006) 131-137 

 4 

samples were allowed to soak at temperature for 15 min before testing. The tensile samples had 

gauges of diameter 3 mm and length 20 mm, and the samples for compression were cylinders 

of diameter 3 mm and height 5mm. Three tensile or compression samples were tested for each 

condition, showing extremely good reproducibility of strength levels – always with data 

dispersion less than 5 MPa, or about ± 2%-5%, depending on the material. Yield stress was 

determined in each case as the stress where there was a deviation of 0.2% strain from the 

elastic line. This was determined from the stress-strain curve deduced from the applied load 

and crosshead displacement measured during testing. In general tensile testing was carried out 

on the as-extruded composites, both those prepared from as-atomised TiAl powders and those 

from milled powders, at room temperature and at high temperatures, while compression tests 

were conducted on material after ECAP where there was generally less material available for 

the preparation of many tensile samples. However, at certain conditions, specifically for 

samples processed by ECAP to 4-5 passes and to 8 passes, as well as a few other conditions, 

both tensile tests and compression tests were carried out, at room temperature and at high 

temperatures, to compare stresses at the onset of plasticity. Within the data scatter, i.e. 

dispersion of 5 MPa, or ± 2%-5%, the compression testing and tensile testing gave identical 

results, and hence data are presented indiscriminately in the results section. Finally, in addition 

to the tensile and compression tests, Vickers microhardness was measured on both the 

aluminium matrix and the intermetallic reinforcement using 50 g and 500 g loads respectively. 

Hardness values were determined as the average of 10 measurements, with again data showing 

scatter of a few percent about the determined average value. 

3. Results  

It has been shown previously [14] that the conventional high temperature extrusion of the 

different powder mixtures produced composite materials with full density and good cohesion 

between the aluminium matrix and the reinforcement particles. The amount of strain that could 

be imposed during subsequent ECAP processing of these composites containing 25% TiAl 

depended strongly on the initial reinforcement size. Thus, materials reinforced with large, 

atomised TiAl particles could withstand four ECAP passes (total strain 2.8) using route A and 

eight ECAP passes (total strain 5.6) using route C before showing cracking. Materials 
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containing the finer, milled TiAl particles could only withstand two ECAP passes using route 

A and five passes using route C before similar cracking.  

Microstructural observations have shown no differences in size and distribution of the 

reinforcement particles between the conventionally extruded and the ECAP processed 

materials. Thus, the severe plastic deformation did not affect the intermetallic particles, which 

neither cracked nor fractured. Both before and after the severe plastic deformation the average 

size of the atomised and milled TiAl particles was 100 and 20 µm respectively. 

Figure 1 shows examples of microstructures observed in the SEM using backscattered 

electrons to produce atomic number contrast of the reinforcement particles and crystallographic 

contrast of the ultrafine grains in the aluminium matrix. Figs. 1a and 1b show such particles 

and matrix grains in a composite containing atomised particles after six ECAP passes. Fig. 1b 

shows the curvature of microstructure, in bands where grain refinement has occurred, produced 

by the plastic flow of the ductile matrix between the hard intermetallic particles during the 

severe deformation. Fig. 1c shows the distribution of the milled intermetallic particles in a 

composite subjected to three ECAP passes. Fig. 1d shows details, in the same sample, of the 

finer grain structure produced by ECAP at the interface between the aluminium matrix and the 

reinforcement particle (bright). Figure 2 shows typical grain distributions in the aluminium 

matrix, illustrating micrographs from which grain sizes and distributions were measured. 

The evolution of grain size with number of ECAP passes for the two different routes are shown 

in Figure 3a. The initial grain size corresponds to that of the conventionally extruded materials 

used as a starting reference (2.5µm for the material reinforced with atomised intermetallic 

particles). The decrease in grain size from this large initial value depends on the ECAP route. 

Route A produces a rapid initial grain size reduction, to 610 nm after only two ECAP passes, 

with a near-saturation thereafter, to 520 nm after four passes. In contrast, route C produces a 

much slower grain refinement, to about 1µm after two passes, reaching only 750 nm after eight 

passes. An even slower reduction of matrix grain size is observed during ECAP deformation of 

material reinforced with milled particles, from the initial grain size of about 1.2 µm in as-

extruded material to 740 nm after five passes. 

Figure 3b shows the evolution of hardness of the aluminium matrix as a function of the number 

of ECAP passes. The hardness increase is faster for the material processed using route A, 
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where a finer grain size is achieved after two and four passes. Materials deformed by route C 

reached higher hardnesses, however, even though the grain sizes achieved were somewhat 

larger than for route A. This indicates that grain size is not the only parameter affecting matrix 

strength during severe plastic deformation. 

TEM studies on the different materials after ECAP have confirmed that the boundaries 

produced are mixtures of low, medium and high angle boundaries, and that material deformed 

to a given number of passes using route A exhibit a higher fraction of grain boundaries of 

somewhat higher misorientations than material deformed using route C. Figure 4 shows 

examples of typical boundary microstructures after four ECAP passes using route A (Fig. 4a) 

or route C (Fig. 4b). For the sample deformed using route A, the grain boundaries frequently 

show a fringe contrast characteristic of high angle boundaries whereas the sample produced 

using route C shows also some lower angle boundaries, still imaged as dislocations walls. It is 

not the intention of the present report to quantify further this assertion, for example presenting 

results of the spread of diffraction spots or Kikuchi line shifts in TEM diffraction, as has been 

presented elsewhere for different ECAP processed materials[4,10]. However, a quick 

assessment of a few tens of boundaries, examining Kikuchi lines on each side of a boundary, 

showed an average boundary misorientation of somewhat above 10º for the material of Fig. 4a 

deformed 4 passes using route A, and somewhat below 10º for material deformed instead using 

route C (Fig. 4b). Earlier reports comparing materials processed by route A and C [3,16] 

appear to come to similar conclusions, of route A leading to slightly faster increase of 

boundary misorientation, although the difference is not always large and may depend on alloy 

composition [3] and strain level considered [16]. 

Yield stresses of composites processed by ECAP in various ways and at various temperatures 

are shown in Figures 5 to 7. Fig. 5 compares the yield stress at room temperature as it varies 

with the number of passes for the same composite (reinforced with atomised TiAl particles) 

processed by the two different routes. For route A, the yield stress increases rapidly after the 

first ECAP passes but that it saturates and then slightly decreases after four passes. For route C, 

the increase in strength is less rapid and reaches a maximum after four passes, decreasing 

slightly between four and eight passes. The maximum yield stress achieved, independent of the 

route used, is about 75 % higher than that of extruded materials. This increase in strength is 
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accompanied by a reduction in tensile ductility from 12% in the extruded material to about 2-

3% for the materials processed by ECAP. This significant fall in ductility occurs after the first 

2-3 passes, corresponding roughly with the increase to a maximum of the yield stress. While 

there was no metallographic evidence of internal cracking or of debonding at the matrix-

reinforcement interface during ECAP, the large reduction of ductility after many ECAP passes 

raises doubts about the engineering utility of such heavily deformed composites, and may 

suggest that only materials strengthened to near the maximum yield stress by ECAP may be of 

further interest. 

Figure 6 shows the evolution of the high temperature yield stress with the number of ECAP 

passes for materials processed using route C. Fig. 6a shows data for composites reinforced with 

atomised particles and Fig. 6b compares these materials with composites containing milled 

particles. The general trend of yield stress with number of passes is similar at all temperatures 

and as seen in Fig. 5, namely an initial increase in yield stress for the first few passes, to a 

maximum, and then a slow fall in yield stress with additional passes. The exception to this 

generalisation is the behaviour on testing at 350ºC, where the extruded state is the strongest. 

This behaviour is the same as that observed on testing similar composites processed using 

route A [15]. Fig. 6b shows that the material containing the milled reinforcement particles has 

a higher yield stress than the composites containing atomised particles at all test temperatures, 

but that the total strain that could be accumulated during ECAP processing without cracking 

was lower (5 passes (strain 3.5) only compared to 8 passes (strain 5.6)). It was mentioned in 

the experimental section that tensile test data and compression data gave identical yield stresses 

and data would be shown together. The similarity of tension and compression yield stresses 

may be confirmed by examination of the mechanical data seen in Fig. 6, remembering that data 

corresponding to as-extruded material – no ECAP passes – and that processed to 4-5 and 8 

passes by ECAP are almost completely tensile test data, while material processed by ECAP to 

other strain levels were tested in compression. 

Figure 7 shows the evolution of yield stress with testing temperature for the reference extruded 

materials containing 25 and 50% reinforcement particles, together with the materials processed 

by ECAP using route C. Stress values obtained using route A instead are similar and are not 

included in this Figure to avoid confusion. For extruded materials tested at room temperature to 
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about 200ºC, an increase in the volume fraction of reinforcement from 25 to 50% produces 

only a slight (15%) increase in yield stress for atomised particles, slightly more (30%) for 

milled particles. Yield stresses of extruded material with 25% reinforcement are similar, 

independently of whether the particles are atomised or milled [14] and the latter data are not 

included in the present Figure. In contrast with these small strength gains, the increase in yield 

stress is much greater when the materials are processed by ECAP (75% increase in yield stress 

for composites with 25% volume fraction of atomised or milled particles). Although the 

reduction of particle size by milling strengthens the composite slightly, this is a small effect 

compared to the strengthening produced by matrix grain size refinement by the severe plastic 

deformation. It is also important to note that much of the strengthening achieved by ECAP is 

retained up to 200ºC. After deformation at that temperature, TEM observations, Figure 8, have 

confirmed that the microstructures were rather stable, with grain sizes changing only slightly 

(increasing from 800 nm to about 900 nm). These observations also showed that there were no 

oxide particles within the grains, thus confirming that the good retention of strength may be 

attributed to the stability of the fine grain structure. 

4. Discussion 

One of the most interesting aspects of the present study is the different grain size refinement 

achieved by severe plastic deformation depending on the ECAP route followed, with route A 

producing a greater reduction of grain size and faster strengthening. The deformation process 

is clearly different with slower dislocation accumulation in the aluminium matrix when using 

route C. This effect has been studied in Al-Mg alloys [16,17] where it was confirmed that the 

grain sizes were larger and the boundary misorientations lower when ECAP was carried out 

using route C. These authors explained this behaviour by the partial annihilation of 

dislocations that occurs with alternate passes, leading to a slower dislocation accumulation at 

the low angle boundaries which subdivide the original grains into smaller ones. As a 

consequence the subgrain structures produced have boundaries of slightly lower 

misorientation when route C is used. These results have been reconfirmed by our qualititative 

microstructural observations in the TEM (see Fig. 4) showing that, for the same number of 

ECAP passes (i.e. total accumulated strain), route A produces boundaries of slightly higher 
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average misorientation than processing by route C where boundaries are more frequently 

imaged as very low-angle dislocation walls still.  

At the same time, slower dislocation accumulation in the aluminium matrix of the present 

composites would lead to reduced stress concentrations at the matrix/reinforcement interface 

[15] which would produce less weakening at those interfaces. This could explain why the 

composites with atomised particle reinforcements can be processed up to eight ECAP passes 

before cracking using route C, whilst route A produced surface cracking after only four passes 

[15]. A similar effect occurs for composites containing the finer milled reinforcement 

particles, where route C could be continued to five passes but route A produced cracking after 

only two passes. In that case, the slower dislocation accumulation when using route C leads to 

only a small reduction of matrix grain size inside the smaller aluminium ligaments separating 

the closely-spaced reinforcement particles. 

The evolution of aluminium matrix hardness with number of ECAP passes, Fig. 3b, confirms 

a faster increase when grain size reduction is more rapid (as for route A). The highest 

hardness values were achieved, however, for materials processed to many ECAP passes, for 

which the grain sizes were not always the finest, compare Figs. 3a and b. This indicates that 

there are other contributions to strengthening of the aluminium matrix, in addition to grain 

size refinement. A recent study carried out on Al6082 alloy separated the different 

strengthening contributions produced by ECAP, and showed that a high density of 

dislocations was retained inside the matrix which led to a similar extent of strengthening as 

that produced by the decrease in grain size [18]. In a similar way we can consider that the 

higher strengthening seen for some of the composites with moderate matrix grain size, Fig. 3, 

can be due to the higher free dislocation density within the grains produced during the larger 

number of ECAP passes when using route C.  

A final aspect worth discussing is the large increase in yield stress of composites produced by 

severe plastic deformation, compared to that obtained by an increase in volume fraction or 

decrease in reinforcement size, Fig. 7. Since the reinforcement particles deform only 

elastically during tensile/compression testing, the large increase in yield stress measured for 

ECAP processed composites is due to the two hardening parameters described above, i.e. 

decrease in matrix grain size and increase in internal dislocation density. The faster decrease 
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of yield stress with increasing temperatures for ECAP processed materials can be associated 

with the recovery of this deformation microstructure. The small strength loss (comparing 

ECAP processed materials and the equivalent as-extruded materials in Fig. 7) measured for 

temperatures up to 200ºC can be understood as caused by the recovery of the mobile 

dislocation density while the grain size remains rather stable to such temperatures. At 

temperatures above 250ºC the combination of both dislocation recovery and grain growth 

leads to a faster decrease in the strength of deformation-processed composites. 

  

5. Conclusions 

The evolution of microstructure of extruded Al-based composites reinforced with TiAl 

intermetallic particles has been examined when processing by equal channel angular pressing. 

Extruded materials exhibit a homogeneous distribution of reinforcement particles and good 

cohesion at the particle/matrix interfaces. Neither particle size and distribution nor interface 

cohesion are modified by ECAP processing. ECAP reduces the matrix grain size to about 500 

nm when using route A and to about 750 nm when using route C, values much smaller than 

the grain sizes after extrusion. 

The smaller extent of grain size refinement occurring when using route C, even after 

deforming to larger strain levels (strain of 5.6 for route C as compared with a strain of 2.8 for 

route A), has been attributed to the partial dislocation annihilation that occurs between 

alternate ECAP passes, slowing the rate of dislocation accumulation at low angle boundaries 

and, as a consequence, decreasing the rate of grain size refinement. 

The hardness increase measured in the aluminium matrix during ECAP cannot be explained in 

terms of grain size reduction alone, and a significant contribution is attributed to the presence 

of mobile dislocations inside the grains produced by the severe deformation. 

ECAP leads to a substantial increase (up to 75%) of the yield stress of the composites with 

increasing number of processing passes, being more rapid when route A is used. However, 

maximum strengthening is achieved after two to four passes in all cases. The strength increase 

due to ECAP is much larger than that obtained by increasing the volume fraction of 

reinforcement particles (from 25% to 50%) in extruded materials. 
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Figure 1. Particle distributions and ultrafine grain structures observed by SEM, using back-

scattered electron contrast, of ECAP-processed composites containing 25% reinforcement: (a) 

and (b) material reinforced with atomised particles, after six passes; (c) and (d) material with 

milled reinforcement particles, after three passes. 

 

Figure 2. Aluminium matrix microstructure after severe deformation using route C: (a) 

material reinforced with atomised particles, after eight passes (b) material containing milled 

reinforcement particles, after five passes. 
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 Figure 3. Evolution of grain size (a) and hardness (b) with number of ECAP passes 

depending of the route used (A and C) or the type of material. at.= atomised reinforcement; 

m5h= reinforcement particles obtained by milling for 5 h 

  

Figure 4. Microstructures observed by TEM of the aluminium matrix of composites 

reinforced with atomised particles, after four ECAP passes: (a) using route A produces higher 

angle boundaries characterised by fringe contrast; (b) using route C produces slightly lower 

angle boundaries, sometimes seen as dislocation walls (marked by arrows). 
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Figure 5. Evolution of room temperature yield stress with number of ECAP passes using two 

different routes in the material reinforced with 25% of atomised TiAl particles. 

 

Figure 6. Evolution of yield stress,  measured at both room temperature and several elevated 

temperatures, with number of ECAP passes using route C: (a) reinforced with atomised 

particles; (b) comparison of composites containing atomised (at) or milled (m5h) TiAl 

reinforcements. Test temperature is indicated. Materials in the as-extruded state (no ECAP 

passes), after 4-5 passes, and after 8 passes were tested in tension, while remaining materials 

were tested in compression. 
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Figure 7. Variation of yield stress with test temperature for composites processed: as extruded 

reference state (ext); processed by ECAP (E) using route C to different passes (e.g. E6, E8); 

materials contained either 25% or 50% volume fraction of reinforcement TiAl particles, 

present either in the atomised state (at.) or after milling for 5h (m5h). 

Figure 8. TEM microstructure observed after deformation at 200ºC of composite processed by 

six ECAP passes using route C. Note the absence of oxide particles inside the grain. 
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