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ABSTRACT 15 

The aim of the present work was to evaluate with different statistical criteria the suitability of 16 

nine equations for describing and optimizing the simultaneous effect of temperature and pH on 17 

glucanex activity using two characteristic polysaccharides (curdlan and laminarin) as substrates. 18 

The most satisfactory solutions were found with an empirical equation constituted with 19 

parameters of practical interest (Rosso model), and a hybrid model between the Arrhenius 20 

equation and the mathematical expression generated by the protonation-hydroxylation 21 

mechanism (Tijskens model). The joint optimal values of pH and temperature calculated with the 22 

Rosso model were obtained at 4.64 and 50ºC with curdlan and 4.64 and 48ºC using laminarin as 23 

substrate.  24 

 25 

Keywords: glucanex, enzymatic activity, curdlan, laminarin, mathematical modelling, pH and 26 

temperature effects. 27 

 28 

1. INTRODUCTION 29 

Describing the combined effect of temperature and pH on the enzymatic reaction rate is a 30 

frequent problem that is not always solved satisfactorily. When they are studied independently, 31 

the two variables produce well-known rate profiles that increase to a maximum point which is 32 

then followed by a drop in activity.1,2,3 The results from experiments repeatedly demonstrate that 33 

the profiles obtained for the independent variables are linked to each other, generally in a non-34 

additive interaction.1,2,3 The correct modeling of these experimental profiles is especially 35 

important when a rigorous and predictive quantification of the maximum enzymatic activity, and 36 

minimum, optimum and maximum pH and temperature values are necessary, for example, in the 37 

case of an enzyme reactor that is controlled by software. 38 

 39 
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The Arrhenius model provides a possible resource for modelling temperature when it is applied 40 

to the three rates involved in the process: the substrate transformation rate and the enzyme 41 

denaturation rate at high and low temperatures. This approach was used to describe the 42 

metabolism of poikilotherm organisms in which the restrictive factor of the rate is defined by 43 

only one enzyme.4,5 The equation obtained was later reformed by Schoolfield et al.6 who inserted 44 

a reference rate at a pre-established temperature and redefined the parameters (six in both 45 

mathematical expressions) in order to reduce the correlation among them. In spite of the formal 46 

basis of this last approach, the empirical equation proposed by different authors7,8,9 and modified 47 

by Zwietering et al.10 generated the best fits (with only four parameters) when several 48 

mathematical models for assessing the effect of temperature on the bacterial growth of 49 

Lactobacillus plantarum on a conventional culture medium MRS were compared.10 The same 50 

model led to satisfactory fits for describing Salmonella growth on soudjouk-style fermented 51 

semi-dry sausage.11 In enzyme kinetics, the Arrhenius equation has been used extensively to 52 

model the effect of temperature on the increase in reaction rate,12,13,14 on the deactivation 53 

constant15,16 and on the thermal stability of enzymes.17,18 54 

 55 

The requirements for modelling pH are similar or larger than those defined by the Arrhenius 56 

equation for temperature. The most formal description is based on an acid-base dissociation 57 

mechanism.1,2,3 The use of this resource provides good fit results as well as parameters with a 58 

clear physical meaning and in some cases for defining the optimal intervals of enzyme activity. 59 

 60 

Glucanex is a multicomponent enzyme preparation consisting of several isoenzymes that contain 61 

β-1,3 glucanase activity,19 that is used commonly for hydrolyzing the oligosaccharides from 62 

yeast cell walls in order to obtain -glucans,20 to control wine spoilage yeasts, protoplast 63 

preparation and as a biocontrol agent against plant pathogenic fungi.21,22,23 Nevertheless, there 64 

are no studies describing the kinetic characteristics of this enzyme, such as the combined effect 65 
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of temperature and pH on glucanex activity, and there are no data on the optimum temperature 66 

and pH in the literature. 67 

 68 

The aim of the present work was to evaluate and compare the suitability of nine equations for 69 

describing the combined effect of pH and temperature on the catalytic activity of a commercial 70 

glucanolytic preparation (glucanex) in the hydrolysis of two gluco-polysaccharides substrates: 71 

curdlan (β(1→3)) and laminarin (β(1→3):β(1→6) ratio of 3:1). 72 

 73 

2. MATERIALS AND METHODS 74 

2.1. Chemicals 75 

Both substrates, laminarin from Laminaria digitata and curdlan from Alcaligenes faecalis were 76 

provided by Sigma (St. Louis, MO, USA). Glucanex® 200G was obtained from Novozymes 77 

Corp (Copenhagen, Denmark). Other reagents used in enzymatic assays were of analytical grade 78 

and purchased from Sigma.  79 

 80 

2.2. Methodology for measuring the enzyme activity of Glucanex® 200G 81 

Two different substrates (curdlan and laminarin) were dissolved in 0.02M citric/phosphate buffer 82 

at varius pHs. The enzyme activity was tested by placing 0.4 mL of the substrate solution, at the 83 

required pH for the analysis, into a 30 mL tube (in duplicate) with a teflon cap. The tubes were 84 

then put into a controlled thermostatic water bath with continuous mild agitation. After reaching 85 

the bath temperature, 0.1 mL of a fresh enzyme solution (0.005 M citric/phosphate buffer for 86 

each pH assay) of Glucanex® 200G (the concentration varied) was added, and thus 2.5 mg/L of 87 

substrate was obtained in the final reaction solution. The reaction was ended when the analytical 88 

time (varied) finished by adding 0.5 mL of 3,5-dinitrosalicylic acid (DNS). The enzyme activity 89 

was measured by determining the sugars released by the reaction with DNS using glucose as the 90 

substrate.23  91 
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 92 

2.3. Preliminary assays for establishing the initial conditions 93 

In order to determine the proper conditions for evaluating the joint effect of temperature and pH 94 

on the enzymatic activity, initial experiments were carried out to establish: a) an appropriate 95 

range for the temperature and pH; b) a suitable ratio between the substrate and enzyme 96 

(Glucanex® 200G); and c) an analytical time in which the product formation rate would continue 97 

to show a linear profile. 98 

 99 

2.3.1. The temperature and pH range 100 

The appropriate pH and temperature ranges were obtained by studying the two variables 101 

separately (with a constant pH of 4.5 for the temperature assays,  and at 45ºC for the pH assays) 102 

with curdlan as the substrate, an analytical time of 20 min and an enzyme-substrate ratio of 3:10 103 

(750 μg/L). The maximum enzyme activity was obtained at 45 ºC and pH 4.5 (Figure 1a). The 104 

final range selection for pH (3.5 to 6) and temperature (32 to 60 ºC) were chosen around the 105 

individual optima where the product conversion reaches 50% (see experimental points included 106 

into the selected range box, Figure 1a). The experimental data were expressed as the percentage 107 

of the maximum concentration of the product formed (RS). 108 

 109 

2.3.2. The substrate and enzyme ratio 110 

The suitable substrate/enzyme ratio was selected by carrying out a kinetic assay, measuring the 111 

enzyme activity with different enzyme concentrations (from 0 to 1000 μg/L) at pH 4.5 and 45ºC 112 

with a constant curdlan concentration of 2.5 mg/L in the final solution. The experimental results 113 

are shown in Figure 1b together with the profiles obtained by fitting the data to a first-order 114 

kinetic model:  115 

 116 

 1 t
EzA K e    [1] 117 



6 

 118 

where AEz as the enzymatic activity of glucanex (mg/L of RS released), t is the time of hydrolysis 119 

(min), K is the asymptotic product formation (mg/L) obtained and  is the specific RS 120 

production rate (min-1). In the case of Glucanex, due to the absence of saturation, the value of K 121 

it is equal to the maximum possible product conversion (2.5 mg/L) for all enzymatic 122 

concentrations tested except for the case when no enzyme is present. The parameter  increases 123 

as the enzyme concentration increases. 124 

 125 

Finally, Figure 1c shows the nonlinear relation between the specific rate  and the enzyme 126 

concentration along with the fit to a similar mathematical expression [1], allowing us to analyse 127 

its derivative and to obtain the optimum value for the enzyme-substrate ratio. The ideal 128 

concentration was found to be approximately 250 g of glucanex/L (a ratio of 1:10) and this 129 

value was maintained for all subsequent experiments. 130 

 131 

2.3.3. The optimum analytical time 132 

The results obtained for the initial times (<1 h) are plotted in Figure 1d. A linear correlation 133 

between the product formed and reaction time was observed for all enzyme concentrations over 134 

the initial 30 minutes. An analytical time of 15 min was chosen in order to ensure the linearity of 135 

product formation (mg/L) throughout the experiment. This time choice also avoids enzyme 136 

denaturation, shortens the time of the assay, and produces enough reducing sugars for accurate 137 

quantification. 138 

 139 

2.4. Combined effect of pH and temperature on glucanex activity 140 

The combined effect on glucanex activity (GA) was measured at several pHs (from 3.5 to 6 in 141 

steps of 0.5) and at different incubation temperatures (from 32 to 60°C with different interval 142 

steps for each substrate) with curdlan and laminarin as substrates. The enzyme activity (with 143 
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0.02M citric/phosphate buffer) was tested following the procedure described above using the 144 

conditions previously selected: an analytical time of 15 min and enzyme/substrate ratio of 1:10 145 

(250 μg/L) in the final solution. The experimental data were expressed as a percentage of the 146 

maximum concentration obtained for each substrate. 147 

 148 

2.5. Fitting procedure and common statistical values 149 

Fitting procedures and parametric estimates from the experimental results were performed by 150 

minimizing the sum of quadratic differences between the observed and model-predicted values, 151 

using the nonlinear least-squares (quasi-Newton) method provided by the macro ‘Solver’ of the 152 

Microsoft Excel XP spreadsheet. The confidence intervals from the parametric estimates 153 

(Student’s t test) and the goodness of fit and consistency of the mathematical models (Fisher’s F 154 

test) were determined using DataFit 9.0.59 (Oakdale Engineering, Oakdale, PA, USA). 155 

 156 

2.6. Criteria used to assess the selection of the best model  157 

2.6.1. Criteria based on model selection criteria (MSC) 158 

In the present work, the AICc, BIC, RIC, Cp, R2
adj, FPE and MSC criteria (Table 1) were 159 

directly obtained using an Excel spreadsheet. The leave one out cross-validation (LOO-CV) 160 

procedure and Monte Carlo cross-validation (MCCV) were obtained with an Excel spreadsheet 161 

using the Excel add-in Solverstat macro. This selected group is a combination of different criteria 162 

that can discriminate between the models based on their goodness of fit, complexity, overfitting 163 

and generalizability. 164 

2.6.2. Additional statistical criteria 165 

Additional criteria based on the following features were used to evaluate the mathematical 166 

models: a) the residual distribution; b) the number of non-significant (NS) parameters (= 0.05); 167 

c) the number of parameters with biological or physical meaning. 168 

 169 
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3. RESULTS AND DISCUSSION 170 

3.1. Mathematical models describing the combined effect of temperature and pH on GA 171 

We reviewed and studied the appropriateness of nine models from the literature for predicting 172 

GA under different pH and temperature conditions. Those equations have different origins and 173 

mathematical structure and can be classified as: a) regular models with empirical forms 174 

(polynomials) whose parameters do not have any physical meaning; b) models useful and widely 175 

in other fields of knowledge (i.e., microbial growth) for similar purpose; c) structured models 176 

developed to study the combined effect of temperature and pH on enzymatic reactions. 177 

 178 

3.1.1. Regular models 179 

Model 1: The simplest approach for describing the joint effect of temperature and pH is defined 180 

by a quadratic polynomial with a multiplicative term that combines the action of the two 181 

independent variables on the response (enzymatic activity). This resource has been applied, for 182 

example, to study amylase,1 chitinase33 and 1,3-glucanase34 activity. When r is the enzymatic 183 

activity, the mathematical function is as follows: 184 

 185 

2 2
0 1 2 12 11 22r b bT b pH b TpH b T b pH       [2] 186 

 187 

Model 2: The previous equation [2] defines a parabolic surface that can acceptably approach the 188 

response in a nearby environment to its maximum value. Thus, the following equation [3] could 189 

represent a useful resource for determining the temperature and pH values that maximize the 190 

activity. However, the response is generally asymmetric, and thus better fits are obtained by 191 

adding two more terms to [2]: 192 

 193 

2 2 2 2
0 1 2 12 11 22 112 122r b bT b pH b TpH b T b pH b T pH b TpH         [3] 194 

 195 
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3.1.2. Models used in other fields of knowledge 196 

Model 3: If the objective is to describe a profile with an asymmetric dome form, a function with 197 

bias towards the right side (i.e., with an abrupt drop when X  0 and gentle drop when X  ) 198 

is: 199 

 200 

 expnr aX bX    [4] 201 

 202 

When n = 1, the equation represents a classic model of the population dynamics that describes 203 

with basic principles the effect of intraspecific competition on reproductive success.35 The 204 

arbitrary resource of allowing n values that are different from 1 makes the profile of the 205 

mathematical function more versatile.  206 

 207 

Equation [4] was used by Murado et al.36 to describe the production of amylases in solid-state 208 

cultures by Aspergillus oryzae as a function of the saturation of the support in the liquid phase. 209 

The same authors found that the results obtained by Lindenfelser and Ciegler,37 relative to the 210 

effect of the humidity percentage in ochratoxin A production with Aspergillus ochraceus using 211 

solid-state fermentation on wheat grains, were satisfactorily fitted to equation [4]. 212 

 213 

The bivariate model applied to the activity is the multiplication of two equations [4]: 214 

 215 

 1 2
3 4expn nr aT pH b T b pH    [5] 216 

 217 

However, since equation [4] defines a curve with an initial null ordinate, to use equation [5] in 218 

our context we need to modify the origin by introducing two parameters (T0 and pH0) that 219 

represent the T and pH values that make the activity null: 220 

 221 
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       1 2

0 0 3 0 4 0exp
n n

r a T T pH pH b T T b pH pH          [6] 222 

 223 

Model 4: The effect of temperature on the rate of nucleotide decomposition (r) in cold-stored 224 

carp muscle was described by Ohta and Hirabara38 with the empirical relation: r1/2 = 0.065T + 225 

0.518, which8 is generalized as:  226 

 227 

 1 2
0r c T T   [7] 228 

 229 

It was applied to bacterial growth in a range of temperatures (in K) that covers a range from the 230 

minimum temperature (T0) when the growth rate is null to the maximum temperature of growth. 231 

 232 

Later on, the equation was reformed7 to expand its descriptive capacity to any temperature, and 233 

took on the following mathematical form: 234 

 235 

    1 2
min 1 max1 expr c T T a T T       [8] 236 

 237 

where Tmin (with the same meaning as T0 in equation [7]) and Tmax represent the limits of the 238 

temperature range beyond which the growth rate is null. Indeed, the exponential term becomes 239 

nil when Tmax >> T (so that equation [8] can be simplified to equation [7]) and increases when T 240 

is close to Tmax, so that r decreases from a certain T value and tends to zero when T = Tmax. 241 

 242 

In a subsequent modification, Pronk et al.10 proposed the equation: 243 

 244 

    2

min 1 max1 expr c T T a T T       [9] 245 

 246 
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This equation differs from [6] because the decrease in r from a maximum is due to an 247 

exponential function instead of its square. In both cases, equations [8] and [9] produce more 248 

versatile profiles than [4], with the possibility of obtaining biases to the left or right. 249 

 250 

The inclusion of the pH in this model can be done by multiplying [9] by a polynomial equation 251 

formulated with this variable:  252 

 253 

     2 2
min 1 max 0 1 21 expr c T T a T T c c pH c pH         [10] 254 

 255 

Model 5: Another option would be to accept that the relationship between the pH and the 256 

enzymatic activity leads to a function with the same structure as that used for the temperature. 257 

Thus, the combined response could be described by multiplying the two effects: 258 

 259 

        2 2

min 1 max min 2 max1 exp 1 expr c T T a T T pH pH a pH pH              [11] 260 

 261 

Model 6: Initially, the Rosso equation was used to describe the joint effect of temperature and 262 

pH on microbial growth,39 but it can also be used in other fields, such as enzyme kinetics. It 263 

establishes the enzymatic activity (r) as a dependent variable: 264 

 265 

     
       

2

2

 


        

min max

opt min opt min opt opt max opt min

T T T T
f T

T T T T T T T T T T T
  266 

 267 

    
    2

 

      

min max

min max opt

pH pH pH pH
f pH

pH pH pH pH pH pH
  268 

 269 
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   mr r f T f pH   [12] 270 

 271 

where r is the enzymatic activity, rm is the maximum enzymatic activity, T is the temperature 272 

(°C), Tmin is the temperature below which no activity occurs, Tmax is the temperature above which 273 

no enzymatic activity occurs, Topt is the temperature at which the enzyme activity is optimal, 274 

pHmin is the pH below which no catalytic activity occurs, pHmax is the pH above which no 275 

activity occurs, and pHopt is the pH at which the enzyme activity is optimal. 276 

 277 

Model 7: The accumulated function of the Weibull distribution is a very versatile resource when 278 

a symmetric sigmoid or parabolic profiles do not need to be simulated.40 It has been successfully 279 

used in diverse experimental fields such as the study of biotoxins41 and the antioxidant capacity 280 

of different compounds.42 Its mathematical expression, in the case of defining the combined 281 

effect of temperature and pH on GA, can be written as: 282 

 283 

1 1

exp exp
T T pH pH

r k
q q p p

  

 

           
           

            
 [13] 284 

 285 

where r is the enzymatic activity, k, , q,  and p are empirically determined parameters, and T is 286 

the temperature (ºC). 287 

 288 

3.1.3. Structured models  289 

Model 8: The model proposed by Sharpe et al.4 is based on a combination of three Arrhenius 290 

equations:  291 

 292 
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exp

1 exp exp

r
r

a b
a b

E
k

RT
r

E E
k k

RT RT

 
 
 

        
   

 [14] 293 

 294 

where T is the temperature (K), R is the ideal gas constant (8.314 J mol–1 K–1), and the meaning 295 

of the parameters is defined by the Arrhenius model for each reaction considered: 1) substrate 296 

transformation (represented by subindex r), and 2) the reversible enzyme deactivations at high 297 

(subindex a) and low (subindex b) temperatures. Thus, ki is the pre-exponential terms and Ei the 298 

activation energies (J mol–1). 299 

 300 

The reformulation used by Schoolfield et al.6 is: 301 

 302 

1 1
exp

1 1 1 1
1 exp exp

r
r

r r

a b

a b

HT
r

T R T T
r

H H

R T T R T T

  
  

  
      

         
      

 [15] 303 

 304 

involving the enzymatic activity rr to a reference temperature Tr (319 K), the substitution of 305 

activation energies by the enthalpies Hi and the introduction of temperatures Ta and Tb that 306 

determine, for excess and defect, respectively, the 50% drop in enzymatic activity.  As in 307 

equation [9], the profile can be biased to the left or right. 308 

 309 

The effect of pH could also be included by multiplying equation [15] and a quadratic polynomial 310 

as follows:  311 

 312 
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 2
0 1 2

1 1
exp

1 1 1 1
1 exp exp

r
r

r r

a b

a b

HT
r

T R T T
r c c pH c pH

H H

R T T R T T

  
  

    
      

         
      

 [16] 313 

 314 

Model 9: The only theoretical approach developed for fitting the joint effect of temperature and 315 

pH on enzymatic activity was proposed by Tijskens et al.3 in order to study this effect in phytase, 316 

peroxidase and lipase catalysis.43 This equation combines the Arrhenius model that explains the 317 

temperature effect with an acid-base dissociation reaction for the pH effect:  318 

 319 

1 1 1 1
exp exp exp

1
1





       
         

        
 

s d
m sr dr

r r

w

EH EOH

E E
r k k t

R T T R T T
r

KH
K K H

  [17] 320 

 321 

where r is the enzymatic activity, rm is the maximum enzymatic activity, which was maintained 322 

constant at a value of 100, t is the reaction time (10 min), T is the temperature (K), Tr is the 323 

reference temperature (313 K), ksr is the specific reference rate for the enzymatic process (min-1), 324 

kdr is the specific reference rate for the deactivation enzymatic process (min-1), Ed is the 325 

activation energy for the catalytic process (J mol–1), Es is the deactivation energy for the catalytic 326 

process (J mol–1), R is the ideal gas constant (8.314 J mol–1 K–1), H+ is the pH value with the 327 

expression H+=10-pH, Kw is the water dissociation constant, and KEH and KEOH are the equilibrium 328 

constants of the protonation and hydroxylation reactions respectively. 329 

 330 

The combined effects of pH and temperature on GA using laminarin and curdlan as substrates 331 

are displayed in Figure 2 and Figure A (Supplemental Material), respectively.  In both cases, the 332 

experimental domains ranged from 32 to 60ºC and from 3.5 to 6.0 for pH. In these figures the 333 

experimental data were fitted to the equations specified on the top of the graphs. The parametric 334 
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estimates and corresponding confidence intervals of the proposed equations are summarized in 335 

Table 2. In all cases for both substrates, the fitting of experimental data to equations (Fratio>45, 336 

p<0.005) was statistically satisfactory and consistent (data not shown).  337 

 338 

3.2. Model selection by statistical criteria 339 

Since there are many models able to fit the combined effects of T and pH reasonably well for the 340 

data presented, a selection process was carried out to determine the model that best predicts the 341 

joint effect of the two variables in the interval studied. In order to assist us with selecting the best 342 

model, we used different statistical criteria to evaluate the multivariable fit and explanatory 343 

appropriateness of the equations. 344 

 345 

3.2.1. Model selection criteria (MSC)  346 

The usefulness of MSC to compare a group of possible models is well-documented.44 A model 347 

should be complex enough to extract the regularities in data, but simple enough not to overfit it 348 

and thereby reduce predictiveness. MSC adjust the goodness of fit in order to penalize model 349 

complexity, overfitting and lack of generalizability. Currently, there are a variety of MSC 350 

available,26,45 but there is no one criterion that can lead to a perfect choice.46 A summary of the 351 

MSC used to evaluate the results obtained for the nine models with curdlan and laminarin as 352 

substrates is shown in Table 1. 353 

 354 

Table 3 shows the model rank (Rk) obtained for each MSC and the final ranking (RkF) based on 355 

the ranking sum of each MSC (∑Rk) for the two substrates. With curdlan, equation [3] was the 356 

best model with respect to the sum of all MSC, followed by equations [12], [13], [11] and [17]. 357 

In the case of laminarin, equation [16] was the best model with respect to the sum of all MSC, 358 

followed by equations [17], [12], [11] and [10]. When the sum of the model rank (Rk) for the 359 
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two substrates is applied, equation [12] followed by [17] and [16] are the models most likely to 360 

be correct. 361 

 362 

3.2.2. Additional statistical criteria 363 

The residuals should be randomly scattered around zero to avoid autocorrelation.47 These 364 

residuals should not be grouped and should not increase or decrease as a function of the 365 

independent variable. In general terms all the models used showed a relatively good distribution 366 

of the residuals, and autocorrelation was not observed with the Durbin-Watson test (data not 367 

shown).  368 

 369 

The confidence intervals at a level of 95% for each parameter are reported in Table 2. The 370 

parametric estimates in many cases led to large confidence intervals, and therefore these 371 

parameters were considered not significant. For example, in equation [6] only one parameter (b3) 372 

was significant. In equations [10] and [11] the most important coefficients with physical 373 

meaning (Tmax, Tmin, pHmax) were significant. Equation [16] has good fitting levels in both cases 374 

(the best fit was when laminarin was used); however; just three out of the nine parameters were 375 

significant.  376 

 377 

Only in equations [12] and [13] were all the parameters statistically significant. In equation [16], 378 

the parameters Kdr and Ksr showed confidence levels below 95% in both cases (laminarin and 379 

curdlan). As explained by Tijskens et al.3, fitting should be carried out in two steps: first, obtain 380 

the parameters Kdr, Ed, Ksr and Es; and second, adjust the other two parameters (KEH and KEOH) 381 

separately. When these indications are followed all the parameters are significant (= 0.05). 382 

Conversely, when the fitting procedure is applied in one single step, as we reported here, the 383 

parameters Kdr and Ksr are not statistically significant. 384 

 385 
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Finally, many parameters from equations [2], [3], [6] and [13] do not have a biological or simple 386 

physical meaning, and therefore these equations are not very appropriate for describing 387 

enzymatic activity. Equations [10] and [11] have a small number of interpretable parameters. 388 

Only in equations [12] and [17] do all the parameters have physical meaning. In equation [17], 389 

additional values for pHopt, pHmin and pHmax can be calculated from the parameters obtained. 390 

However, equation [12] seems to be more convenient (from an industrial point of view) because 391 

its parameters that describe the limits and optimal conditions of pH and T as well as the 392 

maximum amount of product released are easily interpreted. Many authors have also emphasized 393 

that the applied models should have a clear meaning and use the minimum number of parameters 394 

that can be successfully employed for biological optimizations and descriptions.39,48 395 

 396 

3.3. Model selection and application 397 

The combination of the above mentioned criteria indicated that equations [12] and [17] are 398 

suitable for predicting the join effect of temperature and pH on GA with both substrates. In the 399 

case of curdlan, equation [12] seems to be more accurate than [17]; however, with laminarin, 400 

equation [17] was the best model for predicting the experimental data. These models can be used 401 

to determine a set of parameters with geometric and physical meaning that describe completely 402 

the joint effect of pH and T on the enzyme activity.  403 

 404 

3.3.1. Application when curdlan is used as substrate 405 

Figure 3 shows the interactive effects of pH and temperature on GA using curdlan as a substrate. 406 

Experimental data were fitted to equation [12], which showed that a joint maximum is achieved 407 

from 46 to 53ºC and in the pH range 4.5 to 5.0.  408 

 409 

Practical and operative descriptions of the limits and optimal glucanex activity can be established 410 

using the numerical values of the biologically meaningful parameters from equation [12] (Table 411 
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2). Thus, the joint optimal pH (pHopt) and temperature (Topt) for GA was 4.64±0.22 and 412 

50.48±1.38°C, respectively, using curdlan as substrate. Both values were in agreement with the 413 

results obtained by49 using 1,3-glucanase from Trichoderma harziaum, but studying one factor at 414 

a time. Other interesting parameters obtained from equation [16] were the maximum temperature 415 

(Tmax) and pH (pHmax) and minimum temperature (Tmin) and pH (pHmin) for enzymatic activity. 416 

The values for glucanex with curdlan were 65.55±2.29°C, 6.83±0.51, 22.96±4.63°C and 417 

2.88±0.42 respectively. 418 

  419 

3.3.2. Application when laminarin is used as substrate 420 

The experimental data and the simulated profiles fitted to equation [17] are shown in Figure B 421 

(Supplementary Material). The optimal activity was found at 47.58±0.70°C for T and 4.64±0.11 422 

for pH. Using a conventional study of one factor at a time with laminarin, other authors 423 

established the optimal pH and T conditions for an exo--1,3-glucanase from Trichoderma 424 

asperelhum as 5.1 and 55ºC, respectively [35]. 425 

 426 

The large number of runs in the residual plot indicates that there is no clustering in the 427 

distribution in certain zones, which suggests that this distribution is random and that the equation 428 

estimated all datasets perfectly (avoiding under or overestimations) (see Figure B, Supplemental 429 

Material). 430 

 431 

4. CONCLUSIONS 432 

The results of the comparison of several mathematical models for describing the experimental 433 

profiles of the combined effect of pH and temperature on glucanex activity highlighted the fitting 434 

and description capacities of the Rosso [12] and Tijskens [17] equations. The two models were 435 

used separately to obtain a set of parameters, based on first principles or with clear geometric 436 

and physical meaning, which described the GA characteristics completely. 437 
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FIGURE CAPTIONS 444 
 445 
Figure 1: Determination of the optimal conditions for enzyme assay in order to evaluate the 446 
combined effect of temperature and pH on GA: a) selection of pH and T intervals; b) kinetics 447 
data obtained at different enzyme concentrations (0 , 15 , 30 , 75 , 150 , 250 , 500 448 
, 1000  μg/L) and adjusted to the equation (1); c) values of specific rate of RS produced () 449 
for each glucanex concentration; d) selection of the analytical time in the linear section of the 450 
initial rates. 451 
 452 
Figure 2: Response surfaces of the combined effect of temperature and pH on GA (%) with 453 
laminarin as substrate. Fit of the experimental results () according to the equations defined in 454 
the text. 455 
 456 
Figure 3: Combined effect of temperature and pH on GA (%) with curdlan as substrate. A: 2D 457 
representation of pH and T effects. Fit of the experimental results () according to the equation 458 
(12) (continuous line). B: correlation between expected and observed data and plots of residuals 459 
(%) in relation with pH, T and GA. C: 3D representation of pH and T effects on GA. Fit of the 460 
experimental results () according to the equation (12) (response surface). 461 
 462 
Supplemental Figure A: Response surfaces of the combined effect of temperature and pH on 463 
GA (%) with curdlan as substrate. Fit of the experimental results () according to the equations 464 
defined. 465 
 466 
Supplemental Figure B: Combined effect of temperature and pH on GA (%) with laminarin as 467 
substrate. A: 2D representation of pH and T effects. Fit of the experimental results () 468 
according to the equation (17) (continuous line). B: correlation between expected and observed 469 
data and plots of residuals (%) in relation with pH, T and GA. C: 3D representation of pH and T 470 
effects on GA. Fit of the experimental results () according to the equation (17) (response 471 
surface). 472 
 473 

474 
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 475 
TABLE CAPTIONS 476 
 477 
Table 1: Different model selection criteria (MSC) used to compare the nine models reviewed 478 
from the bibliography to predict the joint effect of pH and T. n: number of independent 479 
measurements considered in the fit. k: number of fitted parameters. RSS: residual sum of squares. 480 
ESS: explained sum of squares. 481 
 482 
Table 2: Parametric estimates and confidence intervals obtained from the equations used in the 483 
evaluation of the joint effect of pH and temperature on the glucanex activity with curdlan (A) 484 
and laminarin (B) as substrate. CI: confidence intervals were evaluated by t-Student test 485 
(=0.05). NS: non significant. ** Further interesting values calculated from the parameters of 486 
equation (17). 487 
 488 
Table 3: Model ranking (Rk) obtained for each MSC and the final ranking (RkF) based on the 489 
total ranking average (∑Rk) for the two substrates. 490 
 491 

492 
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TABLES 
 

    

Table 1: Different model selection criteria (MSC) used to compare the nine models reviewed from the
bibliography to predict the joint effect of pH and T. n: number of independent measurements considered in the
fit. k: number of fitted parameters. RSS: residual sum of squares. ESS: explained sum of squares. 

    

    

Criterion Key Claim Formula 
    

    

Akaike Information Criterion Corrected23,24 AICc 
complexity 
(efficient) 

 2 1
ln

2

           
C

kRSS
AIC n

n n k  
    

    

Bayesan Information Criterion25 BIC  
complexity 
(consistent) 

   ln ln BIC n RSS n k  
    

    

Akaike's Final Prediction Error24 FPE complexity 
 

 





RSS n k
FPE n

n k
 

    

    

Mallows' Cp23,24 Cp 
goodness of fit / 

overfitting 
 / 1 2     PC n RSS ESS n n k  

    

    

Adjusted Coefficient of Determination24 R2adj 
goodness of fit / 

complexity 
  2

2 1

1

 


 adj

n R k
R

n k
 

    

    

Residual Information Criterion24 RIC 
goodness of fit / 

overfitting 
      4

ln ln 1
2

        
RIC n k RSS k n

n k
 

    

    

Model Selection Criterion26 MSC goodness of fit 
2

ln    
 

ESS k
MSC
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Leave One Out Cross-Validation26,27,28,29 LOO-CV generalizability -- 
    

    

Monte Carlo Cross-Validation27,28,30 MCCV 
generalizability / 

overfitting -- 
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Table 2: Parametric estimates and confidence intervals obtained from the equations used in the evaluation of the joint 
effect of pH and temperature on GA with curdlan (A) and laminarin (B) as substrate. CI: confidence intervals were 
evaluated by t-Student test (=0.05). NS: non significant. 

        

    

A) PARAMETERS OBTAINED WITH CURDLAN AS SUBSTRATE 
          

          

Equations b00 b12 b1 b11 b2 b22 b221 b112 -- 
____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________

(2) -856±164 -0.186 (NS) 181±53 -18.37±5.22 21.42±4.10 -0.21±0.04 -- -- -- 
          

(3) 116.2 (NS) 9.01±4.42 -240±170 25.90±16.64 0.146 (NS) -0.21±0.15 -0.0006 (NS) -0.96±0.35  
          

 a T0 n1 pH0 n2 b3 b4 -- -- 
____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________

(6) 6x10-6 (NS) 17.17 (NS) 6.54 (NS) 17.17 (NS) 6.31 (NS) 0.210±0.207 2.06 (NS) -- -- 
          

 Tmax Tmin c a1 c0 c1 c2 -- -- 
____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________

(10) 65.12±2.25 21.97±4.98 22.20 (NS) 0.0003 (NS) -5.92 (NS) 3.05 (NS) -0.32 (NS)  -- 
          

 Tmax Tmin pHmax pHmin c a1 a2 -- -- 
____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________

(11) 65.11±2.45 21.98±5.42 6.52±0.36 1.26 (NS) 40.68 (NS) 0.0001 (NS) 0.083 (NS) -- -- 
          

 Tmax Tmin pHmax pHmin rm Topt pHopt -- -- 
____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________

(12) 65.55±2.29 22.96±4.63 6.83±0.51 2.88±0.42 101.76±6.55 50.48±1.38 4.64±0.22 -- -- 
          

 k  q β p -- -- -- -- 
____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________

(13) 8445±758 5.32±0.40 52.35±0.70 4.33±0.45 5.04±0.09 -- -- -- -- 
          

 c0 c1 c2 rr Hr Ta Ha Tb Hb 
____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________

(16) -5.71 (NS) 2.950 (NS) -0.313 (NS) 1.189 (NS) -17.37 (NS) 334.0±46.6 687.7 (NS) 311.9±41 -177 (NS) 
          

 Es Ed pHmax** pHmin** KEH KEOH pHopt** ksr kdr 
____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________

(17) 65.5±42.6 104.28±92.59 7,96** 3,38** 0.0004±0.0002 1.1x10-8±10-10 4,70** 7.5x1010 (NS) 3.83x1015(NS) 
          

          

B) PARAMETERS OBTAINED WITH LAMINARIN AS SUBSTRATE 
          

          

Equations b00 b12 b1 b11 b2 b22 b221 b112 -- 
____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________

(2) -747.8±94.4 0.032 (NS) 153.1±28.2 -16.77±2.69 21.58±2.42 -0.24±0.02 -- -- -- 
          

(3) -1029±447 -2.59 (NS) 245.3±164.4 -23.5±16.3 30.72±14.11 -0.31±0.13 0.01 (NS) 0.14 (NS)  
          

 a T0 n1 pH0 n2 b3 b4 -- -- 
____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________

(6) 0.0001 (NS) 15.22 (NS) 6.26 (NS) 1.13 (NS) 6.08 (NS) 0.21 (NS) 1.82 (NS) -- -- 
          

 Tmax Tmin c a1 c0 c1 c2 -- -- 
____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________

(10) 62.17±0.52 12.50±5.51 0.38 (NS) 0.03 (NS) -2.29 (NS) 1.28 (NS) -0.14 (NS) -- -- 
          

 Tmax Tmin pHmax pHmin c a1 a2 -- -- 
____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________

(11) 62.11±0.52 12.51±5.60 6.60±0.18 0.75 (NS) 0.026 (NS) 0.047 (NS) 0.18 (NS) -- -- 
          

 Tmax Tmin pHmax pHmin rm Topt pHopt -- -- 
____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________

(12) 62.18±0.54 13.10±4.58 6.69±0.22 2.26±0.45 94.82±2.44 47.58±0.70 4.64±0.11 -- -- 
          

 k  q β p -- -- -- -- 
____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________

(13) 9019±280 4.87±0.24 48.81±0.42 3.83±0.26 5.00±0.06 -- -- -- -- 
          

 c0 c1 c2 rr Hr Ta Ha Tb Hb 
____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________

(16) -318.6 (NS) 178.8 (NS) -19.43 (NS) 1.14 (NS) -52.33 (NS) 327.4±25.6 226.4 (NS) 329.2±27.6 -98.35±46 
          

 Es Ed pHmax** pHmin** KEH KEOH pHopt** ksr kdr 
____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________

(17) 59.09±14.3 109.1±24.9 7,91** 3,11** 8x10-4±2x10-4 1x10-8±2x10-9 4,60** 7.8x109 (NS) 3.1x1016 (NS) 
          

          

** Further interesting values calculated from the parameters of equation (17). 
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Table 3: Model ranking (Rk) obtained for each MSC and the final ranking (RkF) based on the total ranking average (∑Rk) for the two substrates. 
 

                                 

CRITERIA AICc BIC RIC Cp R2adj FPE MSC LOO-CV (MEP) MCCV (MEP) AVERAGE 
                                         

                                 

Equations Value Rk Value Rk Value Rk Value Rk Value Rk Value Rk Value Rk Value Rk Value Rk ∑Rk RkF 


                                          

A) MODEL RANK USING CURDLAN AS SUBSTRATE 
                                          

(2) 123.30 (9) 245.11 (8) 194.35 (9) 65.1 (9) 0.8798 (9) 80551.8 (9) 1.95 (9) 114.24 (9) 124.57 (6) 77 (9) 
(3) 96.70 (1) 225.04 (1) 164.49 (1) 19.9 (1) 0.9448 (1) 37878.6 (1) 2.71 (1) 37.87 (2) 47.35 (3) 12 (1) 
(6) 115.63 (8) 240.72 (7) 183.30 (6) 48.1 (8) 0.9005 (8) 66629.4 (7) 2.14 (7) 43.06 (3) 43.02 (2) 56 (7) 
(10) 113.96 (6) 239.04 (6) 182.01 (5) 44.6 (5) 0.9213 (4) 63014.2 (5) 2.20 (5) 58.94 (7) 164.41 (8) 51 (6) 
(11) 108.80 (4) 233.88 (4) 178.05 (4) 35.1 (4) 0.9074 (7) 53050.8 (4) 2.37 (4) 54.07 (5) 135.91 (7) 43 (4) 
(12) 107.76 (2) 232.84 (3) 177.26 (3) 33.3 (3) 0.9241 (3) 51243.9 (3) 2.40 (3) 36.43 (1) 40.69 (1) 22 (2) 
(13) 108.31 (3) 226.83 (2) 187.03 (8) 30.6 (2) 0.9288 (2) 45786.7 (2) 2.51 (2) 56.99 (6) 60.87 (5) 32 (3) 
(16) 113.85 (5) 245.44 (9) 172.20 (2) 47.8 (7) 0.9122 (6) 71771.1 (8) 2.08 (8) 95.81 (8) 234.96 (9) 62 (8) 
(17) 114.89 (7) 238.70 (5) 186.22 (7) 47.1 (6) 0.9160 (5) 65061.9 (6) 2.16 (6) 53.87 (4) 54.87 (4) 50 (5) 

                                          

B) MODEL RANK USING LAMINARIN AS SUBSTRATE 
                                          

(2) 189.74 (8) 428.77 (7) 377.88 (8) 163.4 (8) 0.9191 (7) 121683.6 (7) 2.41 (7) 41.42 (7) 42.61 (7) 66 (7) 
(3) 187.79 (7) 434.70 (8) 367.12 (6) 159.7 (7) 0.9186 (8) 126311.3 (8) 2.38 (8) 47.25 (8) 50.27 (8) 68 (8) 
(6) 237.01 (9) 479.99 (9) 414.48 (9) 452.3 (9) 0.8018 (9) 302935.9 (9) 1.50 (9) 74.33 (9) 74.05 (9) 81 (9) 
(10) 152.21 (5) 395.18 (5) 340.66 (5) 62.4 (5) 0.9610 (4) 62992.5 (5) 3.07 (5) 19.86 (3) 16.78 (3) 40 (5) 
(11) 150.23 (4) 393.20 (4) 338.94 (4) 58.7 (4) 0.9603 (5) 60727.3 (4) 3.11 (4) 20.24 (4) 21.02 (4) 37 (4) 
(12) 148.64 (3) 391.61 (3) 337.55 (3) 55.8 (3) 0.9614 (3) 58962.6 (3) 3.14 (3) 20.45 (5) 21.56 (5) 31 (3) 
(13) 176.93 (6) 412.03 (6) 370.81 (7) 118.1 (6) 0.9374 (6) 92548.7 (6) 2.69 (6) 32.57 (6) 33.39 (6) 55 (6) 
(16) 129.43 (1) 380.27 (1) 313.96 (1) 31.0 (1) 0.9719 (1) 44470.9 (1) 3.42 (1) 13.80 (2) 11.84 (1) 10 (1) 
(17) 141.31 (2) 380.35 (2) 334.83 (2) 41.8 (2) 0.9670 (2) 49632.8 (2) 3.31 (2) 13.62 (1) 13.50 (2) 17 (2)                      
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