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Abstract The genus Quercus, which belongs to the family Fagaceae, is native to the northern 

hemisphere and includes deciduous and evergreen species. The trees of the different species are 

very important from both economic and ecological perspectives. Application of new 

technological approaches (which span the fields of plant developmental biology, genetic 

transformation, conservation of elite germplasm and discovery of genes associated with 

complex multigenic traits) to these long-rotation hardwoods may be of interest for accelerating 

tree improvement programs. This review provides a summary of the advances made in the 

application of biotechnological tools to specific oak species. Significant progress has been made 

in the area of clonal propagation via organogenesis and somatic embryogenesis (SE). 

Standardized procedures have been developed for micropropagating the most important 

European (Q. robur, Q. petarea, Q. suber) and American (Q. alba, Q. bicolor, Q. rubra) oaks 

by axillary shoot growth. Although regenerated plantlets are grown in experimental trials, large 

scale propagation of oak species has not been carried out. 

The induction of SE in oaks from juvenile explants is generally not problematic, although the 

use of explants other than zygotic embryos is much less efficient. During the last decade, 

enormous advances have been made in inducing SE from selected adult trees, mainly specimens 

of pedunculate oak (Q. robur) and cork oak (Q. suber). Advances in the understanding of the 

maturation and germination steps are required for better use of embryogenic process in clonal 

forestry.  

Quercus species are late-maturing and late-flowering, exhibit irregular seed set, and produce 

seeds that are recalcitrant to storage by conventional procedures. Vitrification-based 

cryopreservation techniques were used successfully in somatic embryos of pedunculate oak and 

cork oak and an applied genbank of cork oak selected genotypes is now under development. The 

feasibility of genetic transformation of pedunculate oak and cork oak somatic embryos by 

means of co-culture techniques with several strains of Agrobacterium tumefaciens has also been 

demonstrated.  
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To date, most research on the genomics of Quercus species has concerned population 

genetics. Approaches using functional genomics to examine the molecular and cellular 

mechanisms that control organogenesis and or somatic embryogenesis are still scarce and efforts 

on the isolation and characterization of genes related to other specific traits should be intensified 

in the near future, as this would help improve the practical application of clonal forestry in 

recalcitrant species such as oaks. 
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Introduction 

Breeding of long-rotation hardwoods remains less well developed than that of short-rotation 

species (poplars, eucalyptus, willows) and has always lagged behind that of conifers. Investment 

in projects with an expected lifetime of over 40 years, such as those on long-rotation hardwood 

species, has never been attractive. Quercus species are included in the group of long-rotation 

hardwoods for which no long-term tree improvement programs have been carried out in either 

Europe or in North America (Savill and Kanowski 1993; Steiner 1993; Savill et al. 2005). 

Conventional tree breeding programs comprises several steps, including: i) provenance trials 

and or stands of natural origin as the initial phase, ii) seed stand establishment, iii) phenotypic 

selection of plus trees that may be grafted and planted in clone banks, iv) progeny trials and 

production of seed orchards for identification of individuals with good genotypes and high 

combinatory ability, and v) vegetative propagation. Species of the genus Quercus, such as 

Quercus robur (pedunculate oak) and Q. petraea (sessile oak), usually reach seed-bearing age at 

between 40 and 100 years old, and the mast seed crops vary according to the individual tree, 

population region and year (Ducousso and Bordacs 2004), and they are likely to produce good 

seed crops once every  3-5 years. In addition, vegetative propagation is of extremely limited 

success because it is very difficult to root cuttings of most tree species (including several 

Quercus species) if they are taken from selected mature trees. Grafting is the method of choice 

for oak vegetative propagation, but delayed compatibility in Quercus has been observed. 

Expression of graft incompatibility can be delayed up to 7 years and symptoms include 

significant scion overgrowth of the rootstock, vigorous suckering, and precocious flowering 

(Coggeshall 1996). According to these limitations in conventional tree breeding approaches, the 

question remains as to whether biotechnology would be practically useful in the genetic 

improvement of long-rotation hardwoods and, more specifically, Quercus species. Molecular 
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genetic techniques are undergoing rapid development and may be able to be applied in oak 

breeding programs, and in physiological and taxonomic studies, as marker traits in selection, 

identification of individual genotypes, certification of seed orchard products, gene mapping, 

identification of genes or alleles associated with traits of economic significance (wood 

properties), etc. (Burley and Kanowski 2005; Grattapaglia et al. 2009). Theoretically, transgenic 

trees may constitute an important tool for speeding up breeding cycles for traits determined in 

juvenile woody plants (Flachowski et al. 2009), increasing disease resistance (Fenning 2006), 

improving wood quality and tree form (Häggman et al. 2006; Grattapaglia et al. 2009), etc. 

However, there is considerable controversy about the use of genetically modified trees in 

plantations, so that their use may be restricted in the short- to medium-term future (Bradford et 

al. 2005; Brunner et al. 2007; Gartland and Oliver 2007; Sederoff 2007; Strauss et al. 2009).  

Several recent reviews have described the possibilities of forest biotechnology as an 

emerging opportunity in relation to tree improvement (Fenning and Gershenzon 2002); some of 

these reviews cover both coniferous and hardwood species (Nehra et al. 2005) or only 

hardwoods (Merkle and Nairn 2005; Pijut et al. 2007), but none are devoted specifically to 

species of the genus Quercus. In this review article, we discuss methods that may provide the 

basis for accelerated improvement of several oak species through biotechnology. Topics 

addressed in this review include the micropropagation of mature selected material through 

axillary shoot development, the potential of somatic embryogenesis in light of the most recent 

results, advances in germplasm conservation through cryopreservation, state-of-the-art in the 

genetic transformation of the species and the molecular and genomics-related efforts made with 

the aim of improving these species. 

 

The genus Quercus 

The genus Quercus, which belongs to the family Fagaceae, is native to the northern hemisphere 

and includes deciduous and evergreen species extending from cold latitudes to tropical Asia and 

the Americas. Its taxonomic classification is very difficult as the genus could be represented by 

200 (Neger and Münch 1950), 320 (Krahl-Urban 1959), or 450 species (Krüssmann 1978). The 

differences in these numbers are partly explained by the definition of interspecific hybrids as 

separate species and the sub-division of ecological forms into species (Kleinschmit 1993). 

Frequent hybridization has produced large population of hybrids and high levels of 

introgression have led to different species in populations sharing up to 50% of their genetic 

information (Conte et al. 2007; Gömöry and Schmidtová 2007). The genus is subdivided into 

two subgenera: Quercus and Cyclobalanopsis and the former is further divided into four 

sections: Protobalanus, Cerris, Quercus (white oaks) and Rubrae (red oaks) (Ducousso and 

Bordacs 2004). 
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For the purpose of the present review, we will refer hereafter to the oak species with which 

most biotechnological approaches have been used. 

Twenty-four oak species and hybrids are currently grown in Europe, among which 

pedunculate oak (Quercus robur) and sessile oak (Q. petraeae) -which belong to the white oak 

section- are the most widely distributed and are the most important oak species on the continent, 

from both economic and ecological perspectives. These oaks, which extend from Ireland to 

Sicily (Italy) and from the Ural mountains to central Norway (Repo et al. 2008) are large trees 

that reach 30-40 m in height and live for 800 years or more. The wood from both pedunculate 

and sessile oaks was used for ship construction and today is employed in furniture making and 

flooring, timber frame building, veneer production and to make barrels in which wine and 

spirits are aged. High forest, coppice-with-standards and coppice are the three main silvicultural 

regimes. Natural regeneration should be a priority but, as it is sometimes difficult, plantations 

with reproducible material of high genetic value are required (Ducousso and Bordacs 2004). 

The European evergreen Quercus suber (cork oak) is one of the oak species most 

characteristic of the Mediterranean ecosystem, and plays important ecological, economic and 

social roles in parts of southern Portugal and Spain and northern Algeria and Morocco (Knapic 

et al. 2008) and other countries in the Mediterranean basin. Portugal produces more than half of 

the cork produced in the world (Catry et al. 2009). This valuable raw material is mainly used to 

produce wine stoppers (corks). 

From the 58 tree-sized native species of oak in the USA, which cover an estimated area of 

448,000 km2, Quercus rubra (red oak) and Q. alba (white oak) are the most important and 

widely distributed (Steiner 1993). Red oak, which is one of the fastest growing of the species, is 

distributed from northeastern USA reaching west to central Minnesota, eastern Nebraska and 

Kansas. The geographic range of white oak extends from Maine to Minnesota, south to eastern 

Texas and northern Florida. The wood of these American oaks is harvested for use in cabinet 

making, interior finishes, and general construction. 

Oak decline syndrome affects oaks worldwide and is of great concern. Oak decline (also 

known as oak dieback or oak mortality) is an episodic and gradual phenomenon characterized 

by a general loss of vigor caused by complex interactions between different biotic and abiotic 

factors and which is not limited to any one species or species group (Wargo et al. 1983; Manion 

and Lachance 1992; Thomas et al. 2002; Repo et al. 2008). Trees are weakened by 

environmental stresses such as drought, waterlogging, frost, pests, etc. Oak decline occurs all 

over Europe and, in its current phase, has been going on since the beginning of the 1980s (Jung 

et al. 2000). Affected trees display progressive dieback from the tips of the branches, production 

of chlorotic foliage, and development of epicormic shoots on main branches and stem and 
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premature autumn leaf colour. Tree mortality is variable and is related to the stand, geographic 

area, species, etc.   

In addition to the episodic phenomenon of oak dieback, there are specific situations where 

mortality of oaks can only be explained by biotic factors. Fungal pathogens colonizing either the 

root system (Armillaria sp.) or the bole bark (Biscoyniauxia mediterranea) and bark insects 

such as Agrilus species have been reported as important opportunistic parasites, which are 

organisms unable to colonize a host unless it has been first weakened as a result of another 

stress (Marçais and Bréda 2006). The green oak leaf roller (Tortrix viridiana L.) is an 

oligophagus moth that only parasitizes members of the genus Quercus and leads to defoliation 

of oaks in spring (Schroeder and Degen 2008); oak powdery mildew caused by Erysiphe 

alphitoides (formerly Microsphaera alphitoides) is the most  common disease in the susceptible 

pedunculate oak (Hajji et al. 2009); the lesions at root or collar level caused by Phytophthora 

sp. are well documented (Robin et al. 1992; Jung et al. 2000; Vettraino et al. 2002). Special 

mention should be made of sudden oak death, a fungal disease caused by Phytophthora 

ramorum, which has already killed tens of thousands of native coast live oak and tanoak trees in 

California (Meentemeyer et al. 2008; Brown and Allen-Diaz 2009). This fungus has also been 

identified in Europe, although the infective capacity of European oaks is, at present, much lower 

than that of American oaks (Forestry Commission 2009). Nevertheless, expansion of these 

diseases would increase in the future under predicted conditions of climate change, as expected 

with Phytophthora cinnamomi according to simulation models (Bergot et al. 2004).   

 

In vitro tissue culture 

 

Micropropagation through axillary shoots 

Tissue culture techniques were initially applied to different oak species because they provide 

appropriate tools for rapid production of genotypes to regenerate trees with desired traits and to 

capture all the genetic superiority without involving any gene segregation. These techniques 

would, at least theoretically, alleviate the lack of acorn production of selected oak trees on a 

yearly basis, as well as difficulties in producing offspring with desired traits, difficulties in 

storing acorns and the low rooting capacity of stem cuttings. 

The studies on micropropagation of the most intensively investigated and of the greatest 

economic importance oak species are summarized in Table 1. The first attempts to 

micropropagate oak species were carried out, as in many other tree species, with zygotic 

embryos or seedlings as a source of explants for culture initiation. The disadvantage of using 

juvenile rather than adult specimens is clear, but was a necessary step to determine the response 

of oak explants to in vitro conditions. Early studies on the micropropagation of pedunculate and 



6 

 

sessile oaks used embryonic axes as well as shoot apices and nodal segments isolated from 3-6-

month-old seedlings (Vieitez et al. 1985; San-José et al. 1990; Chalupa 1993). Although the 

composition of the mineral media was not decisive in initiating cultures, Woody Plant Medium 

(WPM) (Lloyd and McCown 1980) and Gresshoff and Doy (1972) medium (GD) were superior 

to other mineral media for shoot multiplication cultures. In an experiment carried out to identify 

the most suitable mineral medium in this step in cultures of pedunculate oak, Vieitez et al. 

(1985) found that, of the eight media tested, the best results were achieved with GD medium. 

The authors reported that the use of Murashige and Skoog (1962) (MS) medium promoted 

poorly developed axillary buds, small leaves, no basal callus formation and necrosis that spread 

from the shoot tips to the whole culture. Cultures grown on MS medium also developed thick, 

succulent or hyperhydric shoots. The superiority of GD medium was also demonstrated for 

sessile oak cultures (San-José et al. 1990). The most widely used plant regulator at the 

multiplication stage is 6-benzylaminopurine (BA) (used at different concentrations), although 

the effect of thidiazuron in stimulating shoot proliferation was also evaluated (Chalupa 1988). 

Shoot multiplication in oak cultures does not occur a rosette-like cluster, but by the production 

of a few, more-or-less elongated shoots. Elongation of shoots may be required prior to rooting. 

Elongation medium differs from multiplication medium only in that the concentration of BA 

was either reduced by a factor of ten or was replaced by zeatin (San-José et al. 1988). The 

addition of zeatin to the multiplication medium improved the proliferation of American oak 

shoot cultures (Vieitez et al. 1993, 2009). 

In the rooting step, isolated shoots (1.5-3 cm) were placed in media containing indole-butyric 

acid (IBA) or naphthalene-acetic acid (NAA) for a period of 7 or 8 days, with later transfer to an 

auxin-free medium (Chalupa 1993; Juncker and Favre 1989; Vieitez et al. 1994; Puddephat et 

al. 1999). Dipping the basal ends of the shoots for 1-2 min in highly concentrated solutions of 

IBA (1 g/L) and transfer to an auxin-free medium was also carried out (San-José et al. 1988). 

However, after many experiments, it was found that the best rooting efficiency was achieved by 

culturing the shoots in media containing 122.5 µM IBA for 24 h, with subsequent transfer to 

auxin-free media containing 1% activated charcoal. For all genotypes tested, the charcoal 

benefited both shoot quality and root system development, and the latter was enhanced by the 

formation of many lateral roots (Sánchez et al. 1996; Vieitez et al. 2009). In addition, ex vitro 

rooting experiments were also performed with pedunculate oak microcuttings, which were 

treated with commercial rooting powder, inserted in peat-perlite substrate and placed under 

plastic tunnels in a greenhouse (Meier-Dinkel et al. 1993). 

While seedling explants are relatively easy to micropropagate, explants from mature trees 

tend to lose their regeneration potential. When cloning mature trees, it is important to first 

determine which part of the individual contains the most responsive cells, as some parts of trees 
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are morphogenetically more competent than others. In hardwood trees and a few gymnosperms, 

responsive tissues are found at the root-shoot junction, in root or stump sprouts, sphaeroblasts, 

and epicormic shoots (Bonga et al. 2008, 2010). In vitro plants of pedunculate, sessile, cork and 

red oaks were regenerated using stump sprouts or epicormic shoots from mature trees, following 

the above described protocols (Chalupa 1993; Vieitez et al. 1985, 1993, 1994; Favre and 

Juncker 1987; San-José et al. 1988, 1990; Romano et al., 1992; Evers et al. 1993; Sánchez et al. 

1996). These results appear to indicate the good potential for the application of 

micropropagation techniques in oak forestry. However, several concerns, which may limit 

application of the technology at a commercial scale, have been identified. The most serious 

limitations concern: i) the effect of the genotype, ii) the progressive decline of shoot 

proliferation during successive subcultures and iii) difficulties in propagating mature selected 

trees lacking stump sprouts or epicormic shoots. 

The effect of the genotype on culture initiation and proliferation, which is a common 

phenomenon in many species, was studied by Meier-Dinkel et al. (1993), who established in 

vitro cultures from germinated acorns harvested from 11 grafted selected pedunculate oak trees 

growing in two stands. After 8 months, shoot productivity varied between ten and more than 

1000 shoots/genotype; rooting and survival were strongly dependent on the genotype, with 

values ranging between 10% and 80% for individual genotypes. Furthermore, clonal effects in 

propagating oak trees were also studied by Juncker and Favre (1989) in pedunculate oak, and 

data from 16 genotypes derived from seedlings were compared by using principal component 

and hierarchical cluster analyses. This study confirmed that the between-genotype differences in 

oak micropropagation are large enough to explain the lack of repeatability in culture 

establishment, subculture and rooting. No significant between-provenance differences were 

observed, while the within-provenance differences were high.  

The decline in the proliferation capacity of vertically placed oak cultures after several 

subcultures is a common bottleneck mentioned in most of the publications on the subject. This 

phenomenon not only affects European oaks but, more specifically, American oaks. All 

attempts to micropropagate white oak (Q. alba) or swamp white oak (Q. bicolor) have been 

unsuccessful. Shoot cultures initiated from terminal and lateral buds of white oak seedlings died 

through gradual loss of vigor (Schwarz and Schlarbaum 1993). Shoot tip necrosis, dormancy 

and decline of shoot growth are common problems described as affecting micropropagation of 

red oak from juvenile seedling material (Vengadesan and Pijut 2007). According to McCown 

(2000), the decreased capacity for proliferation may be as a result of the episodic growth 

exhibited by Quercus, as the growth is not continuous. The difficulties associated with in vitro 

culture of oak may be attributed to the inability to achieve uniform and continuous shoot 

growth. To address the problem, a procedure initially applied to pedunculate oak (San-José et al. 
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1988; Vieitez et al. 1994) and red oak cultures (Vieitez et al. 1993; Sánchez et al. 1996) was 

used. Briefly, shoot explants from which the apices (2 mm) have been removed were placed 

horizontally on the medium and transferred onto fresh medium after 2 weeks, during the 4-week 

multiplication cycle. After this period, all new shoots longer than 10 mm were harvested and 

used for multiplication or rooting, and the donor shoots were recultured (transferred to fresh 

medium) to produce a new crop. The procedure was repeated 3 or 4 times in all (Ballester et al. 

2009). By use of this procedure, healthy cultures were produced from pedunculate oak and also 

from red oak. When the shoots of the American white oaks Q. alba and Q. bicolor were 

cultured in the conventional upright position for 4-6 weeks, the strong episodic character of the 

shoots was shown, with arrested shoot growth generally followed by death of explants. 

However, culture of the explants in a horizontal position and subsequent reculture of the 

original explant led, for the first time, to production of vigorous plants of selected American 

oaks (Vieitez et al. 2009). To explain the beneficial effect of this method in obtaining vigorous 

shoots, it should be considered that horizontal culture is a form of mechanical stress that may 

favor synthesis of ethylene in the culture vessel (Anten et al. 2006). It is also possible that 

horizontal cultures may differ from vertical cultures in both the distribution and transport of 

endogenous growth regulators and the supply of nutrients. 

As mentioned above, oak plantlets have been generated in vitro from explants derived from 

basal shoots or stump sprouts of mature trees, although it was difficult to establish in vitro 

cultures from buds of the current season’s growth in the crown (Sánchez 1991). In the absence 

of mature material with juvenile physiological characteristics, such as stump sprouts or 

epicormic shoots, rejuvenation or reinvigoration procedures could be applied to mature trees 

(Ballester et al. 1990). Mature reactive material may be obtained using hedging and stool bed 

methods, which make it possible to use preformed dormant buds that remain quiescent after 

early initiation. Outgrowth of dormant buds often leads to the development of physiologically 

juvenile shoots, not only those located in the lower part of the trunk but also those arising higher 

up in the tree. Sectioning the trunk of a mature tree to induce epicormic shoots was used as a 

method of rejuvenation (Evers et al. 1993). However, a variant of this technique (without 

destroying the tree), consisting of sectioning thick crown branches (3-5 cm) to induce the 

flushing epicormic shoots, was also used (Vieitez et al. 1994, 2009; Ballester et al. 2009). 

Briefly, crown branches collected between December and March, cut into 25-30 cm segments, 

are placed on moist perlite beds in a growth chamber, in order to induce new shoots. The 

flushed shoots, which develop 10-15 days after severance, are used as source of explants, which 

develop into shoots exhibiting vigorous growth, long internodes and leaves resembling a more 

juvenile looking (less lobed) type. After excision of these shoots from the original explants, they 

may be cultured using the previously described horizontal culture method, and the in vitro 
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multiplication rates recorded were similar to those of cultures of juvenile origin. Following this 

procedure, genotypes of oak trees older than 300 years have been successfully established in 

vitro (Vieitez et al. 1994). 

After more than 25 years of work on the micropropagation of different oak species through 

axillary shoot culture, it is possible to conclude the feasibility of the regeneration of whole 

plants. Interesting technological advances have been carried out that allow oak plants to grow in 

the field. Plant regeneration by axillary branching is often effective, even with adult material, 

but it is not sufficiently efficient to be applied on commercial scale. This is in contrast with 

other genera within the Fagaceae family, such as European chestnut, in which large scale 

micropropagation was reported (Vieitez et al. 2007). Alternative in vitro propagation methods, 

such as somatic embryogenesis, should be explored. 

 

Somatic embryogenesis 

 

Somatic embryogenesis (SE) is a powerful tool for improvement of forest trees as is considered 

to be the most appropriate means of in vitro regeneration of woody plants. Large-scale 

propagation of selected material, genetic transformation, and cryopreservation of elite genotypes 

are among the most immediate applications of SE. Furthermore, SE may be the only method of 

regenerating truly juvenile propagules of difficult-to-propagate species. In oaks, induction of the 

embryogenic process from juvenile explants is generally not problematic, although induction 

with explants other than mature or immature zygotic embryos is much less efficient. Studies on 

somatic embryogenesis in different species of the genus Quercus, mostly induced from juvenile 

material, have been summarized in different reviews (Chalupa 1995; Manzanera et al. 1996; 

Wilhelm 2000), but even since the last date, further progress has been reported in different oak 

species (Table 2).  

Somatic embryo induction According to the definition of recalcitrance in clonal propagation 

given by Bonga et al. (2010), the most important Quercus species belongs to recalcitrant 

species. The selection of the most reactive explant isolated at the appropriate time applies not 

only for the propagation through axillary shoot development, but also when the clonal 

propagation is through SE. As stated in the preceding section, reactive material retaining a 

certain level of juvenile characters is found in root and stump sprouts, sphaeroblasts, and 

epicormic shoots of mature oak trees. In the specific case of SE induction, another area of 

interest involves tissues close to cells that are involved in the sexual process, in which the 

timing of explant isolation and the application of mild stress are extremely important aspects to 

be considered.  
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Expanding leaves excised from epicormic shoots forced to sprout in crown branch segments, 

according to the methodology previously defined for the micropropagation of mature oak trees 

via axillary branching (Vieitez et al. 1994), were used as initial explants for the induction of SE 

in mature oak trees. Following this procedure, the first report on induction of SE in explants of 

mature Q. suber trees was made by Hernández et al. (2001), who initiated cultures from leaves 

of epicormic shoots, whereas Pinto et al. (2002) also obtained embryogenic calluses in leaves 

from flushed cuttings of a 60-year-old cork oak tree.  Further experiments were carried out for 

better definition of the induction of SE in cork oak, giving rise to consistent embryogenic 

systems for the propagation of several hundred-year-old trees (Hernández et al. 2003a). These 

authors reported that the induction step in leaf explants was performed by successive culture of 

initial explants in three culture media differing in the concentration of plant growth regulators 

(PGR): the primary induction medium supplemented with 10 µM BA plus 50 µM NAA, the 

secondary medium in which the concentration of PGR was reduced to 0.5 µM BA and 0.5 µM 

NAA, and the expression medium, which is devoid of PGR; the combined application of NAA 

and BA in primary medium was essential for induction (Hernández et al. 2003a; Toribio et al. 

2005).  Genotype and time of harvesting, as well as their interaction, significantly influenced the 

frequency of embryogenic induction, which ranged between 8% and 91% (Hernández et al. 

2003b).    

Following a similar procedure, SE was also achieved in expanding leaves excised from 

newly sprouted epicormic shoots forced from branch segments of mature Q. robur trees 

(Toribio et al. 2004). Initiation of somatic embryos was achieved by a multi-stage treatment 

procedure based on the culture scheme reported for seedling leaf explants of Q. robur (Cuenca 

et al. 1999). The explants were successively cultured in: 1) induction medium (M1) based on 

MS basal medium and supplemented with 5 mg/l casein hydrolysate, 2.2 µM BA and 21.5 µM 

NAA, applied in darkness at 25ºC for 6-8 weeks; 2) a second medium (M2) of the same 

composition as the induction medium except that BA and NAA were reduced to respectively 

0.44 and 0.54 µM,  with culture continued for 4 weeks under a 16 h photoperiod, and 3) 

expression medium (M3) with the same components but without PGR. The explants were 

maintained on this medium for 8-10 weeks, for a total 20 weeks after the start of culture. 

Induction of somatic embryos was correlated with the asymmetric distribution of auxin in the 

tissues, which appears to be necessary for de novo initiation of organ primordia under culture 

conditions (Zhao et al. 2008). Accordingly, the next steps in the process were the transfer of oak 

explants to media with decreasing amounts of PGR, or without PGR, and culture under 

photoperiodic conditions. Seven out of 30 trees tested showed embryogenic response but at 

lower frequencies (0.3% to 3.6%) than those obtained with adult Q. suber trees; the collection 

date also influenced the embryogenic response (Toribio et al. 2004; Valladares et al. 2006). The 
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scheme applied to SE of Q. robur differed from that used for Q. suber (Hernández et al. 2003a) 

in that the culture media were based on MS mineral components and a lower concentration of 

PGR in the induction media, whereas Schenk and Hildebrandt (1972) macronutrients and higher 

concentrations of both BA (10 µM) and NAA (50 µM) were successful for leaves from adult 

cork oak. 

Once it was confirmed that genotype and selection of responsive explants collected at the 

optimal time were successful criteria for embryogenic induction in mature oak trees, other 

alternatives were proposed for searching for totipotent cells or tissues in recalcitrant species. 

Culture of the shoot apical meristems may provide a solution to problems related to 

recalcitrance, although the survival rates were normally very low (Bonga et al. 2010). 

Successful induction of somatic embryos in pedunculate oak, based on the use of shoot apex 

explants from material derived from adult trees has recently been reported (San-José et al. 

2010). In the latter study, induction of embryogenic cultures was achieved in shoot tip explants 

(2 mm long, comprising the apical meristem and 3-4 pairs of leaf primordia) and leaf explants 

(the two apical- most expanding leaves) excised from axillary shoot cultures of three out of the 

five Q. robur trees over 100 years old that were evaluated. Within each responsive genotype, 

both leaf and shoot tip explants produced embryogenic responses, and embryogenic  frequencies 

were relatively low (1.7%-12%) for both explant types, as occurred in the case of leaf explants 

excised from forced epicormic shoots of mature trees.  Interesting, the failure to induce SE from 

shoot tips isolated from forced epicormic shoots of the corresponding trees suggest that the 

sterilization process has a negative effect on this type of explant. The use of shoot multiplication 

cultures to initiate the embryogenic process offers advantages over the use of explants from 

forced epicormic shoots from field-grown trees, as it ensures the availability of plant material all 

around the year and avoids the need to sterilize the plant tissues (San-José et al. 2010). The 

impact of genotype appears to be one of the limiting factors for the induction step of the SE 

process, as documented for other Quercus species (Hernández et al. 2003b; Vengadesan and 

Pijut 2009). Given that the frequencies of SE obtained in leaf explants from mature trees were 

not very different from those achieved using leaf explants from seedlings (Cuenca et al. 1999), 

the juvenile condition of the source tree, at least in leaf tissue, does not appear to be as crucial a 

factor as the genotype. A similar embryogenic response was observed between leaves from cork 

oak seedlings and from adult trees, as a result of the use of presumably reinvigorated or 

rejuvenated condition of the epicormic shoots (Hernández et al. 2003a). 

 With regard to the suitability of floral tissues for initiating SE, the study of Bueno et al. 

(1997), in which microspore-derived embryos of cork oak were obtained by combining a 

sucrose starvation treatment with a mild heat shock at 33º C for 5 days followed by culture at 

25ºC in a medium lacking PGR, is worthy of mention. After only 20 days of culture, embryos 
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were observed growing from the interior of the anthers, breaking free from the degenerating 

anther walls. These results indicate that stress may be the major signal for inhibition of 

gametophytic development of the microspores in favor of the embryogenic pathway. Ploidy 

level analysis, carried out on long-term (up to 12 months) microspore-derived embryo cultures, 

showed that most of the embryos (90.7%) were haploid, corresponding to their microspore 

origin, although a low percentage (7.3%) of diploid embryos was also observed (Bueno et al. 

2003). These results confirm the accepted assumption that morphological changes observed in 

stressed microspores appear to be a prerequisite for transition to the de-differentiated state 

required for embryogenic induction (Bonga et al. 2010). Furthermore, a remarkable difference 

with respect to the induction of SE from leaf explants of the same species (Hernández et al. 

2003a) must be highlighted, as no PGR were required to induce the androgenic process, and 

embryos were developed in shorter periods of time.   

Although most of the studies carried out during the last decade refer to Q. suber and Q. 

robur, a few have involved the induction of somatic embryogenesis in holm oak (Q. ilex) 

(Mauri and Manzanera 2003) and red oak (Q. rubra) (Vengadesan and Pijut 2009). In both 

species, immature zygotic embryos were used as explants, giving rise to an induction frequency 

of 4.3% in the former, whereas a higher response (66%) of embryogenic callus was recorded in 

the latter. In addition, the induction of SE in Q. alba (white oak) following a procedure similar 

to that defined for pedunculate oak (San-José et al. 2010) was recently demonstrated 

(unpublished).  Shoot tip explants and leaf explants excised from shoot cultures derived from 

selected 5-year-old trees produced somatic embryos at higher frequencies (up to 47%) than 

those reported for Q. robur. Interestingly, significant differences between explant types were 

observed, with a higher embryogenic response produced in the first expanding leaf from the 

apex. 

There is evidence that soluble signal molecules may control cell differentiation in plant SE 

and that conditioned culture media from embryogenic cultures can promote SE. Signal 

molecules such as extracellular proteins (endochitinases), arabinogalactan proteins (AGPs) and 

lipochitooligosaccharides (LCOs) have been found to be important for the development of the 

embryogenic process (von Arnold et al. 2002). The effect of different concentrations of AGPs 

from both larch wood (Ben Amar et al. 2007) and gum arabic (Letarte et al. 2006) on initiation 

of somatic embryos in Q. robur and Q. alba was tested. Preliminary results indicate that the 

addition of these components to the culture media enhances the embryogenic response in both 

species. 

 

Somatic embryo development in original explants  When leaf explants or shoot apex explants 

derived from mature Q. robur trees were cultured in induction medium M1, they initially 
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responded by developing callus tissue at frequencies depending on the genotype. Callus 

proliferation was observed within two weeks and was mainly differentiated on the petiole stump 

region of leaf explants or cut surface of shoot tip explants, then progressing towards the distal 

ends. The SE followed an indirect pathway from this callus tissue formed in the original 

explants. In contrast, no callus formation was reported to occur in cork oak leaves where 

somatic embryos appeared almost directly at the leaf surface, without a defined pattern of 

arrangement (Hernández et al. 2003a). The timing of somatic embryo development was also 

influenced by genotype; some somatic embryos first began to appear towards the end of culture 

on M2 medium (9-10 weeks after culture initiation), although most emerged during culture in 

M3 expression medium, whereas in other genotypes, embryos began to become evident 

following transfer of the explants to M3 medium (12-15 weeks after culture initiation). 

Embryogenic cultures consisted of creamy-translucent nodular structures and somatic embryos, 

which developed from the callus tissue in both types of explant; induction of embryogenic 

tissues appears to require dissociation and partial necrosis of the specific callus regions.  The 

embryogenic nodular structures observed in Q. robur were probably similar to the translucent 

nodules observed in other Quercus species, including Q. ilex (Féraud-Keller and Espagnac 

1989) and Q. suber (El Mâataoui et al. 1990), or to the nodular proembryogenic masses 

described in other related species such as chestnut (Carraway and Merkle 1997; Corredoira et al. 

2006a). In Q. alba, nodular embryogenic structures also originated from the callus tissue 

developed on the abaxial surface of leaf explants, and arose faster than those reported in 

pedunculate oak and cork oak, as the first embryogenic structures were evident during culture in 

M1 induction medium (6-8 weeks of culture initiation). Embryogenic nodular structures were 

embryogenic in character as they originated from embryogenic cell aggregates and in turn 

generated somatic embryos or other nodular structures as a form of repetitive embryogenesis. 

 

Anatomical study Research on embryogenic cell initiation and early developmental stages of 

primary embryos induced in leaf explants (Corredoira et al. 2006b) and shoot tip explants (San-

José et al. 2010) confirmed an indirect SE process. During culture in M1 induction medium, 

explants yielded callus tissue comprising parenchymatic cells with vascular elements, and 

actively dividing meristematic cells produced superficial layers of callus protuberances; these 

meristematic zones generally evolved into differentiated parenchyma cells rather than somatic 

embryos. At the end of culture in M2 medium and during culture in M3 medium, certain cells 

acquired an embryogenic character; these cells appeared interspersed with parenchyma cells, 

which were undergoing further vacuolization and degradation, in superficial callus regions. The 

formation of embryogenic cells was also associated with extensive division of perivascular cells 

in differentiating vascular bundles in the callus. In white oak, the formation of embryogenic 
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cells appears to be associated with a felodermis-like meristem or diffuse cambium established in 

superficial layers of the callus; in this case, cells exhibiting embryogenic-like cytological 

features also displayed intense accumulation of phenolic substances. Phenol accumulation in 

cells surrounding somatic embryos has been reported in myrtle (Canhoto et al. 1999) and may 

play an unknown role during early stages of SE in eucalyptus (Pinto et al. 2008). It is possible 

that this may account for the physical or physiological isolation of potential embryogenic cells 

as one of the pre-requisites for triggering the embryogenic program. Successive division of the 

embryogenic cells led to the formation of a few-celled proembryos and embryogenic aggregates 

within a thick common cell wall, indicating a probable unicellular origin, although a 

multicellular origin from bulging embryogenic areas cannot be discounted. Embryogenic 

aggregates gave rise to well-formed somatic embryos or to embryogenic nodular structures, 

which were formed from small vacuolated cells and meristematic areas, but lacked clear 

bipolarity. These cells were able to produce somatic embryos of multicellular origin from their 

meristematic areas, and somatic embryos of unicellular origin from embryogenic cells shed 

from the outermost layers. Somatic embryos, including cotyledonary stage embryos with shoot 

and root meristems, were apparent at successive stages of development.  

Overall, these results suggest that leaf tissues are suitable explants for initiating SE in mature 

trees in different Quercus species, although pedunculate oak appears to be more recalcitrant 

than cork oak and white oak and the results obtained with the former closely resemble those 

obtained in leaf explants of a 50-year-old Q. ilex tree (Féraud-Keller and Espagnac 1989). Even 

in the case of shoot tip explants, the apical meristem itself generally senesced and died during 

culture, and the basal leaf primordia attached to the axial zone were the real source of 

generating calluses and, subsequently, embryogenic tissues. This suggests that the production of 

somatic embryos from oak shoot tip explants may be considered as a particular case of SE in 

which leaf primordia and their axillary basal meristems were involved. This is especially 

evident in Q. alba, where basal leaf primordia included in the shoot tip explants were the source 

of somatic embryos produced by this type of explant. 

 

Secondary embryogenesis Once embryo initiation was achieved, even though induction 

frequencies were low, a large number of somatic embryos can be obtained by secondary 

embryogenesis (Toribio et al. 2004; Valladares et al. 2006). After isolation of somatic embryos 

from the original explant and culture in proliferation media, a recurrent embryogenesis 

mechanism is triggered, thus enabling the formation of secondary embryos giving rise to clonal 

embryogenic lines. Secondary embryos were mainly formed on the hypocotyl or root zone of 

the primary embryo, although some also appeared on the cotyledons. Production for scaling up 

and long-term maintenance of SE in different species of Quercus depends on their embryogenic 
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capacity through secondary embryogenesis. A semisolid proliferation medium supplemented 

with either a low concentration of cytokinins and auxins, or media without PGR were used for 

multiplication of embryogenic lines derived from pedunculate oak (Cuenca et al. 1999; Wilhelm 

2000) and cork oak (Hernández et al. 2003b). For embryogenic lines derived from mature Q. 

robur trees, a proliferation medium consisting of MS basal medium including 500 mg/l casein 

hydrolysate, 0.44 µM BA and 0.27µM NAA was initially adopted, and has made possible the 

continuous supply of somatic embryos during several years (Valladares et al. 2006; Sánchez et 

al. 2008). Further optimization experiments demonstrated that PGR treatment significantly 

affected proliferation and quality of the embryos (Mallón et al. 2011) with the best rates 

achieved when the proliferation medium was supplemented with 0.44 µM BA alone, resulting in 

significantly higher total numbers of embryos and of cotyledonary-stage embryos (used for 

germination purposes). Embryo production was affected by genotype, as expected given the 

impact of genotype on the induction step and germination step of the oak embryogenic systems. 

A genotypic effect was also documented in the proliferation of embryogenic lines of Q. suber, 

based on significant differences in the relative increase in fresh weight and number of 

‘detachable’ embryos (Hernández et al. 2003b). 

The histological origin and structural organization of the secondary embryogenesis process 

were investigated in Q. robur and Q. suber. A multicellular origin of embryos, and both direct 

and indirect secondary embryogenesis responses were reported in Q. robur (Zezgouti et al. 

2001). In the case of the cork oak system (maintained in PGR-free medium), secondary 

embryos arose either in a multicellular budding pathway from a compact mass of proliferation 

or from isolated single cells (unicellular origin) in friable callus induced with relatively high 

levels of 2,4-D (Puigdejarrols et al. 1996, 2001).  

 

Maturation, germination and plantlet conversion  As in many other woody species, the low rate 

of conversion into plantlets is a major limitation for large-scale application of oak somatic 

embryogenesis. Maturation has been hampered in many species by repetitive embryogenesis, 

immaturity, embryo dormancy and precocious germination. During the maturation stage, 

somatic embryos should accumulate specific storage products at the appropriate time, as occurs 

in zygotic embryos (von Arnold et al. 2002). Abscisic acid (ABA) plays a fundamental role in 

processes such as regulation of the synthesis of storage proteins and late embryogenesis-

abundant (LEA) proteins and water-stress-induced gene expression (Dodeman et al. 1997), in 

the reduction of secondary embryogenesis and in the inhibition of precocious germination 

(Kernode 1995). Desiccation, at least in zygotic embryos, is known to play a role in switching 

from the embryogenic to the germination phase. Reduction of intra- and intercellular-water 
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content by means of osmotic stress of the culture media may promote healthy development by 

mimicking the natural course of zygotic embryogenesis (Compton and Gray 1996). 

Several approaches have been carried out to improve germination (root growth) and plantlet 

conversion (root and shoot growth) of somatic embryos in different oak species. Although the 

germination response, in terms of root development, may achieve values up to 80% in various 

oak species, many of the germinating embryos only exhibited root development, and the 

conversion rates were still not satisfactory (3% to 32%, Sánchez et al. 2003). A maturation stage 

allowing synthesis and accumulation of storage compounds and acquisition of desiccation 

tolerance probably also has to be completed by oak somatic embryos prior to germination. One 

form of inducing partial desiccation is to use an appropriate concentration and type of 

carbohydrate in the culture medium in order to induce osmotic stress. The culture of somatic 

embryos, prior to germination, in maturation media supplemented with 6% sorbitol or 6% 

manitol plus 2-3% sucrose for one month, significantly favored the conversion rates in Q. robur 

embryogenic lines derived from leaf explants of seedlings (Sánchez et al. 2003), and in lines 

derived from mature trees (Valladares et al. 2006). These authors have also demonstrated that 

germination and conversion ability greatly depended on genotype; after 8 weeks of culture in 

germination medium, embryos of one genotype failed to germinate, and they continued to 

produce large numbers of secondary embryos while other genotypes exhibited conversion rates 

of up to 70% (Valladares et al. 2006). However, García-Martín et al. (2001) pointed out that the 

somatic embryo response of Q. suber was not improved by using a high concentration of 

sucrose prior to germination, unless accompanied by two months of chilling. Osmotic stress 

induced by increasing the concentration of agar (1%) in the maturation medium, with 

subsequent partial desiccation (moisture loss of 20-25%) promoted maturation and subsequent 

germination of pedunculate oak somatic embryos of culture lines of zygotic origin, thus 

achieving conversion rates up to 63% (Sunderlikova and Wilhelm 2002; Prewein et al. 2004). 

These authors also pointed out that a progressive increase in the concentration of proline and a 

50% decrease in the concentration of ABA were observed to occur during embryo maturation 

(Prewein et al. 2004). There are no conclusive results on the exogenous application of ABA to 

promote maturation and subsequent germination of oak embryos. Although the addition of ABA 

to the culture media significantly reduced unwanted recurrent embryogenesis in Q. ilex (Mauri 

and Manzanera 2004) and significantly stimulated somatic embryo maturation in Q. suber 

(García-Martín et al. 2005), the treatments carried out in cork oak (Toribio et al. 2005) and in 

pedunculate oak did not have significant effects on germination and plantlet conversion.  

For a number of woody species, culture of somatic embryos in a maturation medium must be 

followed by a period of cold storage to break embryo dormancy, a process associated with 

changes in the endogenous levels of ABA and gibberellic acid, (GA3) (Deng and Cornu 1992). 
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The application of a 2-month cold period as a pre-germination treatment stimulated embryo 

germination and conversion in material from Q. suber of immature zygote origin (Fernández-

Guijarro et al. 1995; García-Martín et al. 2001; Gonzalez-Benito et al. 2002a) and Q. ilex 

(Mauri and Manzanera 2004), as well as in embryogenic lines from Q. suber of mature tree 

origin (Hernández et al. 2003b). Similarly, the application of activated charcoal and a mixture of 

glutamine, arginine and asparagine coupled with cold storage at 4ºC for two months had a 

favorable effect on plantlet conversion in cork oak (Pintos et al. 2010). In the embryogenic 

system derived from immature cotyledons of Q. rubra, germination was performed by 

desiccation for 3 days followed by cold storage for 8 weeks (Vengadesan and Pijut 2009). 

However, two months of storage at 4ºC between maturation and germination treatments did not 

have any significant effect on the conversion frequency in pedunculate oak embryos from 

mature trees, although germination, in terms of root-only development, was promoted in the 

three embryogenic lines investigated (Martínez et al. 2008). Overall, stratification appears to be 

an important treatment for promoting germination in oak somatic embryos, as occurred in 

chestnut, another recalcitrant seed species and member of the family Fagaceae (Corredoira et 

al. 2003; Andrade and Merkle 2005).  

Mature somatic embryos of Q. robur were usually germinated in media supplemented with 

0.28-0.56 µM BA with or without IBA (0.1 µM) (Cuenca et al. 1999; Sunderlikova and 

Wilhelm 2002; Valladares et al. 2006), whereas germination media devoid of PGR were used 

with Q. suber (Hernández et al. 2003b) and Q. ilex (Mauri and Manzanera 2004). A positive 

effect of inclusion of GA3 in the germination medium was reported for Q. acutissima somatic 

embryos (Kim 2000), which is consistent with the results obtained by Vengadesan and Pijut 

(2009) in Q. rubra somatic embryos, in which the combination of BA (0.44 µM) and GA3 (0.29 

µM) favored simultaneous development of both the shoot and the root, thus yielding a high 

frequency of germination (61%). However, preculture of Q. robur somatic embryos in GA3 

(8.65 µM) medium for two weeks prior to transfer to germination medium did not improve the 

conversion rates, but did reduce root length and the number of leaves per regenerated plantlet 

(Sánchez et al. 2003). 

Epicotyl and shoot development in oak germinating embryos appears to be a limiting factor, 

and plantlet conversion is still not operational on a large scale. The shoot promoting ability of 

thidiazuron (TDZ) suggests that this may influence the organization and development of what 

would otherwise be a poorly developed shoot apical meristem, and the effect of this compound 

was therefore investigated during the germination step in Q. robur (Martínez et al. 2008). 

Addition of 0.05-0.1 µM TDZ to the germination medium for an initial period of seven days 

induced multiple shoot formation in the epicotyl region (the main shoot plus cotyledonary 

axillary shoots) of the germinating embryos, increasing the plantlet conversion frequency and 
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the shoot-only elongation frequency, especially in the case of hard-to-convert embryogenic 

lines. Shoots excised from shoot-only germinating embryos can be elongated, multiplied and 

rooted by proven micropropagation procedures via axillary shoot proliferation (Martínez et al. 

2008), as already described in this review. This procedure would also provide an interesting tool 

to study if rejuvenation of the regenerated shoots through somatic embryogenesis (induced from 

mature tissues) occurs.  The combined strategy based on somatic embryo conversion to the 

extent that it is possible, and proliferation and rooting the shoots of unconverted embryos that 

produce them, has been proposed for production of plants from embryogenic transgenic lines of 

European chestnut and American chestnut (Maynard et al. 2008). The initial experiments 

involving application of TDZ to germinating embryos also gave rise to an additional finding 

that adventitious bud regeneration was induced on the cotyledons of TDZ-treated embryos 

(Martínez et al. 2008), which may be useful in genetic transformation procedures applied to this 

species. 

In an attempt to understand the maturation and germination processes in pedunculate oak, 

the expression patterns of the storage protein legumin gene and Em- and dehydrin-like 

homologues were investigated (Sunderlikova and Wilhelm 2002; Sunderlikova et al 2009a). 

The latter authors concluded that these proteins may be useful as markers of the physiological 

and maturation condition of somatic embryos (see also Genomics section). 

Data from field experiments with plants derived from somatic embryos are scarce and 

limited to Q. suber plants regenerated from mature selected trees, from their half-sib progenies 

by somatic embryogenesis and from zygotic seedlings of the same families. Differences as a 

result of genotype and family effects were notable and no apparent morphological alterations 

were detected among the trees of tested progenies (Celestino et al. 2007). 

 

Genetic stability 

The genetic stability of in vitro regenerated plants is an essential requisite for large-scale 

clonal forestry. Evaluation of genetic fidelity in plantlets of the genus Quercus obtained through 

somatic embryogenesis is of vital importance because in these species, as a result of their long 

life cycle, assessment and detection of possible somaclonal variation is critical to prevent the 

spread of instability among high-value genotypes. PCR-based markers (RAPDs, AFLPs, SSRs) 

and cytological studies have been used to evaluate the potential genetic variation in 

embryogenic cultures and regenerated plants of different Quercus species.  

Four embryogenic lines initiated from explants of 4-week-old Quercus robur seedlings 

maintained for more than 4 years by secondary embryogenesis were subjected to RAPD 

analysis. In addition to these lines, a line derived from a nodular embryogenic callus, which 

ceased to be embryogenic after a few subculture cycles, was also analyzed (Sánchez et al. 
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2003). No polymorphism was detected within and between embryogenic lines originated from 

different types of explant from the same seedling, but enough polymorphism was detected 

among genotypes originating from different plants to enable the origins to be distinguished. 

There were also no differences in DNA sequences between regenerated plantlets and their 

somatic embryos of origin.  However, these authors observed genetic variation between the 

callus line that had lost its embryogenic capacity and the three embryogenic lines derived from 

the same seedling (Sánchez et al. 2003). The genomic alteration appears to have caused loss of 

the capacity for embryogenesis. Callus proliferation probably involves fewer active genes than 

the formation of somatic embryos or converted plantlets, and mutations in these active genes 

may be the cause of the loss of ability to undergo secondary embryogenesis (Heinze and 

Schmidt, 1994). De Verno et al. (1994) suggested that the embryogenic tissue may be composed 

of a mixture of altered and unaltered cells and genomes, and that only the unaltered genome 

would be able to regenerate plantlets. In addition, five microsatellite loci were used to test the 

genetic stability of three somatic embryogenic lines derived from immature zygotic embryos of 

Q. robur and derived plantlets (Wilhelm et al. 2005). Variation in DNA was detected among 

somatic embryos within the three embryogenic lines with a high mutation frequency of 29.2–

62.5%, depending on the genotype, whereas no genetic instability was found among the 

regenerated plantlets. The authors, in line with the results reported by Sánchez et al. (2003), 

suggested that regeneration would be a selective process in which conversion into plants would 

be prevented in somatic embryos with mutations. Both RAPD and AFLP markers were used to 

record differences between embryogenic lines, even between those that arose from half-sib 

zygotic embryos, but no genetic variation was found among somatic embryos within 

embryogenic lines of zygotic embryo origin of Q. suber (Gallego et al. 1997; Hornero et al. 

2001).  

The genetic stability of in vitro cultures and regenerated plants compared with the original 

selected material from which they are derived is essential for the maintenance and propagation 

of elite genotypes. RAPD analysis was used to check the genetic stability of somatic embryos 

induced from mature Q. robur tissues. No evidence of genetic changes was found within or 

between those embryogenic lines and the mature trees of origin, and stability was also 

maintained between the regenerated plantlets and trees of origin (Valladares et al., 2006).  

However, pre-existing variation among tissues from the donor plant was attributed to DNA 

instability detected among AFLPs in Q. suber somatic embryos induced from leaves of adult 

trees (Hornero et al. 2001). Similarly, Lopes et al. (2006) used microsatellites to demonstrate 

mutations in Q. suber somatic embryos derived from leaves from a mature field tree. 

Nevertheless these authors found no somaclonal variation in another embryogenic line of adult 

origin.  
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Therefore, to certify the genetic stability of regenerated plants by in vitro culture, it is 

important to use a variety of approaches such as flow cytometry, since PCR-based markers fail 

to detect variation at the ploidy level. Endemann et al. (2001) used flow cytometry analysis to 

detect tetraploidy in 8% of pedunculate oak somatic embryos originated from zygotic embryos 

and maintained by secondary embryogenesis, and the changes in chromosome number appeared 

to be correlated with the duration of the in vitro culture. Using the same technique, Loureiro et 

al. (2005) found no polyploidy or significant variations in DNA content among cork oak 

somatic embryos, and between the embryos and the mature mother trees. These authors also 

observed the same ploidy level when the somatic embryos were germinated and converted to 

plantlets. 

Pre-existing variation in the original explants, probably linked to the genotype, and de novo 

induced mutational events during the embryogenic process, appear to be the most important 

aspects related to the genetic stability of oak somatic embryos (Wilhelm et al. 2005).  

 

 

Cryopreservation 

Gene conservation programmes are recommended for oak species because the genetic resources 

are threatened by multiple factors such as the introduction of exotic genotypes, species 

purification, neglected practices, diseases, etc. In situ conservation methods are generally 

preferred, although if natural methods are not sufficient, ex situ conservation through clonal 

seed orchards should be used (Ducousso and Bordacs 2004). Furthermore, as pointed out in the 

Introduction section, Quercus species are late-maturing and late-flowering, exhibit irregular 

seed set, and produce seeds that are recalcitrant to conventional conservation procedures. 

Recalcitrant seeds have a high water content and can be only stored for relatively short periods 

of time because they are sensitive to desiccation. 

There are several potential advantages of using synthetic seeds, including the potential for 

long-term storage and for automation and commercialization purposes, but there is scant 

information on the feasibility of encapsulation in Quercus species. In one study, apical buds of 

Q. robur and Q. cerris were encapsulated in an alginate matrix, giving rise to successful 

regeneration after 6 weeks of cold storage at 4ºC (Tsvetkov and Hausman 2005). Furthermore, 

the production of synthetic seeds and their ability to be stored has been investigated in somatic 

embryos of Q. robur (Prewein and Wilhelm 2003) and Q. suber (Pintos et al. 2008). However, 

the results obtained in both studies showed that conversion rates were considerably reduced 

after 2-3-months of cold storage at 4ºC, and only short-term storage of encapsulated embryos 

was possible. 
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In general, strategies for forest biodiversity conservation are today well-defined (Häggman et 

al. 2008), among which cryopreservation is viewed as a complementary, secondary storage 

method designed as a secure backup for living collections (Reed 2008). Well-defined in vitro 

techniques are required to recover the multiplication capacity of supercooled material via 

axillary shoot growth or somatic embryogenesis. Only under these conditions, the application of 

cryopreservation in the development of large gene banks is justified. Cryopreservation is 

currently routinely applied to embryogenic lines awaiting field testing results (Sutton 2002) and 

the first approaches on the application of cryopreservation to hardwood forest tree species have 

recently been published (Harvengt et al. 2004; Vidal et al. 2010a).  

Zygotic embryo axes of pedunculate oak have been cryopreserved using the simplest 

desiccation-based method, by means of fat flash drying and direct immersion in liquid nitrogen 

(LN), which yielded appreciable germination recovery rates (Berjak et al. 2000). These rates 

were not improved when more complex dehydration procedures were applied. Better results 

were reported with embryonic axes of Quercus faginea, a tree that occurs widely in the Iberian 

peninsula (González-Benito and Pérez-Ruiz 1992). Prior to storage in LN, the axes were 

desiccated either under sterile conditions in a laminar air flow bench for different periods of 

time, or by soaking them in 15% dimethylsulfoxide (DMSO) for 1 h and subsequently 

immersing them in LN. The best recovery rates (60% germination) were obtained after 

desiccation for 3 h, after which the moisture content decreased from the initial value of 63.7% to 

12%. However, attempts to subject cork oak zygotic embryo axes to cryostorage by partial 

desiccation followed by rapid immersion in LN were unsuccessful, as only unorganized post-

cooled growth of axes was reported (González-Benito et al. 2002b). 

As progress in the induction of somatic embryogenesis from selected trees has been evident 

in the last years in species such as pendunculate and cork oak, interest in the cryopreservation of 

embryogenic lines has increased. Cryopreservation techniques referred to as ‘vitrification-based 

techniques’ are now applied to different oak species. Briefly, embryo clumps (4-6 mg) of 

globular or heart-shaped secondary embryos isolated from embryogenic lines were pre-cultured 

for 3 days on a solid MS medium containing 0.3 M sucrose, and were then transferred to fresh 

medium containing 0.7 M sucrose for another 4 days. The embryos were placed in cryovials, 

then subjected to vitrification by application of PVS2 solution (30% w/v glycerol, 15% w/v 

DMSO and 15% w/v ethylenglycol in MS medium containing 0.4 M sucrose) for 30 min at 

25ºC, resuspension in the PVS2 solution and then plunging in LN. After rewarming, recovery 

rates (relative to the generation of new embryos from surviving cells of the cryopreserved 

clumps by repetitive embryogenesis) of 75%-80% were recorded for somatic embryos of 

pedunculate oak (Martínez et al. 2003; Sánchez et al 2008). Following a similar procedure, 

higher recovery rates (>90%) were achieved with different embryogenic lines initiated from 
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mature selected trees of cork oak (Valladares et al. 2004). Preculture on a medium containing 

sugars appeared to be an essential step for successful cryostorage in the vitrification procedure. 

A high concentration of sucrose may increase tolerance to desiccation, which may stimulate the 

accumulation of certain sugars in the cells. The effect of increased sugar content on cell 

integrity may cause a decrease in cell volume as a result of osmotic process and direct 

stabilization of membranes (Percy et al. 2001). 

Construction of a large gene bank of cork oak genotypes by use of the cryopreservation 

methodology developed at laboratory level is a reality. Currently, 100% of the 51 embryogenic 

lines corresponding to genotypes of both juvenile (44 genotypes) and mature (7 genotypes) 

origins incorporated to the gene bank recovered their capacity to proliferate after immersion in 

LN. Furthermore, three experimental plots have been established with the selected materials to 

determine their productivity and heritable characters by investigation of progenies. During field 

testing, copies of the material will be preserved under LN (Vidal et al. 2010a).  

One concern related to cryopreservation methods is the genetic stability of the post-cooled 

and regenerated plants.  The potential somaclonal variation of in vitro tissue cultures, as well as 

the mutagenic potential of the most popular cryoprotectant component of the PVS2 vitrification 

solution, DMSO, are well-known, although to date there is no evidence of morphological or 

genetic alterations in forest trees as a result of cryopreservation (Häggman et al. 2008).  Aronen 

et al. (1999) reported genetic changes in DMSO-treated, non-supercooled samples, but not in 

DMSO-treated and cryostored samples of Abies cephalonica somatic embryos during 

cryopreservation. The authors speculated that, although cryostorage does not remove the 

mutagenic potential of DMSO, it probably eliminates a high proportion of the cells bearing 

genetic changes. In our experience, RAPD profiles of 5 embryogenic lines of Quercus robur 

cryopreserved for years, and the corresponding regenerated plantlets were identical to those of 

the controls and no genetic instability (sporadic mutations or genetic reordering) was detected 

(Sánchez et al. 2008).  

 

Genetic transformation 

As pointed out above, the induction and proliferation of somatic embryos derived from both 

juvenile and mature material of different Quercus species has been demonstrated. Factors 

affecting the germination and conversion of somatic embryos into plantlets were also studied 

and, consequently, the most appropriate target material for the application of gene transfer is 

now available.  

Genetic transformation protocols for cork oak embryogenic lines induced from both mature 

(Alvarez et al. 2004) and juvenile (Sánchez et al. 2005) materials through co-culture with 

different strains of Agrobacterium tumefaciens harbouring plasmids containing marker genes 
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have been defined. An optimized protocol for Agrobacterium-mediated transformation of 

mature embryogenic masses of this species,  in which variables such as the genotype, explant 

type and the preculture period were studied, has also been reported (Alvarez and Ordás 2007). 

Genotype has a strong influence on the transformation frequency, as only 3 out of the 6 

embryogenic lines tested were kanamycin-resistant after 4 months of culture in selective media. 

The transformation efficiencies were highly variable among experiments, which may be related 

to the physiological state of the somatic embryo clumps used in the experiments. Unfortunately, 

the plantlet conversion rates were not reported in any of these studies. In addition, cork oak 

embryogenic masses were transformed using Agrobacterium strain AGL1, which carried the 

plasmid pBINUbiBar, harbouring the genes nptII and bar, the latter under control of the maize 

ubiquitin promoter. Varying activities of phosphinothricin acetyl transferase were detected 

among the lines, which carried 1-4 copies of the insert. The stability and expression of the 

transgenes 3 months after thawing of the cryopreserved transgenic embryogenic lines were 

confirmed by molecular and biochemical probes. Herbicide resistance has only been tested at 

laboratory level, as plantlet conversion has not been reported (Alvarez et al 2009). 

Initial attempts to obtain transformed plants of pedunculate oak (Q. robur) were unsuccessful 

(Roest et al. 1991; Wilhelm et al. 1996). A protocol for genetic transformation of somatic 

embryos derived from juvenile (2 lines) and mature (3 lines) pedunculate oak trees co-cultured 

with the Agrobacterium strain EHA105 harbouring a p35SGUSINT plasmid containing a nptII 

marker gene and a uidA reporter gene, has recently been reported (Vidal et al. 2010b). 

Histochemical and molecular analyses confirmed the presence of nptII and uidA genes in the 

roots and leaves of transformed plants. Transformation efficiencies ranged from up to 2%, in an 

embryogenic line derived from a 300-year-old tree, to 6% in a juvenile genotype. Twelve 

independent transgenic lines were obtained and transgenic plantlets were recovered and are 

growing in a greenhouse. 

The feasibility of genetic transformation of pedunculate oak and cork oak somatic embryos 

by means of the co-culture technique with several Agrobacterium strains has been 

demonstrated. Taking into consideration these advances, the next step should be to study the 

response of these or other oak species after genetic transformation with genes of interest, as 

carried out with chestnut (Maynard et al. 2008), a member of the family Fagaceae. 

   

Genomics 

Genomic information on many forestry species has increased dramatically in recent years and 

genomic resources available for tree improvement and domestication programs include genomic 

sequencing, EST sequencing, transcript profiling, gene transfer, molecular markers for mapping 

and breeding, etc. (Merkle and Nairn 2005). With advances in molecular biology and 
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identification of adaptive genes, differences in gene sequences for genes involved in the control 

of a particular adaptive trait would be used for assessing diversity and adaptiveness (Savill et al. 

2005). Current progress in tree genomics is so rapid that few studies have been published to date 

and much documentation is often limited to electronic resources. There are a number of 

websites related to genomics and gene discovery in trees (Nehra et al. 2005). An integrated 

web-based resource for members of the Fagaceae family, including Quercus (Fagaceae 

Genomic Database (FGD) http:/www.fagaceae.org), has been developed. This site disseminates 

data and analyses by providing relevant sequence information, homology results, 

genetic/physical map information, SSrs, SNPs; and other genomic data are being posted as they 

become available. The most important information from studies involving the genomics of 

Quercus species, including construction of genetic linkage maps, microsatellite markers, EST-

derived markers, transcriptome investigations and differential gene expression for the 

identification of genes involved in the adaptation of oak trees and QTL detection for phenotypic 

traits that respond to natural selection and to specific stresses, has been reviewed in detail 

(Kremer et al. 2007). 

Most research activities involving the molecular genetics of Quercus have addressed 

population genetics, unlike in other forest species, for which tree improvement has been the 

main goal. Two oak mapping initiatives have been carried out: for European white oaks the 

objective is to detect QTLs that control morphological and adaptive traits involved in species 

differentiation (Petit et al. 2004; Saintagne et al. 2004; Scotti-Saintagne et al. 2004a), while in 

American red oaks, the ultimate goal is the detection of QTLs and genes that control heartwood 

color and resistance to specific pests (Aldrich et al. 2002). 

Implementation studies have been carried out on transcriptomic investigations and 

differential gene expression to identify genes involved in the adaptation of oak species to their 

environments. Genetic variation of bud burst and early growth has been estimated in a full-sib 

family of Q. robur comprising 278 offsprings. Bud burst appears to be controlled by several 

QTLs with rather low to moderate effects and height growth depends on fewer QTLs with 

moderate to strong effects (Scotti-Saintagne et al. 2004b). After this, 801 ESTs were generated 

derived from 6 developmental stages of bud burst. Microarray and real-time RT-PCR showed 

that several differential expressions between quiescent and swelling buds constitute relevant 

candidates for the signaling pathway of bud burst in trees (Deroy et al. 2006). 

Forest trees are threatened by changing environmental conditions because global climate 

change. Thirteen osmotic stress-induced genes of Quercus ssp. were included in  genetic linkage 

maps of oak (Porth et al. 2005) and later studies on QTLs of tolerance to waterlogging in 

pedunculate oak identified significant clusters of QTLs, at inter- and intra-trait level, suggesting 

the occurrence of a genetically controlled cascade response to waterlogging (Parelle et al. 2007). 
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Quantitative trait loci controlling water use efficiency and related traits were also studied in Q. 

robur (Brendel et al. 2008). 

Vegetative propagation using either conventional cutting procedures and micropropagation 

techniques, are used for the deployment of improved genetic forest tree species. Assessment of 

rooting in cuttings of pedunculate oak allowed the detection of 10 QTLs explaining between 4% 

and 13.8% of the phenotypic variance, of which the strongest were stable across years (Scotti-

Saintagne et al. 2005). Furthermore, a full-length cDNA clone named QrCPE, which is 

differentially expressed during in vitro culture of mature (difficult-to-root) and juvenile (easy-

to-root) shoots of pedunculate oak was identified by differential display (Gil et al. 2003). The 

deduced amino acid sequence showed that QrCPE encodes a small putative cell wall protein that 

is rich in glycine and histidine residues. Accumulation of QrCPE mRNA was higher in mature 

than in juvenile microshoots at the end of the multiplication and rooting steps. QrCPE 

accumulates in ontogenetically older organs of oak trees, although it is present in zygotic and 

somatic embryos but absent from callus cells. Expression of QrCPE gene was also investigated 

in juvenile-like microshoots during the in vitro rooting process, after demonstration of the 

auxin-mediated induction of this gene in rooting competent shoots (Covelo et al. 2009). On the 

other hand, an Em-like gene, QrEm, has been isolated from Q. robur zygotic embryos, which is 

expressed in the mid-maturation phase. Abundant transcript accumulation was observed when 

somatic embryos of the species were subjected to 6% sorbitol or after partial desiccation. The 

results of in situ hybridization experiments appear to suggest that the QrEm gene is embryo-

specific and its expression is developmentally regulated (Sunderlikova et al. 2009a). 

Furthermore, three dehydrin genes, QrDhn1, QrDhn2, QrDhn3, were isolated from pedunculate 

oak. The QrDhn1 gene was expressed during later stages of zygotic embryo development but 

only in somatic embryos when exposed to osmotic or desiccation stress. The other two dehydrin 

genes were expressed only in somatic embryos (both untreated and osmotically stressed), and 

the authors suggest that different dehydrins were involved in the process of seed maturation and 

response to altered osmotic (water status) conditions in somatic embryos (Sunderlikova et al. 

2009b). These and other members of the dehydrin gene family may contribute to clarifying non-

orthodox (oak) seed behavior and to identifying mechanisms related to desiccation tolerance. 

Finally, 17 differentially proteins have been identified in a proteomic study of Q. suber somatic 

and gametic in vitro culture-derived embryos. Some of the proteins identified are involved in 

stress and pollen development and others are associated with metabolism of tannins and 

phenylpropanoids (Gómez et al. 2009).  Approaches using functional genomics to examine the 

molecular and cellular mechanisms that control organogenesis and somatic embryogenesis will 

contribute to better practical application of these processes to recalcitrant species such as oaks.  
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From the development of genetic maps in species of Quercus, Castanea and Fagus (all 

genera belonging to the family Fagaceae) carried out to date, it appears obvious that molecular 

markers could be easily transferred from Quercus to Castanea (Barreneche et al. 2004; Casasoli 

et al. 2006), but less easily to Fagus, and ongoing activities in comparative mapping suggest 

that there is a strong macrosyntheny between the phylogenetically close genera Quercus and 

Castanea (Kremer et al. 2007).   

 

 

 

Conclusions 

Conventional long-term tree improvement programs have not been carried out in the long-

rotation species of the genus Quercus. The rapid development of biotechnological techniques, 

including in vitro tissue culture, gene transfer, conservation, molecular genetics associated with 

physiological and taxonomic studies, gene mapping, and identification of genes and alleles 

linked to specific traits, provides an opportunity for breeding, propagation, deployment and 

management applied to Quercus species. Although most of these species are classified as 

recalcitrant to regeneration through in vitro tissue culture, enormous progress has been made in 

the application of biotechnological tools to the most important species of Quercus during the 

last decade. Procedures of micropropagation through organogenesis and somatic embryogenesis 

using explants isolated from selected adult trees, and protocols for genetic transformation and 

cryopreservation of elite genotypes have been defined, allowing the regeneration of whole 

plants, regardless of the method used. However, the organogenic/embryogenic response is 

clearly dependent on the genotype and, in the embryogenic process, the low conversion rates of 

the somatic embryos into plantlets of most of the species/genotypes studied may be considered 

as one of the most important obstacles to the large scale propagation of selected oak genotypes. 

Most research involving genomics of Quercus species have concerned population genetics. 

Approaches using functional genomics to examine the molecular and cellular mechanisms that 

control organogenesis and or somatic embryogenesis are still scarce, and much effort should be 

made in this respect in the near future, to enable better application of oak clonal forestry. In 

addition, efforts should involve the isolation and characterization of genes related to other 

specific traits (i.e. disease and or pest resistance, wood quality, tree form), which would also be 

of interest for improving the species. 
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Table 1. Studies on micropropagation through axillary shoot proliferation  in oak species of 

economic relevance 

 

Species  Explant source/origin  Medium Growth response Reference 
 

Q. robur       
  Embryonic axes and 

shoot tips and nodal 
explants from 
seedlings and stump 
sprouts  

GD, BA (4.44‐0.44)1

Dipping  IBA  (1  g/L)  2 
min 

Shoot proliferation
Rooting 

Vieitez et al., 1985

  Shoot tips from 
seedlings and grafts 
from mature trees 

1/2MS, BA (0.44)
IBA (4.9) 8 d 
 

Shoot proliferation
Rooting 

Favre  and  Juncker 
1987;  Juncker  and 
Favre 1989 

  Shoot cultures from 
seedlings and stump 
sprouts  

WPM,  BA  (2.66‐0.88) 
or  TDZ  (0.0045‐
0.0090) 

Shoot proliferation
Rooting, 
acclimatization 

Chalupa 1988 

  Shoot cultures from 
seedlings and 
epicormic shoots from 
mature trees 

GD, BA (0.88)
 
 
GD,  BA  (0.08)  or  Z 
(0.46) 

Shoot  proliferation;
recycling  horizontal 
shoots 
Shoot  elongation, 
rooting 

San‐José  et  el. 
1988 

  Shoot tips, nodal 
segments from 
seedlings and stump 
sprouts 

WPM, BA (2.66‐0.88)
WPM, IBA (0.98‐4.90) 

Shoot proliferation
Rooting, 
acclimatization 

Chalupa 1993 

  Shoot tips from forced 
epicormic shoots from 
mature trees 

WPM,  BA  (4.4‐2.2), 
AC (0.5%) 
IBA (4.6) 

Shoot proliferation
Rooting 

Evers et al. 1993

  Zygotic embryos  Commercial  rooting 
powder 

Ex vitro rooting Meier‐Dinkel  et  al. 
1993 

  Shoot tips and nodal 
segments from forced 
epicormic shoots from 
mature trees 

GD, BA (0.88)
 
 
IBA (14.8) 7 d 

Shoot  proliferation;
recycling  horizontal 
shoots 
Rooting 

Vieitez et al. 1994

  Shoot cultures from 
forced epicormic 
shoots from mature 
trees 

1/3GD, IBA (122.5) 24 
h, AC (1%) 

Rooting Sánchez et al. 1996

  Shoot cultures from 
seedlings 

1/2GD, IBA (4.90) 7 d Rooting Puddephat  et  al. 
1999 

       
Q. 
petraea 

     

  Shoot tips and nodal 
segments from 
seedlings and stump 
sprouts 

GD BA (0.88)
1/2GD,  dipping  IBA 
(0.5 g/L) 6 min 

Shoot proliferation
Rooting 

San‐José  et  al. 
1990 

  Shoot tips and nodal 
segments from 
seedlings and stump 
sprouts 

WPM, BA (2.66‐0.88)
WPM, IBA (0.98‐4.90) 

Shoot proliferation
Rooting 

Chalupa 1993 

       
Q. rubra       
  Shoot tip and nodal  WPM, BA (4.44‐0.88) Shoot  proliferation;  Vieitez et al. 1993
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segments from 
seedlings and from 4‐
y‐old trees. Epicormic 
shoots from mature 
trees 

recycling  horizontal 
shoots 

  Shoot cultures  1/2WPM,  IBA  (122.5) 
24 h, AC (1%) 

Rooting Sánchez et al. 1996

  Cotyledonary nodes 
from 8‐w‐old 
seedlings 

WPM,  BA  (4.4),  GA3

(0.29) 
WPM, IBA (4.9) 

Shoot proliferation 
 
Rooting 

Vengadesan  and 
Pijut 2007 

  Shoot tips and nodal 
segments from 
epicormic shoots from 
7‐y‐old trees 

WPM, BA  (0.88‐0.44), 
AgNO3 (3 mg/L) 
 
1/2WPM,  IBA  (122.5) 
48 h, AC (0.4%) 

Shoot  proliferation,
horizontal explants 
 
Rooting 

Vieitez et al. 2009

       
Q. suber       
  Apical and axillary 

buds, flushed shoots 
from stem cuttings of 
mature trees 

GD,  WPM,  BA  (4.44‐
2.22), IAA (0.57) 
Dipping  IBA  (0.5  g/L) 
10 s 

Shoot proliferation
 
Rooting 

Romano et al, 1992

       
Q. alba       
  Shoot tips and nodal 

segments from 
epicormic shoots from 
7‐y‐old trees 

GD,  BA  (0.88‐0.44),  Z 
(2.28) 
 
1/2GD, IBA (122.5) 48 
h, AC (0.4%) 

Shoot  proliferation, 
horizontal explants 
 
Rooting 

Vieitez et al. 2009

       
Q. 
bicolor 

Shoot tips and nodal 
segments from 
epicormic shoots from 
7‐y‐old trees 

GD,  BA  (0.88‐0.44),  Z 
(2.28) 
 
1/2GD, IBA (122.5) 48 
h, AC (0.4%) 

Shoot  proliferation, 
horizontal explants 
 
Rooting 

Vieitez et al. 2009

 

1Quantities in brackets are expressed in µM unless otherwise stated 
Mineral media: GD: Gresshoff and Doy  (1972); MS: Murashige and Skoog  (1962); WPM: Woody Plant 
Medium (Lloyd and McCown 1980) 
Supplements:       AC: Activated charcoal; BA: 6‐Benzylaminopurine; GA3: Gibberellic acid;  IAA:  Indole‐3‐
acetic acid; IBA: 3‐Indolebutyric acid; TDZ: Thidiazuron; Z: Zeatin  
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Table  2.  Summary  of  somatic  embryogenesis  studies  of  Quercus  species,  with  special 

reference to those published from the year 2000.       

 

Species  Explant  Origin  Growth response/
Remarks 

Reference 

Q. robur     
  Leaves, internodes  S  Somatic embryos, plantlet 

development 
Cuenca et al. 1999 

  Leaf segments  MT  Somatic embryos, plantlet 
development 

Chalupa 2000 

  Embryogenic lines  ZE  Secondary somatic embryos, 
anatomical study 

Zegzouti et al. 2001

  Embryogenic lines  ZE  Maturation, germination, plantlet 
development 

Sunderlikova and Wilhelm 2002; 
Prewein et al. 2004 

  Embryogenic lines  S  Maturation, germination, plantlet 
development 

Sánchez et al. 2003

  Leaves   MT  Somatic embryos, plantlet 
development 

Toribio et al. 2004 

  Leaves  MT  Somatic embryos, plantlet 
development 

Valladares et al. 2006

  Leaves  MT  Somatic embryo origin, anatomical 
study 

Corredoira et al. 2006a,b

  Embryogenic lines  MT  Secondary somatic embryos, 
plantlet development 

Sánchez et al. 2008

  Embryogenic lines  MT  Maturation, germination, plantlet 
development 

Martínez et al. 2008

  Shoot tips and leaves  Shoot cultures 
from MT 

Somatic embryos, anatomical study San‐José et al. 2010

  Embryogenic lines  MT  Secondary somatic embryos Mallón et al. (in press)
     
Q. suber     
  Leaves  MT  Somatic embryos, plantlet 

development 
Hernández et al. 2001

  Embryogenic lines  S  Maturation, germination García‐Martín et al. 2001
  Embryogenic lines  S  Secondary somatic embryos,

anatomical study 
Puigdejarrols et al., 1996, 2001

  Leaves  MT  Somatic embryos Pinto et al., 2002 
  Embryogenic lines  ZE  Germination González‐Benito et al. 2002a
  Leaves  MT  Somatic embryos Hernández et al. 2003a
  Leaves  MT  Secondary somatic embryos,  

germination, plantlet development 
Hernández et al. 2003b

  Anthers  MT  Microspore‐derived embryos Bueno et al. 2003 
  Embryogenic line  S  Somatic embryo maturation García‐Martín et al. 2005
  Leaves  MT  Somatic embryos, maturation, 

germination, plantlet development 
Toribio et al. 2005 

  Somatic seedlings  MT  Acclimatization, field tests Celestino et al. 2007
  Embryogenic lines  MT  Maturation, plantlet development Pintos et al. 2010 
     
Q. rubra     
  Immature cotyledons  ZE  Somatic embryos, maturation, 

plantlet development 
Vengadesan and Pijut 2009

     
Q. ilex     
  Immature zygotic 

embryos 
ZE  Somatic embryos, secondary 

somatic embryos, maturation 
Mauri and Manzanera 2003
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  Embryogenic lines  ZE  Maturation, germination Mauri and Manzanera 2004
Q. 
accutisima 

   

  Immature, mature 
zygotic embryos 

ZE  Somatic embryos, maturation, 
germination 

Kim 2000 

*S, seedlings; MT, mature trees;  ZE, zygotic embryos 

 


